Prioritizing Well Inspections in Colorado: A Risk-Based Approach

February 23, 2016 COGCC Operator Guidance Meeting & February 25, 2016 GWPC 2016 UIC Annual Conference

Chris Eisinger, Ken Robertson, & Mike Leonard

COLORADO Oil & Gas Conservation Commission

Oil & Gas Fields in Colorado

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

As of 2/21/2016:

109,296 total APIs in COGCC database

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

As of 2/21/2016:

~89,477 wells (purple) have been drilled in Colorado

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

COLORADO Oil & Gas Conservation Commission

As of 2/21/2016:

~52,174 active wells (red) for inspection prioritization

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

Senate Bill 13-202

34-60-106. Additional powers of commission - rules - repeal. (15.5) The commission shall use a risk-based strategy for inspecting oil and gas locations that targets the operational phases that are most likely to experience spills, excess emissions, and other types of violations and that prioritizes more in-depth inspections.

- Use a risk-based strategy for inspections of oil and gas locations
- Prioritize more in-depth inspections
- Improve the frequency and timing of inspections

- Detect spills before they worsen
- Increase the public's trust in the Commission's oversight of 0 & G operations
- Better protect public HSWE

Agency Benefits

- Systematic, repeatable, less subjective method
- Accountability
- Leveraging data we collect as part of the regulatory process

COLORADO Oil & Gas Conservation Commission

Risk-Based Inspections: Strategies to Address Environmental Risk Associated with Oil and Gas Operations, Final Report, February, 2014, OGCC-2014-PROJECT #7948.

Report to Colorado Legislature in early 2014 had eight findings:

- Spills and releases are most likely to occur during the production phase of oil and gas operations in Colorado.
 - Spills and releases that occur subsurface may not be identified during the normal inspection process.
 - The Commission does not routinely review production facility maintenance records.
 - The Commission should monitor the installation and operation of flowlines.
 - Historic spills from oil and gas operations must be identified and remediated during facility site closure review.
 - The Commission should receive notice of construction, reclamation, and drilling activities.
 - The Commission could rebalance inspection resources to provide additional inspections of hydraulic fracturing operations.
 - The Commission's Form 19 will be revised to standardize data entry and reporting requirements.

And four recommendations:

- The Commission should review integrity test results and inspect production facilities more frequently.
 - 2) The Commission should increase inspections during production facility closures.
- 3) The Commission should conduct more time-specific inspections of construction, reclamation, and drilling activities using improved notice from operators.
 - 4) The Commission should increase its inspection frequency of hydraulic fracturing operations.

Historically, inspections prioritized through agency policies based on:

- Well status
- Time (5 or more years since last inspection)
- Notices of operator activity
- Conditions of Approval (COAs)
- Complaints & incidents
- Institutional knowledge

"Required Inspections" by Inspector's Area

COLORADO Oil & Gas Conservation Commission

Approach

- Use systematic, automated, simple GIS/statistical workflow
- Commission staff identified risk-factor areas based on:
 - (1) recommendations in report to Colorado Legislature
 - (2) availability of data
 - (3) institutional experience
- Establish relative risk:
 - classify individual data parameters on a 1-5 scale
 - combine parameter values to get risk-factor area scores
 - further combine weighted area scores to calculate an overall risk score
- Assessment currently at the well level (not location)

Risk Factor Areas

		Higher (5)	(4)	(3)	(2)	Lower (1)	RF Weight
1	Population Density & Urbanization	>25 p/mi2 Within Municipal Boundary	6-25 p/mi2 Within Municipal Boundary	1-6 p/mi2	0.5 -1 p/mi2	<0.5 p/mi2	10%
2	Environment (Wildlife & Water)	Multiple Criteria	Multiple Criteria	Multiple Criteria	Multiple Criteria	Multiple Criteria	20%
3	Time Since Last Inspection	>5 yrs	3-5	2-3	1-2	<1	15%
4	Years In Service	>20 yrs	10-20	3-10	0-3	0	30%
5	Reported Spills (Location)	>4	3-4	2	1	0	10%
6	Corrective Actions (Location)	>3		1-3		0	15%

People

Environment

Time

History (Site-specific)

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

COLORADO Oil & Gas Conservation Commission

Approach

- Agency implementation of this model on March 1st, 2016.
- 3 6 month trial period during which feedback and modifications will be expected.

COGCC inspectors will balance their inspection workload between (1) higherrisk active wells as identified by model AND (2) inspections required by Rule 316C (noticed activities), incidents, complaints, and corrective actions.

NoticeCount	Notice_type	insp_
	2 BLOW OUT PREVENTER TEST	conk
	4 HYDRAULIC FRACTURING TREATMENT	binsc
	1 HYDRAULIC FRACTURING TREATMENT	gome
	5 HYDRAULIC FRACTURING TREATMENT	mont
	2 HYDRAULIC FRACTURING TREATMENT	murra
	1 MECHANICAL INTEGRITY TEST	carlile
	2 MECHANICAL INTEGRITY TEST	conk
	2 MECHANICAL INTEGRITY TEST	helge
	1 MECHANICAL INTEGRITY TEST	labov
	2 MECHANICAL INTEGRITY TEST	longv
	2 MECHANICAL INTEGRITY TEST	macl
	3 MECHANICAL INTEGRITY TEST	mont
	1 MECHANICAL INTEGRITY TEST	pesio
	2 MECHANICAL INTEGRITY TEST - UIC	brown
	1 RUN AND CEMENT CASING - INTERMEDIATE	waldr
	1 RUN AND CEMENT CASING - PRODUCTION	conk
	2 RUN AND CEMENT CASING - PRODUCTION	longv
	2 RUN AND CEMENT CASING - PRODUCTION	murra
	1 RUN AND CEMENT CASING - SURFACE	longv
	1 SPUD	binso
	1 SPUD	helge
	4 SPUD	longv
	3 SPUD	murra
	5 START OF PLUGGING OPERATIONS	carlil
	6 START OF PLUGGING OPERATIONS	helge
	6 START OF PLUGGING OPERATIONS	mont
	21 START OF PLUGGING OPERATIONS	peter
	1 START OF PLUGGING OPERATIONS	ricka

January, 2016 notice count by type and inspector

Risk Factor #1: Population Density & Urbanization (RF Weight 10%)

Population Density

Municipalities

Data Sources: US 2010 Census Colorado Department of Local Affairs COGCC

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

COLORADO Oil & Gas Conservation Commission

Risk Factor #1: Population Density & Urbanization

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

COLORADO Oil & Gas Conservation Commission

Risk Factor #2: Environment (RF Weight 20%)

Wildlife Habitat

Data Sources: Colorado Parks & Wildlife Colorado Department of Water Resources COGCC

Surface Water

Ground Water (Water Well Data)

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

Risk Factor #3 & #4: Time Since Last Inspection & Years in Service (RF Weight 45%)

		Higher (5)	(4)	(3)	(2)	Lower (1)	RF Weight
3	Time Since Last Inspection	>5 yrs	3-5	2-3	1-2	<1	15%
4	Years In Service	>20 yrs	10-20	3-10	0-3	0	30%

Data Source: COGCC

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

Risk Factor #5 & #6: Reported Spills & Corrective Actions (RF Weight 25%)

		Higher (5)	(4)	(3)	(2)	Lower (1)	RF Weight
5	Reported Spills (Location)	>4	3-4	2	1	0	10%
6	Corrective Actions (Location)	>3		1-3		0	15%

Data Source: COGCC

of Corrective Actions Since Last Inspection

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

GIS Model

Model runs as automated Python script every night. Workflow requires 12-36 hours to update risk values and inspection priorities in network and laptop databases.

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

COLORADO Oil & Gas Conservation Commission

Combined Risk Factor Score

- Simple Weighting:

 $(([RF_01] * 0.10) + ([RF_02] * 0.20) + ([RF_03] * 0.15) + ([RF_04] * 0.30) + ([RF_05] * 0.10) + ([RF_06] * 0.15))*15$

- Combined RF scores range between 15 75:
- O Higher Risk >45 O Average Risk 40 - 45 O Low Risk <40
- Relative risk
- Still tweaking ranges for optimal distribution

Model Results

As of **2/21/2016**: **52,154 active wells**

Using current model parameter weightings and risk thresholds, the statewide distribution is:

6,149 'Higher Risk' (11.8%)

- 12,910 'Average Risk' (24.8%)
- 33,095 'Lower Risk' (63.5%)

Results

of active wells in each risk category by basin

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A)

Oil & Gas Conservation

Results

% of active wells in each risk category by basin

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

Mean risk score by well status

Results

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

- Provide guidance to COGCC Field Inspection Unit
 - Daily reports
 - Map layers
- Metric we can use to evaluate agency progress internally and for inspection status updates to the Colorado Legislature and other interested parties
- Goal to inspect all higher-risk wells annually
- Basis for other COGCC risk-based assessments

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A)

COLORADO co

Field	Inspection
Daily	Reports

	U	U	U	l	-	1	0	11
AREA	INSPECT_PRIO	INSPECT_PRIO	YRSSINCEI	INITIAL	_SERV	URBANRI	ENVIRONM	API
5	59	Red	1	04/16/1	1986	5	4	045-06{
5	59	Red	1	07/23/1	1990	5	4	045-06(
am (Ca	58	Yellow	5	12/15/1	1993	5	5	067-07
am (Ca	58	Yellow	5	12/14/1	1993	5	5	067-079
iry	58	Red	4	02/04/1	1977	5	2	123-09 ⁻
iry	58	Red	4	08/27/1	1982	5	2	001-082
am (Ca	58	Red	4	01/07/1	1988	4	4	067-069
5	58	Red	4	10/11/1	1956	3	3	045-05(
5	58	Red	4	10/14/1	1984	3	3	045-064
iry	58	Red	4	10/26/1	1982	5	2	001-08 ⁻
iry	58	Red	4	12/19/1	1992	5	2	001-09 ⁻
n	58	Red	4	01/14/1	1986	5	3	123-127
5	58	Red	4	05/23/1	1985	3	3	045-063
5	58	Red	4	05/27/1	1980	3	3	045-062
5	58	Red	4	12/11/1	1981	3	3	045-063
an	58	Red	4	07/21/1	1981	5	2	039-063
am (Ca	58	Red	4	01/30/1	1980	5	3	067-062
am (Ca	58	Red	4	08/23/1	1955	4	4	067-05{
n	58	Red	3	12/18/1	1984	5	3	123-120
iry	58	Red	3	02/27/1	1979	5	2	123-09(
am (Ca	58	Red	2	01/15/1	1956	4	4	067-05{
am (Ca	58	Red	2	03/27/1	1981	4	4	067-064
5	58	Red	1	07/11/1	1990	5	5	045-06(
am (Ca	57	Orange	22	03/02/1	1994	5	4	067-079
am (Ca	57	Yellow	20	11/11/1	1911	5	4	067-07 ⁻
am (Ca	57	Yellow	17	03/30/1	1981	4	4	067-064
am (Ca	57	Yellow	9	05/18/1	1987	5	4	067-069
, in		nt High Dick	VrcCinco 2	A 200			Dick 2	007.001
s ∠ 10	ртүүн 🖉 нксой	Inc _ Inglikisk /	TISSINCE / (N_CA X	LOC_FIOW		

Higher-risk wells by well and inspector

В		C	D	E
AINSPECTOR	_SUF	TWP	RANGE	HIGHRISKCOL
	150	2S	101W	37
:ł	160	6N	67W	36
	150	6S	96W	36
	150	3S	101W	34
	170	4N	45W	34
	160	2S	62W	33
	170	1N	58W	33
2	180	32N	7W	32
2	180	34N	6W	32
	150	2S	103W	31
	160	1N	65W	31
	160	2N	65W	31
	150	4S	102W	30
	150	6S	91W	30
	180	44N	16W	28
	150	8S	104W	28
	170	1N	45W	28
2	160	1N	69W	28
	160	2S	64W	27
2	180	34N	10W	27
	160	2S	63W	26
	150	1N	95W	25
	150	2S	102W	25
	150	3S	100W	25
	160	1S	68W	25
X	180	33N	6W	25
	180	34S	65W	24

Higher-risk well count by Township/Range and inspector

GIS Interactive Online Map

As of 2/21/2016

Somewhere in Weld County . . .

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

COLORADO Oil & Gas Conservation Commission

- Database queries track performance on a monthly and annual basis
- Metric for performance assessment
- Allows validation of model workflow and data quality issues

Yr	Мо	HighCount	ModCount	LowCount	Total	Highpcent
2015	8	7	65	1638	1722	0.41%
2015	9	83	253	2337	2673	3.11%
2015	10	45	270	3103	3418	1.32%
2015	11	109	280	2960	3349	3.25%
2015	12	252	669	2931	3852	6 54%
2016	1	419	599	2168	3186	13.15%
2016	2	318	646	1302	2266	14.03%
					20466	

Preliminary estimate of well inspections by month from August 2015 through February 2016

COLORADO Oil & Gas Conservation Commission

Case Example - Piceance Basin Well

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

1 Wells selected

1:9000.00

COLORADO Oil & Gas Conservation Commission

2.17 x 1.27 (mi)

Case Example - Piceance Basin Well

Well Recently Inspected 02/18/2016

Pre-Inspection Scores

Urban RF: 3 Environment RF: 3 Time Since Last Inspection RF: 3 Age of Well RF: 5 Corrective Actions RF: 5

Overall Score: 56 - Higher

Post-Inspection Scores

Urban RF: 3 Environment RF: 3 Time Since Last Inspection RF: 1 Age of Well RF: 5 Corrective Actions RF: 1

Overall Score: 42 - Average

Internal use only, not subject to disclosure under CORA, C.R.S. § 24-72-204(2)(a)(IX)(A).

COLORADO Oil & Gas Conservation Commission

Summary

- Established a risk-based strategy for prioritizing well inspections that improves the timing and frequency – higher-risk wells to be inspected annually
- Using a manageable GIS-based model to generate daily relative risk factor scores for active wells in Colorado
- Automated workflow (integrated with COGCC databases) allows practical implementation for agency's field inspection unit
- Current classification scheme shows ~12% of all active wells in Colorado as higher risk
- Still tweaking model parameters and getting practical feedback
- Leveraging agency information in the spirit of 'Big Data' - to be better regulators

Oil & Gas Conservation Commission

Questions?

chris.eisinger@state.co.us ken.robertson@state.co.us mike.leonard@state.co.us

(303) 894-2100

COLORADO Oil & Gas Conservation Commission