Review of Dr. G. Thyne Report

Anthony W. Gorody Ph. D., P.G. June 8, 2009

On behalf of EnCana Oil and Gas (USA), Inc.

REPORT BASED ON SELECTIVE DATA ANALYSIS AND/OR INACCURATE PREMISES

- Premise 1: Methane >1 mg/L in groundwater is sourced from Williams Fork development drilling impacts
- Premise 2: Elevated chloride in groundwater is sourced from Williams Fork development drilling impacts
- Premise 3: Spatial correlation between URS lineaments, persistent bradenhead measurements, groundwater with high chloride and methane is meaningful
 - They allow fluids to migrate into water wells

PREMISE 1: Methane >1 mg/L is sourced from Williams Fork development drilling impacts

BASED ON THE FOLLOWING TO BE REBUTTED:

- A. There is a correlation between increasing methane concentration and increased drilling (p.11)
- B. Methane isotope data that plot in the CO_2 reduction zone are derived from CO_2 in Williams Fork gases (Albrecht thesis p. 73-74, Thyne p.11)
- C. The only source of thermogenic gas in groundwater is from Williams Fork production (implied throughout)
- D. Pre drilling baseline dissolved methane concentration in groundwater was less than 1 mg/L (Thyne p. 9)

1A. THERE IS NO CORRELATION BETWEEN INCREASING METHANE CONCENTRATION AND DRILLING

- The graphs on the Thyne report (p. 9) and Albrecht thesis are not statistically significant
 - Results of duplicate analyses and multiple samples from single sites taken at different times were not included in the analysis
 - The range of values shown on Y axis (35 ug/L) is less than normal sampling plus analytical error
 - The minimum variability of methane concentration among duplicate samples is more than 90 ug/L (Figure 1)
 - The minimum variability methane concentration among wells sampled more than once is between 250 and 1620 ug/L (Figure 2)
 - 25 wells sampled more than once had methane either detected or not detected at one time or another
 - Among wells where multiple samples were taken over a long period of time, there is no observable increase or decrease in dissolved methane with time

1A. VARIABILITY IN DISSOLVED METHANE CONCENTRATION AT ONE WELL WITH HIGH C_1

1B. METHANE SAMPLES WITH ISOTOPE DATA THAT PLOT IN THE CO₂ REDUCTION ZONE CANNOT BE DERIVED FROM WILLIAMS FORK THERMOGENIC GAS

- Produced gases in this area have maximum CO₂ < 3.5% by volume (Table 1), not 22%
- Methane/CO₂ ratios in produced gases from this area have a minimum value of 33:1 and a maximum value of 195:1 (Table 1)
 - Any CO₂ converted to biogenic methane would be swamped by mixing with thermogenic methane signature (Jenden et al., 1993 Prinzhofer and Pernaton, 1997)
- Williams Fork thermogenic gas contains methane homologs in C₃-C₅ range (Table 2). These gases would have to be present along with CO₂-converted methane (Table 2)
- Thyne/Albrecht analysis and interpretation does not include gas composition data

MAMM CREEK FIELD PRODUCED GAS COMPOSITION

Sample		Не	H2	Ar	02	CO2	N2	d13 (C1 dD C	1 d13 C	2 d13 C3	d13 CO2
Name		%	%	%	%	%	%	per r	nil pern	nil perm	il per mil	
33-10A2	G33NE Production (Papadop)	0.0040	0.0010	ND	ND	3.50	0.072	-41.3	9 -191.	6		
Arbaney	3-16C Production	0.0042	ND	0.0169	0.3280	1.23	1.440	-40.9	9 -196.	2 -28.28	3 -25.28	
Boulton 3	3-10 Production (Papadop)	0.0053	0.0036	ND	ND	0.62	0.110	-41.6	7 -199.	1		
Boulton 3	3-15 Production COGCC	0.0025	ND	0.0457	1.1100	1.30	3.350	-41.5	7 -201.	1		-5.31
Boulton 3	3-2 Production COGCC	0.0047	0.0766	0.0367	0.8360	0.02	2.870	-41.1	3 -196.	3		
Boulton 3	3-7 Production COGCC	0.0027	ND	0.0345	0.8220	0.49	2.580	-41.5	2 -201.	7		-6.1
Boulton 3	3-8 Production	0.0040	0.0018	ND	0.0195	0.53	0.230	-41.6	2 -200.	4 -28.85	-25.88	
Boulton 3	3-9 Production	0.0034	ND	0.0400	1.3900	0.40	2.150	-41.8	2 -203.	6 -29.21	-26.1	
Boulton 3	3-9 Production COGCC	0.0056	ND	0.0154	0.2830	0.57	1.060	-41.7	-201.	9		-17.26
Brown 11	-2C Production	0.0183	0.0109	0.0080	0.0108	ND	1.130	-41.6	9 -200	-28.78	3 -25.79	
K19BNE	ALP 19-14 Production	0.0026	0.0017	0.0210	0.4320	2.45	1.870	-40.1	2 -196.	2 -28.16	6 -25.19	
K19BNE	ALP 19-16 Production	0.0029	0.0015	ND	0.0077	2.16	0.160	-40.9	9 -194.	6 -28.32	2 -25.32	
Magic 10	 1 P3 Production (Papadop) 	0.0055	ND	ND	0.0244	1.43	0.210	-41.4	9 -195.	5		
Magnall 3	4-12 (L34) Magnall Production (Papadop)	0.0047	0.0014	ND	0.0059	1.62	0.130	-41.8	-197.	7		
Schwartz	2-15B Production	0.0154	0.0322	0.0069	0.0172	ND	0.670	-41.3	6 -197.	6 -28.97	-26.07	
Schwartz	2-15B Production	0.0031	ND	0.0087	0.1130	0.53	0.650	-41.9	5 -202.	5 -29.08	3 -26.2	
Twin Cree	ek 1-15B Production	0.0024	ND	0.0182	0.3830	0.36	1.440	-42.0	2 -197.	3		
					00114	00	1:04		:05			
	Sample		C1	C2	C2H4	C3		nC4	105	nC5	C6+	
	Name		%	%	%	%	%	%	%	%	%	
	33-10A2 G33NE Production (Papadop)		84.3	1.22	ND	2.68	0.68	0.701	0.263	0.2	0.383	
	Arbaney 3-16C Production		84.3	8.44	ND	2.72	0.575	0.528	0.176	0.122	0.115	
	Boulton 33-10 Production (Papadop)		83.12	9.52	ND	4.02	0.859	0.89	0.291	0.226	0.331	
	Boulton 33-15 Production COGCC		78.82	9.21	ND	3.56	0.771	0.844	0.342	0.254	0.388	
	Boulton 33-2 Production COGCC		80.75	8.74	ND	3.9	0.925	0.947	0.323	0.274	0.297	
	Boulton 33-7 Production COGCC		80.74	9.5	ND	3.69	0.774	0.796	0.232	0.168	0.169	
	Boulton 33-8 Production		81.86	10.24	ND	4.39	0.96	0.993	0.322	0.243	0.203	
	Boulton 33-9 Production		78.37	10.23	ND	4.47	0.924	0.981	0.445	0.315	0.277	
	Boulton 33-9 Production COGCC		82.04	9.54	ND	4.07	0.831	0.866	0.273	0.215	0.235	
	Brown 11-2C Production		83.94	9.15	ND	3.71	0.807	0.755	0.21	0.14	0.107	
	K19BNE ALP 19-14 Production		82.24	8.42	ND	2.83	0.627	0.616	0.207	0.148	0.138	
	K19BNE ALP 19-16 Production		83.23	9.22	ND	3.21	0.719	0.72	0.238	0.166	0.164	
	Magic 10-1 P3 Production (Papadop)		84.81	8.38	ND	3	0.667	0.68	0.237	0.184	0.369	
	Magnall 34-12 (L34) Magnall Production	(Papadop)	83.99	8.94	ND	3.43	0.704	0.689	0.197	0.131	0.155	
	Schwartz 2-15B Production		81.22	10.65	ND	4.8	0.963	0.872	0.294	0.239	0.217	
	Schwartz 2-15B Production		82.19	9.97	ND	4.2	0.915	0.899	0.259	0.162	0.105	
	Twin Creek 1-15B Production			0.17						0.000	0.000	
	Schwartz 2-15B Production		82.19	9.97	ND	4.2	0.915	0.899	0.259	0.162	0.105	

Average $CO_2 = 0.84\%$ (max 3.5%) Average $CO_2/CH_4 = 115$ (min 34) Average $C_1/C_2 = 22 \text{ (max 31)}$ Average $C_2/C_3 = 2.5 \text{ (max 3.1)}$

Table 1

9

138 WELL SAMPLES (from 25 water wells) ANALYZED FOR GAS COMPOSITION

Facility_id	CL mg/L	C1 mg/L	C1%	C2%	C3%	iC4%	nC4%	iC5%	nC5%	C6+%	δ13C C1‰	δDC1‰	C1/C2
703230			76.59	5.9200	1.8600	0.3700	0.2700	0.0690	0.0340	0.0210	-41.11	-194.5	13
703899	100.0	12	80.37	8.5000	3.1400	0.5800	0.6310	0.1600	0.1200	0.0935	-42.16	-191.3	9
704203	1880.0	13	72.58	0.0384	0.0089	0.0031	0.0059	0.0030	0.0026	0.0059	-76.06	-199.5	1890
703996	143.0	6.1	43.10	0.3480	0.0014	0.0024					-41.69	-176.3	124
704012	171.0	3.5	23.95	0.0230	0.0056						-75.74	-217.3	1041
704023	110.0	1.6	12.27	0.3420	0.0055						-36.97	-119.6	36
704151	231.0	6.1	65.80	0.0870							-40.99	-182.6	756
704073	250.0	0.3	16.01	0.0085							-60.68	-126.1	1884
703943			96.03	0.0316							-58.41	-223.2	3039
703920	1670.0	13	76.65	0.0379							-73.33	-191.6	2022
703928	9.3	0.054	42.03	0.0113						0.0020	-57.08	-216.5	3719
703938			58.04	0.0233							-56.09	-235.8	2491
703943	1770.0	28	94.40	0.0300						0.0053	-57.65	-221.2	3147
703947	360.0	3.9	36.13	0.0107							-72.17	-199.7	3377
703983	203.0	3.93	63.30	0.0211							-64.91	-236.5	3000
703934	231.0	0.26	1.64	0.0041									400
704330			93.31	0.05							-44.68	-203.5	1932
704050	210.0	0.063	1.52										
704076	111.0	1.9	19.68								-39.27	-167.8	
704409	53.0	0.77									-40.75	-189.2	
703254		0.02	0.15										
703866	27.5	0.017	0.06										
703901			0.05							0.0083			
703912			0.18						I				
704074	10.6	0.005	0.00			SAMPI F	WITH HIG	KE THAN HEST					
Blue sites from Papadopulos Report 10 TOTAL EXTRACTED HYDROCARBON CONCENTRATIONS SHOWN Table 2													

1C. THERE ARE AT LEAST 4 SOURCES OF GAS DETECTED IN WATER WELLS

- 17 of 226 sampled water wells have sufficient dissolved methane for gas chemistry analysis
 - 2 of those wells are known to be impacted by Wasatch gas from wells on G33 and P3 pads (Figure 4)
 - 5 wells contain thermogenic methane and ethane only, NOT from the Williams Fork (no propane+ fraction Table 1, Table 2, Figure 4)
 - 5 wells contain biogenic gas
 - 2 wells from fermentation
 - 3 wells from CO₂ reduction in bedrock aquifers
 - 5 wells contain dominantly biogenic gas mixed with a trace of thermogenic gas components in the C_3 + range
 - Differences in gas composition and stable isotope data were not included in the Thyne report

1C. THERE ARE AT LEAST 4 SOURCES OF GAS IN MEASURED WATER WELLS

- Table 2 and Figure 4 show there are at least 2 sources of thermogenic gas in water wells
 - Wet thermogenic gas with C3+ components, C_1/C_2 <20
 - Dry thermogenic gas C_1 and C_2 only, trace hexanes $C_1/C_2 < 2000$
- Table 2 and Figure 4 show there are at least 2 sources of biogenic gas in water wells
 - Stable carbon isotopes with $\delta_{13}C_{\text{Methane}}$ near -60 per mil $C_1/C_2{>}2000$
 - Stable carbon isotopes with $\delta_{13}C_{\text{Methane}}$ near -75 per mil $C_1/C_2{>}2000$
- Stable isotopes of methane in gas mixtures are dominated by the primary source of methane, biogenic or thermogenic

1C. THERE ARE AT LEAST 4 SOURCES OF GAS IN MEASURED WATER WELLS

- Logging has identified naturally occurring shallow gas sands throughout area (Figure 5 example)
- Bradenhead gas samples can differ in composition from underlying Williams Fork samples (Figures 6 & 7)
- Commercial gas in Wasatch Fm. Rulison Field also differs in composition from underlying Williams Fork samples (Figure 8)

FIGURE 5

SHALLOW GAS WIRELINE LOG G33 PAD WITH THERMOGENIC GAS COMPOSITION TABLE

	Sample	C1	C2	C3	iC4	nC4	iC5	nC5	C6+
	Name	%	%	%	%	%	%	%	%
	Boulton 33-8A Swab 655'	1.25	0.104	0.0477	0.0103	0.0105	0.0031	0.0018	0.0021
	Boulton 33-8A 352-356'	1.34	0.0971	0.0495	0.0115	0.0124	0.0046	0.0038	0.0066
	Moore 33-10A 636-644'	52.41	4.73	2.01	0.437	0.43	0.12	0.0819	0.0412
ᄃ	Moore 33-10A 636-644'	49.26	4.36	1.87	0.414	0.407	0.121	0.0852	0.0451
J									•

RST Capture to Inelastic Ratio Far

(CIRF_FIL)

Crossover in Gas From CIRF_FIL to CIRN_FIL

RST Capture to Inelastic Ratio Near

(CIRN FIL)

WINR Gas Flag From WINR to CIRF_FIL

RST Weighted Inelastic Ratio (WINR_RST)

RST Sigma (SIGM)

(CU)

0 2.5

Æ

RST Porosity (TPHI)

(V/V)

RST Inelastic Ratio (IRAT_FIL)

Well Temperature (WTEP (DEGF)

Gamma Ray (GR)

(GAPI)

RST Borehole Salinity (BSAL

(PPK)

Tension (TENS)

(LBF)

150

-50

3000

WASATCH

Minitron Arc

Detection

(MARC) 0 (---) 5

Discriminat

ed CCL

(CCLD)

3 (V) -1

2100

0.5

0.75

EST

00

450

BRADENHEAD GAS SANDS IN MAMM CREEK FIELD CAN DIFFER FROM UNDERLYING WILLIAMS FORK

LARGEST DIFFERENCES BETWEEN BRADENHEAD AND WILLIAMS FORK DUE TO MIXED WASATCH SOURCE OF METHANE AND ETHANE

0

0.5

MAMM CREEK FIELD BRADENHEAD GASES CAN DIFFER FROM UNDERLYING WILLIAMS FORK

17

SHALLOW COMMERCIAL GAS SANDS IN RULISON FIELD ALSO DIFFER FROM UNDERLYING WILLIAMS FORK

1D. THERE IS NO BASIS FOR STATING PRE DRILLING BASELINE DISSOLVED METHANE CONCENTRATION IN

GROUNDWATER WAS LESS THAN 1 mg/L

- Statistics of Mamm Creek data set
 - 228 water wells sampled for dissolved methane
 - 731 samples analyzed for dissolved methane (excludes duplicate and split samples and redundant records)
 - 120 wells (52%) had one or more samples without any detected methane
 - 108 wells (47%) had one or more samples with detectable methane
 - 25 wells sampled multiple times *sometimes* contain measurable dissolved methane
 - 83 wells with one or more samples consistently containing measurable dissolved methane
 - 36 wells (not know to be impacted with thermogenic methane) have at least one sample of dissolved $C_1 > 1 \text{ mg/L}$ (16% of total)
 - 4 wells (2%) with C1>10 mg/L

San Juan Basin data set

- 1134 water wells sampled
 - 536 (47%) did not contain detectable methane
 - 598 (53%) contained detectable methane
 - 181 (16%) contained > 2 mg/L
 - 83 (7.3%) contained > 10 mg/L
- Raton Basin data set
 - 246 water wells sampled
 - 132 (56%) did not contain detectable quantities of dissolved methane
 - 146 (46%) contained detectable methane
 - 15% contain > 2 mg/L methane
 - 8% contain > 10 mg/L methane

MAMM CREEK GROUNDWATER STATISTICS ARE SIMILAR TO THOSE FROM OTHER SEMI ARID BASINS

PREMISE 2:

ELEVATED CHLORIDE IN GROUNDWATER IS SOURCED FROM WILLIAMS FORK DEVELOPMENT DRILLING IMPACTS

BASED ON THE FOLLOWING TO BE REBUTTED:

- A. There is an average increase in chloride concentration with time corresponding to an increase in drilling activity (p. 10, Fig. 7)
- B. More than 250 mg/L of chloride in groundwater indicates a Williams Fork produced water source (Thyne p. 9, Figure 7)
- C. There is no other source for chloride in groundwater other than Williams Fork production (Albrecht pp.44 & 48, Thyne p. 15)

2A. THERE IS NO AVERAGE INCREASE IN CHLORIDE CONCENTRATION AMONG WATER WELLS WITH TIME

- The chloride vs. time graph on Thyne report p.10 appears to be in error
 - Only 28 of 230 wells sampled from 2001 to 2005 contain more than 250 mg/L of chloride (12% of wells, Table below)
 - Numbers in tally below differ than those shown on Thyne p. 10 figure axis
 - Thyne/Albrecht analysis seems to include sampling bias introduced by multiple samples from wells, duplicates, splits, and redundant data

NEW WELLS SAMPLED EACH YEAR FOR CHLORIDE WITH CI<250 mg/l or CI>250 mg/L												
YEAR	New Wells <250 mg/L		New Wells >250 mg/L		%>250 mg/L Each Year			Cum <250 mg/L		Cum >250	% Cun	nulative > 250
2001	17		3			15.0%		17		3		15.0%
2002	40		3			7.0%		57		6		9.5%
2003	59		6		9.2%			116		12		9.4%
2004	53		11			17.2%		169		23		12.0%
2005	33		5			13.2%		202		28		12.2%
TOTALS		202		28								
		WATER W	/ELL SAMPL	ES ANAI		FOR CHLO	RIDE EA	CH YEAR	D Red	ouplicates, Spli lundant Record included	its, Is not	
	YEAR	<250 mg/L	>250 mg/L	Yearly T	OTAL	Cumulative	<250CU	M >250CUM	% Sa	mples >25	0 mg/L	
	2001	21	3	24		24	21	3		12.5%		
	2002	47	2	49		73	68	5		6.8%		
	2003	93	10	103	3	176	161	15		9.3%		
	2004	262	50	312	2	488	423	65		15.4%		
21	2005	175	27	202	2	690	598	92		15.4%		

2A. THERE IS NO AVERAGE INCREASE IN CHLORIDE CONCENTRATION IN WATER WELLS WITH TIME

- Thyne/Albrecht discussion fails to consider large temporal changes in water quality observable among sites sampled multiple times
 - 8 of 28 water wells with samples had variable chloride concentrations above and below >250 mg/L chloride
 - Figure 9 shows a cross plot of minimum chloride values vs maximum chloride recorded values in wells sampled multiple times
 - Among wells with the longest sampling history, chloride concentrations decrease with time (Figure 10)

2B. WATER WELLS WITH >250 mg/l CHLORIDE ARE UBIQUITOUS IN SEMI ARID BASINS

- 12% of 226 Mamm Creek water wells contain >250 mg/L dissolved chloride
- 6.2% of 799 sampled San Juan Basin water wells contain >250 mg/L dissolved chloride (maximum 3120 mg/L)
- 4.2% of 239 sampled Raton Basin water wells contain >250 mg/L chloride (maximum 3870 mg/L)
- 13.5% of 37 wells sampled in the Laramie Fox Hills aquifer (Wattenberg Field 318A baseline data) contain >250 mg/L (maximum 594 mg/L)

SODIUM CHLORIDE GROUNDWATER IS COMMMON IN ROCKY MTN. BASINS

	Mean	Geometric Mean	Median	Minimum	Maximum
799 San Juan Basin	79 mg/L	31 mg/L	23 mg/L	2 mg/L	3120 mg/L
239 Raton Basin	90 mg/L	18 mg/L	13 mg/L	1.4 mg/L	3870 mg/L
226 Piceance (Max)	166 mg/L	50 mg/L	49 mg/L	3.6 mg/L	3500 mg/L
226 Piceance (Min)	117 mg/L	35 mg/L	31 mg/L	1.9 mg/L	3500 mg/L

Chloride concentrations always increase with increasing depth of screened interval

FIGURE 11

26

2C. THERE ARE SOURCES FOR CHLORIDE OTHER THAN PRODUCED WATER

- A diverse geologic history and setting in this area was not considered
 - Atwell Gulch Late Paleocene 55 mya, Molina early Eocene, Shire mid to late Early Eocene 48 mya
 - Dissolved chloride concentrations from younger evaporite deposits in overlying, younger, Green River and Uinta Formations contain several hundred mg/L of chloride measured prior to any oil and gas development (Taylor 1987)
 - Regional intrusive basalts and hydrothermal fluids were emplaced throughout the area between Glenwood Springs and Battlement Mesa prior to Colorado River erosion 25 to 7 mya (Battlement Mesa basalts 10 mya)
- Study area intersects geothermal resource area identified by INEEL (Figure 12)

ADAPTED FROM INEEL 2003 MAP

2C. THERE ARE SOURCES FOR CHLORIDE OTHER THAN PRODUCED WATER

- NaCl is common in groundwater, with multiple sources that cannot be differentiated solely on the basis of chemical formula
 - Thyne illustration on page 18 not definitive
 - NaCl-bearing fluids from any elevated sodium chloride water source less concentrated than produced water would fall on the same mixing line
 - NaCl is not a geochemical tracer compound (Thyne p. 15)
 - Review of the Papadopulos report covers this subject adequately. Report concludes that no correlation between groundwater and produced water is possible with the analyte data set available
- Stable water isotope tracer compounds demonstrate multiple chloride sources
 - Stable isotope data available in URS data base not considered
 - Samples with high chloride >250 mg/L are present in water with signature of modern precipitation and no evidence of mixing with extraneous water sources (Figures 13 & 14)

PREMISE 3: SPATIAL CORRELATION BETWEEN URS LINEAMENTS, PERSISTENT BRADENHEAD MEASUREMENTS, AND GROUNDWATER WITH HIGH CHLORIDE IS MEANINGFUL

- A. Linear features on URS map represent major faults and fractures (Thyne Figure 2)
- B. URS "major faults and fractures" intersect the surface and account high TDS groundwater
- C. Distribution of initial bradenhead pressures is the result of intersection with URS map major faults and fractures
- D. Distribution of water wells with high chloride and dissolved methane coincides with surface expression of URS map of major faults and fractures

3A. URS MAP DOES NOT REPRESENT THE DISTRIBUTION OF FAULTS AND FRACTURES IN THE SUBSURFACE

- URS specifies that their geologic structure is interpreted and based solely on aeromagnetic lineations
 - Thyne reports addresses these features as "faults and fractures"
- URS does not claim that deep, intermediate, or shallow depth aeromagnetic lineaments are faults that propagate to the surface (URS 2-16, 2-18)
 - URS report specifies a relationship between overall *orientation* of mapped aeromagnetic lineaments and mapped surface lineaments which they attribute to regional stress (URS 2-16, 2-18)
- Correlation between URS lineaments and aeromagnetic gradient map is broadly interpretative (Figure 15)
- There is no correlation between URS lineaments and faults mapped on the Rollins horizon based on seismic and geologic data (Figure 16)

ALIGNMENT OF URS LINEAMENTS WITH AEROMAGNETIC GRADIENT MAP IS IMPRECISE AND BROADLY INTERPRETATIVE

FIGURE 15

NO COINCIDENCE WITH URS LINEAMENTS AND FAULTS IN THE ROLLINS MAPPED ON SEISMIC & WELL DATA

Rollins Seismic

- + DC Anticline Axis
- · URS Interpreted Fault Aeromagnetic Lineaments

3B. URS "MAJOR FAULTS AND FRACTURES" INTERSECT THE SURFACE AND ACCOUNT FOR HIGH TDS GROUNDWATER

- Mapped aeromagnetic URS lineaments do not coincide with faults mapped on the basis of seismic data and geologic control
 - Faults mapped on the basis of interpreted seismic data have not been observed to propagate to the surface
 - Structural traces of any kind are rarely vertical
- Mapped orthoquad URS lineaments do not coincide with Rollins faults mapped on the basis of interpreted seismic data (Figure 17)
- URS mapping of Wasatch Fm. bedrock did not identify any faults at the surface
- USGS has not mapped any surface faults in the area

THE LOCATIONS OF MAPPED SURFACE LINEAMENTS, SURFACE GEOLOGY, AND SEISMIC INTERPRETED ROLLINS FAULTS DO NOT COINCIDE

Rollins Seismic

Lineaments From Orthoquad

Aeromagnetic Lineaments

CONCLUSIONS

- There has not been any pervasive impact on groundwater resources due to gas operations in this area
 - Stated increases in methane and dissolved chloride concentration in groundwater are artifacts of improperly managed statistical analyses and selectively ignored data
 - High TDS chloride-rich fluids in deep Wasatch bedrock aquifers, associated with high concentrations of biogenic methane, represent baseline conditions
- The majority of dissolved methane in groundwater here is biogenic, not thermogenic
 - Thermogenic gas is known to occur in the Wasatch FM
 - Both chromatography and stable isotopic analysis of unweathered gas samples categorically allow Wasatch and Williams Fork sources to be differentiated
- No credible evidence has been provided to demonstrate a produced water source for chloride
 - High chloride groundwater is common in aquifers within semi arid basins
 - Other naturally occurring chloride sources have not been excluded

CONCLUSIONS

- Uncemented annuli have allowed thermogenic Wasatch gas to locally migrate into shallow aquifers
 - Thermogenic gas in the Amos and former Dietrich wells has been observed to originate from shallow gas in the G33 and P3 pads and has been mitigated with remedial cement jobs
- Locally high fracture density swarms along the flanks and nose of the Divide Creek anticline allow fluids to migrate in Wasatch sandstones
 - Otherwise, the formation is largely impermeable and not susceptible to wide-scale contamination
 - Risk for shallow gas migration diminishes rapidly away from the anticline
- Areas of high fracture density pose a challenge to cement jobs and account for persistent bradenhead pressures
 - Both Wasatch and Williams Fork gas sands can account for persistent bradenhead pressures

ENCANA'S RISK MITIGATION

- Bradenhead pressures are routinely monitored and vented as needed to prevent fluid invasion into shallow aquifers
 - Persistent bradenhead pressure buildup is addressed with remedial cementing
- New technology cements are dramatically improving the quality of cement bonding in fractured formations
- In this area, EnCana now uses gas detectors while drilling to identify zones with Wasatch gas
 - Results are used to decide on staged cementing practices that cover the zones in question with cement or intermediate casing
- Baseline measurement and monitoring of water wells prior to and after drilling new wells is effective in mitigating risk to health environment and safety

Selected References

- Jenden P. D., Drazan D. J. and Kaplan, I. R., 1993, Mixing of thermogenic natural gases in northern Appalachian basin, AAPG Bull. 77 No.6 p. 980-998.
- Laney, Patrick and Julie Brizzee, 2002 Colorado Geothermal Resources Publication No. INEEL/MIS-2002-1614 Rev. 1, Map.
- Lorenz, J.C., 1997, The interplay of fractures and sedimentary architecture: natural gas from reservoirs in the Molina Sandstones, Piceance Basin, Colorado, Sandia National Laboratories Report SAND97-0710C, Albuquerque, New Mexico, Natural gas conference, Houston, TX March 24-27, 1997.
- Prinzhofer, A., and Pernaton, E., 1997, Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation?, Chem. Geol. V. 142, p. 193-200.
- Stover, B. K., 1993, Debris flow origin of high-level sloping surfaces on the northern flanks of Battlement Mesa and surficial geology of parts of the North Mamm Peak, Rifle, and Rulison Quadrangles, Garfield County, Colorado, Co. Geol. Svy. Bull. 50, 34 pp.
- Taylor, J. O., 1987, Oil shale, water resources, and valuable minerals of the Piceance basin Colorado, The challenge and choices of development, USGS Prof. Pap. 1310.