
COLORADO OIL AND GAS CONSERVATION COMMISSION 4M PROJECT COAL BED METHANE MONITORING WELL INSTALLATION REPORT ARCHULETA COUNTY, COLORADO

Souder, Miller & Associates • P.O. Box 2606 • Farmington, NM 87499-2606 612 East Murray Drive • Farmington, NM 87401-6624 • (505) 325-5667 • fax (505) 327-1496

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	1
3.0	OBJECTIVES	2
4.0	BACKGROUND	2
5.0	REGIONAL GEOLOGY	3
6.0	APPROACH	3
7.0	WELL SITE SURVEYING, PERMITTING AND CONSTRUCTION	4
8.0 INSTA WELL	COAL BED METHANE MONITORING WELL DRILLING AND ALLATION TECHNIQUES COMMON TO ALL PROJECT MONITORING .S	4
8.1 8.2 8.3 INSTA 8.4 8.5 LOGG 8.6 8.7 8.8 8.9	WATER HAULING AND DRILLING FLUID DISPOSAL	
DETA 9.1 06267- 9.2	CONSTRUCTION DETAILS FOR MONITORING WELL # 1 API # 05-007- -00 9 CONSTRUCTION DETAILS FOR MONITORING WELL # 2 API # 05-007-	9
06266- 10.0 DETA	FOSSET GULCH MONITORING WELL INSTALLATION SPECIFIC	10
10.2	CONSTRUCTION DETAILS FOR MONITORING WELL # 2 API # 05-007- -00	
11.0 DETA	HIGHWAY 151 MONITORING WELL INSTALLATION SPECIFIC	12
11.1 06271-	CONSTRUCTION DETAILS FOR MONITORING WELL # 2 API # 05-007- -00	

	CONTRUCTION DETAILS FOR MONITORING WELL # 1 API # 05-007- -00	12
12.0	DATA INTERPRETATION	13
12.1 12.2 12.3	DRILLING OPERATION PROBLEMS HYDROLOGIC, GEOLOGIC AND GEOPHYSICAL INTERPRETATION COAL INFORMATION	14
13.0	CONCLUSIONS	16
14.0	RECOMMENDATIONS	16
15.0	REFERENCES	16

Maps:

MAP 1: REGIONAL TOPOGRAPHIC MAP PHOTO 1: REGIONAL AERIAL PHOTOGRAPH MAP 2: WAGON GULCH SITE SPECIFIC TOPOGRAPHIC MAP PHOTO 2: WAGON GULCH SITE SPECIFIC AERIAL PHOTO MAP 3: FOSSET GULCH SITE SPECIFIC TOPOGRAPHIC MAP PHOTO 3: FOSSET GULCH SITE SPECIFIC AERIAL PHOTO MAP 4: HIGHWAY 151 SITE SPECIFIC TOPOGRAPHIC MAP PHOTO 4: HIGHWAY 151 SITE SPECIFIC AERIAL PHOTO

Tables:

Table 1: Summary of Archuleta County Coal Bed Methane Monitoring WellDetails

 Table 2: Archuleta County Coal Bed Methane Coal Coring

 Table 3: Archuleta County Coal Bed Methane Monitoring Well Swabbing

 Activities

Appendices:

A: APPLICATION FOR PERMIT TO DRILL, FIGURES AND DIAGRAMS

- **B:** GEOPHYSICAL, LITHOLOGICAL & WELL CONSTRUCTION DIAGRAMS
- C: AS BUILT WELL DIAGRAMS
- D: BLOW OUT PREVENTER DIAGRAM
- E: GEOPHYSICAL LOGS
- F: COAL DESORPTION ANALYSIS
- G: SITE PHOTOGRAPHS
- H: OPERATION AND MAINTENANCE MANUAL (AS A SEPARATE DOCUMENT)

1.0 EXECUTIVE SUMMARY

On behalf of the Colorado Oil and Gas Conservation Commission (COGCC), Souder, Miller & Associates (SMA) supervised the construction of six Fruitland Formation coal bed methane monitoring wells. Oil and gas industry standard well drilling and completion techniques were used. Field work was performed from August 12, 2008 through December 5, 2008. Map 1, Regional Topographic Map and Photo 1, Regional Aerial Photo illustrate the regional orientation of the three sites. The six wells are located in Archuleta County at the following three sites:

- 1. Wagon Gulch, located in Section 4, Township 34 North, Range 05 West, see Map 2 and Photo 2 illustrate site specific topography.
- 2. Fosset Gulch, located in Section 14, Township 34 North, Range 05 West, see Map 3 and Photo 3 illustrate site specific topography.
- 3. Highway 151, located in Section 30, Township 34 North, Range 04 West, see Map 4 and Photo 4 illustrate site specific topography.

Two coal bed methane monitoring wells were installed at each location. The wells at the Wagon Gulch site were installed to depths of 927 feet below ground surface (bgs) and 883 bgs. The wells at Fosset Gulch site were installed to depths of 618 and 660 feet bgs. The wells at the Highway 151 site were each installed to a depth of 330 feet bgs. The wells are equipped with pressure transducers and telemetry equipment. The pressure monitoring and telemetry equipment permits remote internet based monitoring of pressures in the top and bottom of each borehole and calculation of gas pressure and water levels at each location.

SMA recommends ongoing evaluation of data obtained in this study to determine if additional monitoring wells are needed to document potential dangers to the public and the environment from CBM seeps.

2.0 INTRODUCTION

This report details the well site preparation activities, monitoring well drilling, casing installation, perforating, swabbing, and pressure sensing and telemetry equipment installation activities associated with the Archuleta County Colorado Coal Bed Methane (CBM) Monitoring well site locations. The wells sites are known as: Wagon Gulch located in Section 4, Township 34 North, Range 05 West; Fosset Gulch located in Section 14, Township 34 North, Range 05 West; and the Highway 151 located in Section 30, Township 34 North, Range 04 West. See Table 1, Summary of Archuleta County Coal Bed Methane Monitoring Well Details, for specifics of each well for each location. All field activities were performed from August 12, 2008 to December 5, 2008. SMA performed the work pursuant to contract PHA-837 between the Colorado Department of Natural Resources and SMA.

3.0 OBJECTIVES

The objectives are:

- 1. Drilling and completion of six CBM monitoring wells in the Fruitland Formation within one mile of the outcrop.
- 2. Conduct lithologic and geophysical logging in each borehole to provide detailed information on subsurface geology including the depth to Fruitland Formation coal seams and the top of the Pictured Cliffs Formation
- 3. Collect Fruitland Coal cores in sufficient quantity to conduct methane desorption studies from an area with minor CBM production and little data regarding the characteristics of coal seams within the Fruitland Formation. Desorption studies aid in the calculation of the gas in place and the potential for gas generation.
- 4. Perforate well bores in specific coal intervals to monitor groundwater elevations and gas pressures from specific coal seams within the Fruitland Formation
- 5. Installation of pressure transducers and telemetry systems to provide remote access to methane gas pressures and groundwater elevations.

4.0 BACKGROUND

The Fruitland Formation in the San Juan Basin extends from southwestern Colorado into New Mexico and is one of the most productive coal bed methane (CBM) reservoirs in the United States. In 2001 and 2002, the COGCC installed seven monitoring wells into the Fruitland Formation at four locations near the outcrop in La Plata County. This work was completed as part of a larger study; the "3M Project", which refers to its three main components: geologic mapping, groundwater monitoring, and computer modeling. These wells have served to monitor Fruitland Formation pressures and water levels In La Plata County since their installation.

In 2007, the COGCC received a special appropriation from the Colorado Legislature to expand the monitoring network into the eastern part of the San Juan Basin, as well as installing additional wells in the western part of the Basin and performing pilot scale mitigation testing. The eastern area wells will measure formation pressures in the coal seams in the Fruitland Formation and will establish baseline conditions before extensive coal bed methane development occurs in the area. The new, larger study is referred to as the "4M Project", which refers to the original 3M plus the incorporation of a mitigation component, hence "4M"

The San Juan Basin of Colorado-New Mexico historically has had methane seeps identified along the Fruitland Coal outcrop in La Plata County. To date, no

significant seeps attributable to the methane from the Fruitland Formation have been identified in Archuleta County. The northern portion of the San Juan Basin is located in La Plata and Archuleta counties, Colorado. As coal bed methane production was developed in this area in the 1990's and population density increased, gas seeps became more common and a potential risk to residents living in homes not modified to cope with threat of explosion.

To respond to the potential risk of CBM seeps, the COGCC funded the 3M project (Mapping, Modeling and Monitoring) in 2000 to install monitoring wells along the Fruitland Coal outcrop north of Bayfield Colorado and south of Vallecito Lake.

South of the Archuleta County study area, ongoing monitoring well studies for the Southern Ute Tribe, reported in 2008 at the San Juan Basin stakeholders meeting, are showing increasing pressures as CBM production has been developed. In response to results of the Southern Ute studies and to extend the existing monitoring well network into the eastern San Juan Basin, the COGCC initiated a Fruitland Formation reservoir pressure monitoring well program in the Chimney Rock Area of Archuleta County, Colorado with the co-operation of the United States Forest Service (USFS). The study is known as the 4M project (Mapping, Modeling, Monitoring and Mitigation).

5.0 REGIONAL GEOLOGY

The project setting is in the northeast portion of the San Juan Basin near Chimney Rock in Archuleta County. The San Juan Basin is a depression that contains Cambrian, Devonian, Mississippian, Pennsylvanian, Permian, Triassic, Jurassic, Cretaceous, Tertiary and Quaternary rocks (Fasset 1625-B). The project emphasis is on monitoring reservoir pressures and water levels within the Upper Cretaceous Lower Fruitland Formation. The Fruitland Formation outcrops along the northeastern edge of the San Juan Basin. The Kirtland Shale, the Fruitland Formation and the Pictured Cliffs sandstone were identified during drilling activities. All monitoring wells have the long string casing set near the top of the Pictured Cliffs Sandstone and all were perforated at selected intervals within the Fruitland Formation at coal beds identified from open hole and cased hole geophysical logs.

6.0 APPROACH

SMA's approach for the project was to use gas industry standard well designs, material specifications and drilling methods. Standard gas production drilling techniques were chosen for reasons of safety, capability, long term durability and costs. Minor equipment modifications may be necessary to ensure optimum efficiency and accuracy of data collected.

SMA worked with Scorpion Drilling of Farmington, New Mexico to develop the drilling program. Drilling with fluids (mud) was chosen as the preferred method for drilling the wells based on economics and the ability to use a small pad to minimize surface impacts.

The drilling fluids were contained within a closed loop drilling fluid system and consisted of polymer, bentonite, water and caustic soda with lost circulation material as needed. The closed loop drilling fluid system was chosen to reduce pad size and to minimize surface and potential environmental impacts.

Reconditioned bits were used to drill 8 $\frac{3}{4}$ " surface holes for 7" 20 pound per foot steel surface casing, utilizing oilfield cementing techniques. Standard 7" casing heads were utilized to drill 6 $\frac{1}{4}$ " holes to total depth. The long string casing chosen was 4 $\frac{1}{2}$ " 10.5 pounds per foot steel. The casing was set by circulating 15.5 lb/gallon cement to surface, to fully seal the annular space, then displacing the casing volume with water so the long string was not full of cement.

7.0 WELL SITE SURVEYING, PERMITTING AND CONSTRUCTION

From August 12, 2008 to September 22, 2008, SMA surveyed and staked the Wagon Gulch, Fosset Gulch, Deep Canyon and the Highway 151 well site locations for the purpose of creating topographic maps for each well site. The topographic maps were then used to create final well site designs pursuant to the USFS specified criteria. These final designs included well pad dimensions, construction diagrams, cut and fill diagrams, access road design and the implementation of storm water pollution prevention best management practices. Applications for permits to drill, figures and diagrams are located in Appendix A. When design modifications were complete, SMA re-surveyed and re-staked each site for the construction of the locations.

From September 23, 2008 to October 25, 2008, Consolidated Constructors of Farmington, New Mexico, under the supervision of SMA, constructed the Wagon Gulch, Fosset Gulch and the Highway 151 well site locations. Each well pad was constructed within the staked areas of disturbance as approved by the USFS. The Deep Canyon location was not constructed at the request of COGCC. Photographs of all locations prior to during drilling and after site reclamation are located in Appendix G.

8.0 COAL BED METHANE MONITORING WELL DRILLING AND INSTALLATION TECHNIQUES COMMON TO ALL PROJECT MONITORING WELLS

From September 27, 2008 to November 11, 2008, Scorpion Drilling Company of Farmington, New Mexico, under the supervision of SMA, drilled six CBM monitoring wells to various depths. Two monitoring wells were installed at each of the three locations utilizing a closed loop mud rotary drilling technique. The

following sections discuss methods that were utilized during the drilling and installation of all six monitoring wells.

Generic listing of operations:

- 1. Stake location and access
- 2. Build location and access. No drilling pits were required due to modified closed loop system. Lined cuttings pits were used to store and dry cuttings prior to burial on site.
- 3. Move in drilling rig, water storage tanks, and miscellaneous equipment.
- 4. Haul water from commercial sources.
- 5. Spud well, drill to 250 260 feet except at the Highway 151 location where surface casing was set to 137 feet due to the shallow target interval.
- 6. Set 250 feet of surface casing, circulate 15.5 lb/gallon cement to surface.
- 7. Wait on cement 12 hours- allow cement to cure.
- 8. Test casing, rig up blow out preventer (BOP).
- 9. Drill to top of Pictured Cliffs Formation (PC)
- 10. Run open hole geophysical logs.
- 11. Run casing to total depth, circulate 15.5 lb/gallon cement to surface.
- 12. Wait on cement 12 hours- allow cement to cure.
- 13. Run cased hole logs, perforate.
- 14. Develop well.
- 15. Skid drill rig.
- 16. Transport non-recyclable portion of drilling fluids to disposal and bring in additional water.

Second Borehole:

- 17. Spud well, drill to 250 260 feet except at the Highway 151 location where surface casing was set to 137 feet due to the shallow target interval.
- 18. Wait on cement 12 hours-allow cement cure.
- 19. Test casing, rig up BOP.
- 20. Drill ahead to zone of interest identified by geophysical logs.
- 21. Cut 30 foot coal core and process.
- 22. Drill ahead to next zone of interest.
- 23. Cut 30 foot coal core and process
- 24. Drill ahead to the PC.
- 25. Run casing to total depth, circulate 15.5 lb/gallon cement to surface.
- 26. Wait on cement 12 hours- allow cement to cure.
- 27. Move out drilling rig

Archuleta County Coal Bed Methane Monitoring Project Monitoring Well Installation Report Archuleta County, Colorado

28. Haul waste for disposal and haul drilling fluids to next location.

- 29. Move in swabbing rig
- 30. Run cased hole logs and perforate.
- 31. Develop well
- 32. Rig down and move to second site.
- 33. Set tubing head
- 34. Install transducers and remote terminal unit.
- 35. Data accessible online
- 36. Reclamation

8.1 WATER HAULING AND DRILLING FLUID DISPOSAL

Water hauling for drilling and cementing activities was performed by various contractors from Farmington, New Mexico. Water was transported from Allison, Colorado or Ignacio, Colorado.

Waste drilling fluids from the closed loop drilling system were transported by various Farmington, New Mexico area contractors' vacuum trucks. All drilling fluids were disposed of at properly permitted facilities in Farmington, New Mexico. A single vacuum truck was able to transport up to 80 barrels of drilling fluids.

8.2 LITHOLOGIC LOGGING

SMA personnel conducted all lithologic logging activities. Lithological sample descriptions consisted of general mineralogy and sample characteristics including color, grain size, grain shape, degree of cementation, and acid response. Lithological descriptions are located on Figures 1-6. Geophysical, Lithological & Well Construction Diagrams located in Appendix B.

8.3 SURFACE CASING BORE HOLE DRILLING, SURFACE CASING INSTALLATION AND CEMENTING

The borehole for the surface casing for each monitoring well was drilled with an 8 ³⁄₄" drilling bit. Each surface casing was constructed with 7" inside diameter, 20 pound per foot steel casing. Each surface casing was installed by San Juan Casing of Farmington, New Mexico except the surface casings at the Highway 151 location. The Highway 151 surface casings were installed by Scorpion Drilling Company, due to the relatively shallow depths of these surface casings. The surface casings were then cemented by Pace Cementing & Acidizing Services or Superior Well Services of Farmington, New Mexico. The cement was mixed to 15.5 pound per gallon consistency and then circulated to the surface and allowed to set for 12 hours. Figures 1-6, As Built Diagrams of each monitoring well, are provided in Appendix C.

8.4 BLOW OUT PREVENTER (BOP)

After cement was allowed to set for at least 12 hours, the Scorpion Drilling Company crew installed a double ram 5000 pound per square inch (psi) rated Weatherford BOP. The BOP was installed on the surface casing and then pressure tested to 600 psi. The BOP diagram is provided in Appendix D.

8.5 LONG STRING BORE HOLE DRILLING AND OPEN HOLE GEOPHYSICAL LOGGING

The long string casing bore hole for each monitoring well was drilled with a 6 1/4" drilling bit. After total depth was reached in each monitoring well, Jet West of Farmington, New Mexico performed open hole geophysical logging of both monitoring wells at the Wagon Gulch location, and on monitoring well number two at both the Fosset Gulch and Highway 151 locations. The open hole geophysical logging suite included gamma ray, bulk density, neutron, temperature, electric resistivity, Acoustic Televiewer and bore hole deviation logs. Geophysical logs are located in Appendix E. Geophysical, Lithological and Well Construction Diagrams are located in Appendix B.

8.6 COAL CORING, COAL SAMPLE COLLECTION AND ANALYSIS

Prior to completing the long string borehole drilling on the Wagon Gulch #2, Fosset Gulch #1 and Highway 151 #1 locations, core samples were collected for analysis. The cored intervals were within the Fruitland Formation coal beds identified based upon the open hole geophysical logs from the first well drilled and drill cutting descriptions. Table 2, Archuleta County Coal Bed Monitoring Well Coal Coring summarizes the cored intervals from each monitoring well.

All coal coring activities were performed by Reed Hycalog, Inc. of Alberta, Canada. All coal samples collected by Reed Hycalog, Inc. were analyzed for coal desorption by Ticora/Weatherford, Inc. of Arvada, Colorado. Ticora/Weatherford collected samples on site and began desorption testing immediately. Cored intervals are illustrated in Figures 1-6, Geophysical, Lithological & Well Construction Diagrams located in Appendix B. Coal desorption analyses are provided in Appendix F. Photos of core samples are provided in Appendix G.

8.7 LONG STRING CASING INSTALLATION AND CEMENTING

After all the open hole geophysical logging and coal coring was complete, each long string casing was constructed with 4 ½" diameter, 10.5 pound per foot steel casing. Each long string casing was installed by San Juan Casing of Farmington, New Mexico. The long string casings were then cemented by Pace Cementing & Acidizing Services or Superior Well Services both of Farmington,

New Mexico. The cement was mixed at 15.5 pound per gallon consistency and then circulated to the surface. Figures 1-6, As Built Diagrams of each monitoring well, are provided in Appendix C.

8.8 CASED HOLE LOGGING, PERFORATING AND SWABBING

After construction of each monitoring well, cased hole logging was performed to correlate the depth intervals of the well bore chosen for perforation with the open hole logs. The intervals for perforation were chosen by COGCC and SMA. After cased hole logging was complete, the monitoring wells were perforated using directional explosives. Each monitoring well was perforated at different intervals, however all perforations were completed with four shots per vertical foot (spf). All cased hole logging and perforating was performed by Jet West, Inc. of Farmington, New Mexico. Cased hole logs are located in Appendix E. Perforated intervals of each monitoring well are illustrated in Figures 1-6, As Built Diagrams, provided in Appendix C.

After perforating, each monitoring well was swabbed (developed) to stimulate water and gas production. A specialized swabbing rig made a varying number of runs for each well bore with 4 ½" swabbing cups to remove water from the casing. See Table 3, Archuleta County Coal Bed Methane Monitoring Well Swabbing Activities for swabbing details. All swabbing activities were performed by T&R Swabbing Service of Farmington, New Mexico. The number of swab runs was determined by the SMA onsite geologist after consultation with the COGCC representative.

8.9 TUBING HEADS, PRESSURE TRANSDUCERS AND TELEMETRY SYSTEM INSTALLATION

After swabbing activities were complete, a 2000 psi rated tubing head was installed on the 4 1/2" well casing. Prior to sealing the tubing head, In-Situ, Inc. of Fort Collins, Colorado, under supervision of SMA personnel, installed down hole pressure transducers and well head pressure transducers in each monitoring well. The pressure transducers in each well are 900 psi rated In-Situ, Inc. brand. Each down hole pressure transducer was installed approximately ten feet below the perforated intervals in individual monitoring wells. Then a surface pressure transducer was installed in the tubing well head. All transducers are connected to an In-Situ brand Remote Terminal Unit (RTU) located at each well site location. The RTU records down hole pressures and surface pressures every six hours, or four times daily. The RTUs broadcast the data via satellite uplink to the In-Situ's Data Center which can be accessed at <u>www.isi-data.com</u>.

9.0 WAGON GULCH MONITORING WELL INSTALLATION SPECIFIC DETAILS

9.1 CONSTRUCTION DETAILS FOR MONITORING WELL # 1 API # 05-007-06267-00

From September 27, 2008 to October 2, 2008, Wagon Gulch Monitoring Well # 1 was installed. The surface casing borehole was drilled to a depth of 262 feet bgs and 252 feet of surface casing was installed by circulating cement to the surface. The bore hole for the long string was drilled to 944 feet bgs. Jet West, Inc. ran an open hole log suite. The long string was installed to a depth of 927 feet bgs by circulating cement to the surface.

On October 16, 2008, Jet West, Inc. performed cased hole logging to correlate perforation intervals with open hole logs. After completion of the cased hole logs, the monitoring well was perforated with four spf from 821 to 833 feet bgs. After perforating activities were complete, T & R Swabbing Service swabbed the well with minimal fluid recovery.

On December 2, 2008 In-Situ, Inc. and a Helmur Corporation roustabout crew, under the supervision of SMA, installed pressure transducers in the well. The down hole pressure transducer was set at 840 feet bgs. The surface transducer was installed in the tubing head. All transducers were connected to the RTU and the telemetry system were tested and found to be functioning properly.

9.2 CONSTRUCTION DETAILS FOR MONITORING WELL # 2 API # 05-007-06266-00

From October 7, 2008 to October 13, 2008, Wagon Gulch Monitoring Well # 2 was installed. The surface casing borehole was drilled to a depth of 266 feet bgs and 257 feet of surface casing was installed by circulating cement to the surface.

On October 11, 2008, drilling of the borehole for the long string was halted at a depth of 748 feet bgs. Reed Hycalog, Inc. assembled coring tools and cored the bore hole from 749 to 779 feet bgs. Cored intervals corresponded with the coal beds identified in Wagon Gulch MW#1. Approximately 13 feet of core was recovered containing approximately 1 foot of coal. The bore hole was then advanced to an approximate depth of 808 feet bgs. A second core was attempted from approximately 808 to 820 feet bgs. Approximately 7.3 feet of core was recovered containing approximately two foot of coal. Figure 2 in Appendix C illustrates cored intervals for this monitoring well.

After each coring run, Ticora, Inc., measured and collected the coal samples. The coal samples were then placed in an air tight metal canister and allowed to sit in a warm water bath of 75 degrees Fahrenheit, the measured reservoir

temperature from the open hole geophysical logs. The coal samples were then analyzed for adsorbed gas capacity.

After coring activities were complete, the bore hole for the long string was drilled to 883 feet bgs. Jet West, Inc. ran an open hole log suite including an Acoustic Televiewer Log. The long string was installed at depth of 873 feet bgs by circulating cement to the surface.

On October 16, 2008, Jet West, Inc. ran cased hole logs to correlate perforation intervals with open hole logs. Based on cased hole log correlations, the monitoring well was perforated from 752 to 767 feet bgs with four spf. After perforating activities were complete, T & R Swabbing Service swabbed the well with minimal fluid recovery.

On December 2, 2008, In-Situ, Inc. and a Helmur Corporation roustabout crew, under the supervision of SMA, installed pressure transducers in the well. The down hole pressure transducer was installed at 780 feet bgs. The surface transducer was installed in the tubing head. All transducers were connected to the RTU and the telemetry system was tested and found to be functioning properly.

10.0 FOSSET GULCH MONITORING WELL INSTALLATION SPECIFIC DETAILS

10.1 CONSTRUCTION DETAILS FOR MONITORING WELL # 2 API # 05-007-06264-00

From October 17, 2008 to October 22, 2008, Monitoring Well #2 was installed. This monitoring well was drilled first at the Fossett Gulch site to facilitate access due to small well pads and equipment orientation. The surface casing borehole was drilled to a depth of 266 feet bgs and 253 feet of surface casing was installed by circulating cement to the surface. The bore hole for the long string was drilled to 660 feet bgs. Jet West, Inc. ran an open hole log suite. Log. The long string was installed at a depth of 660 feet bgs by circulating cement to the surface.

On November 4, 2008, Jet West, Inc. ran cased hole logs to correlate proposed perforation intervals with those identified in open hole logs. After completion of the cased hole logging, the monitoring well was perforated from 525 to 534 feet bgs and 548 to 551 feet bgs with four spf. After perforating activities were complete, T & R Swabbing Service swabbed the well with minimal fluid recovery.

On December 4, 2008, In-Situ, Inc. and a Helmur Corporation roustabout crew, under the supervision of SMA, installed pressure transducers in the well. The down hole pressure transducer was installed at 560 feet bgs. The surface transducer was installed in the tubing head. All transducers were connected to

the RTU and the telemetry system was tested and found to be functioning properly.

10.2 CONSTRUCTION DETAILS FOR MONITORING WELL # 1 API # 05-007-06265-00

Monitoring Well #1 was the second well drilled at the Fosset Gulch site due to the well pad size and accessibility. From October 25, 2008 to October 31, 2008, Monitoring Well #1 was installed. The surface casing borehole was drilled to a depth of 261 feet bgs and 252 feet of surface casing was installed by circulating cement to the surface.

On October 28, 2008, drilling for the long string was halted at a depth of 479 feet bgs for coring in the first coal interval identified while drilling MW#2. Reed Hycalog, Inc. assembled coring tools and cored the bore hole from 480 to 506 feet bgs. This coring attempt was halted due to a jammed core barrel.

On October 29, 2008, the bore hole was conditioned by circulating fluids to the surface and the same core interval was attempted again. 8.6 feet of core was recovered containing approximately three feet of coal. The bore hole was then advanced to an approximate depth of 523 feet bgs. A second core was attempted from approximately 524 to 532 feet bgs. Approximately eight feet of core was recovered containing two feet of coal. Figure 3 in Appendix C illustrates cored intervals for this monitoring well.

After each coring run, Ticora, Inc. measured and collected the coal samples. The coal samples were then placed in an air tight metal canister and allowed to sit in warm water baths of 69 and 72 degrees Fahrenheit, reflecting the measured reservoir temperatures from the intervals in which the coal samples were retrieved. The coal samples were the analyzed for adsorbed gas capacity. Coal gas analysis is located in Appendix F and additional discussion of coal gas analysis is located in Section 11 of this report.

The bore hole for the long string was drilled to 625 feet bgs. No open hole logs were run. The long string was installed to a depth of 618 feet bgs by circulating cement to the surface.

On November 14, 2008, Jet West, Inc. ran cased hole logs to correlate perforation intervals with open hole logs from Borehole #2. After completion of the cased hole logging, the monitoring well was perforated from 482 to 502 feet bgs with four spf. After perforating activities were complete, T & R Swabbing Service swabbed the well with minimal fluid recovery.

On December 4, 2008 In-Situ, Inc. and a Helmur Corporation roustabout crew, under the supervision of SMA, installed pressure transducers in the well. The down hole pressure transducer was installed at 510 feet bgs. The surface

transducer was installed in the tubing head. All transducers were connected to the RTU and the telemetry system was tested and found to be functioning properly.

11.0 HIGHWAY 151 MONITORING WELL INSTALLATION SPECIFIC DETAILS

11.1 CONSTRUCTION DETAILS FOR MONITORING WELL # 2 API # 05-007-06271-00

From November 4, 2008 to November 7, 2008, Monitoring Well #2 was installed. This monitoring well was drilled first due to well pad size and equipment orientation. The surface casing borehole was drilled to a depth of 136 feet bgs and 127 feet of surface casing was set by circulating cement to the surface. The bore hole for the long string was drilled to 330 feet bgs. Jet West, Inc. completed the open hole geophysical log suite to 323 feet bgs. The long string was set at a depth of 330 feet bgs by circulating cement to the surface.

On November 16, 2008, Jet West, Inc. ran cased hole logs to correlate perforation intervals with open hole logs. After completion of the cased hole logging, the monitoring well was perforated from 268 to 277 feet bgs and 292 to 301 feet bgs with four spf. After perforating activities were complete, T & R Swabbing Service swabbed the well with minimal fluid recovery.

On December 3, 2008 In-Situ, Inc. and a Helmur Corporation roustabout crew, under the supervision of SMA, installed pressure transducers in the well. The down hole pressure transducer was installed at 310 feet bgs. The surface transducer was installed in the tubing head. All transducers were connected to the RTU and the telemetry system was tested and found to be functioning properly.

11.2 CONTRUCTION DETAILS FOR MONITORING WELL # 1 API # 05-007-06270-00

From November 7, 2008 to November 11, 2008, Monitoring Well #1 was installed as the second well at the Highway 151 location. The surface casing bore hole was drilled to a depth of 137 feet bgs and 136 feet of surface casing was set by circulating cement.

On November 10, 2008, drilling was halted at a depth of 226 feet bgs. Reed Hycalog, Inc. assembled coring tools to core the coal intervals identified in the open hole geophysical log of MW #2. The first core was run from 226 to 246 feet bgs. Six feet of core was recovered containing approximately two feet of coal.

The bore hole was then advanced to a depth of 265 feet bgs. Reed Hycalog made a second coring run from 266 to 287 feet bgs. Approximately eighteen feet

of core was recovered containing approximately three feet of coal. Figure 5, located in Appendix C illustrates the cored intervals for this monitoring well.

After each coring run, Ticora, Inc, measured and collected the coal samples. The coal samples were then placed in an air tight metal canister and allowed to sit in a warm water bath at 60 degrees Fahrenheit, the measured reservoir temperature from the open hole geophysical logs. The coal samples were analyzed for adsorbed gas capacity. Coal gas analytical results are located in Appendix F and additional discussion of coal gas analysis is provided in Section 11 of this report.

Following coring activities, the bore hole for the long string was drilled to a total depth of 340 feet bgs. No open hole logs were run. The long string was installed to a depth of 330 feet bgs by circulating cement.

On November 16, 2008, Jet West, Inc. ran cased hole logs to correlate perforation intervals with open hole logs from Monitor Well #2. After completion of the cased hole logs, the monitoring well was perforated from 218 to 222 feet bgs and 231 to 241 feet bgs. After perforating activities were complete, T & R Swabbing Service swabbed the well with minimal fluid recovery.

On December 3, 2008 In-Situ, Inc. and a Helmur Corporation roustabout crew, under the supervision of SMA, installed pressure transducers in the well. The down hole pressure transducer was installed at 250 feet bgs. The surface transducer was installed in the tubing well head. All transducers were connected to the RTU and the telemetry system was tested and found to be functioning.

12.0 DATA INTERPRETATION

12.1 DRILLING OPERATION PROBLEMS

All of the bore holes for the project were drilled without major operational problems. Deviation was the most persistent problem due to the steep dip of the formations close to the outcrop. Bore hole deviation reached 9.25 degrees from vertical at the Wagon Gulch location, 5.0 degrees at the Fosset Gulch location, and 7.7 degrees at the Highway 151 location.

At the Wagon Gulch #2 bore hole, drilling fluid was lost steadily from 180 to 266 feet bgs resulting in some lost drilling time due to the lack of water. Field interpretation of available data indicated that the zone of water loss was located at approximately 180 feet bgs. Surface casing was set and cemented in place when the borehole reached 266 feet bgs, thus sealing off the interval of excessive water loss.

The Fosset Gulch #2 borehole experienced lost circulation at 50 feet bgs and continued losing significant amounts of drilling fluids until surface casing was

installed. After the surface casing was set and cemented, significant fluid loss was stopped. The borehole continued to take water, but at a rate anticipated based upon drilling of previous boreholes.

The Highway 151 #1 location experienced a tight spot at about 100 feet bgs that delayed tripping out of the hole to install surface casing and delayed reaching the depth necessary to set the surface casing. It was necessary to rotate and wash the casing down to get the centralizers and surface casing to the desired depth of 127 feet bgs.

12.2 HYDROLOGIC, GEOLOGIC AND GEOPHYSICAL INTERPRETATION

The Kirtland Shale, the Fruitland Formation and the Pictured Cliffs sandstone were identified during drilling activities at the Wagon Gulch, Fosset Gulch and Highway 151 well sites. Geologic contacts are indicated by the electric logs and gamma logs and water bearing zones are indicated on the spontaneous potential (SP) logs illustrated on the open hole geophysical logs located in Appendix B. Geologic contacts can be identified by low API units detected with the gamma tool and high ohms detected by the electric log tool. Water bearing zones are indicated by high readings in milivolts with the SP tool.

The Kirtland Shale is approximately 620 feet thick and was encountered at the Wagon Gulch site from ground surface to 620 feet bgs. The Fruitland Formation is approximately 260 feet thick and was encountered from approximately 620 to 860 feet bgs. The Pictured Cliffs sandstone was encountered from approximately 860 to 938 feet bgs. Two potential water bearing zones from 278-314 feet bgs and 764-776 feet bgs are indicated by the SP log. Figure 1, Geophysical, Lithological & Well Construction Diagrams located in Appendix B illustrates the geologic contacts and water bearing zones.

The Kirtland Shale is approximately 340 feet thick and was encountered at the Fosset Gulch site from ground surface to 340 feet bgs. The Fruitland Formation is approximately 250 feet thick and was encountered from approximately 340 to 590 feet bgs. The Pictured Cliffs sandstone was encountered from approximately 590 to 650 feet bgs. One potential water bearing zone from 478-498 feet bgs are indicated by the SP log. Figure 4, Geophysical, Lithological & Well Construction Diagrams located in Appendix B illustrates the geologic contacts and water bearing zone.

The Kirtland Shale is approximately 150 feet thick and was encountered at the Highway 151 site from ground surface to 150 feet bgs. The Fruitland Formation is approximately 70 feet thick and was encountered from approximately 150 to 320 feet bgs. The Pictured Cliffs sandstone was encountered from approximately 320 to 330 feet bgs. Four potential water bearing zones from 216-222, 230-242 and 268-275 feet bgs are indicated by the SP log. Figure 6, Geophysical,

Lithological & Well Construction Diagrams located in Appendix B illustrates the geologic contacts and water bearing zones.

12.3 COAL INFORMATION

The American Society for Testing and Materials (1995) has defined coal as a readily combustible rock containing more than 50% by weight and 70% by volume carbonaceous material including inherent moisture. Following this definition, Fasset 2009 developed a method of defining coal based on open hole density logs for the Fruitland Formation. Fasset stated any material less than 1.75 grams/cubic centimeter (g/cc) on the density curve can be considered to be coal and material with a density less than 1.30 g/cc is considered to be pure coal.

Utilizing Fasset's parameters on bulk density logs at each of the three sites listed yielded the following net coal from the perforation zones.

Wagon Gulch #2	Upper Zones	Interval 740'-768'
API # 05-007-06267-00	13' Coal:	Best Quality 1 ft /1.35 g/cc
	Lower Zones	Interval 813'-840'
	20' Coal:	Best Quality 3 ft/ 1.30 g/cc

At Wagon Gulch, the coal core Ticora described in the Upper Zone as coal with visible cleating showing calcite filled fractures and demonstrating audible desorption. The Lower Zone coal core is described as ranging from rubblized with audible desorption to competent with cleating and audible desorption.

Fosset Gulch #2	Upper Zones	Interval 479'-498'
API # 05-007-06266-00	19' Coal:	Best Quality 3 ft /1.35 g/cc
	Lower Zones 6' Coal:	Interval 525'-550' Best Quality 1 ft/ 1.40 g/cc

At Fosset Gulch, the Upper Zone degassed samples were described by Ticora as carbonaceous shale to coal. The Lower Zone degassed samples were described as carbonaceous shale to shaly coal.

Highway 151 #2	Upper Zone	Interval 159'-161'
API # 05-007-06264-00	2' Coal:	Best Quality 1 ft/ 1.50 g/cc
	Intermediate Zone	Interval 216'-241'
	15' Coal:	Best Quality 3 ft /1.35 g/cc
	Lower Zone	Interval 270'-302'
	12' Coal:	Best Quality 1 ft /1.35 g/cc

At Highway 151, the Upper Zone degassed samples were described by Ticora as coal black, vitreous glassy luster and very friable. The Lower Zone is described as coal black, vitreous glassy luster and very friable with one foot demonstrating audible desorption.

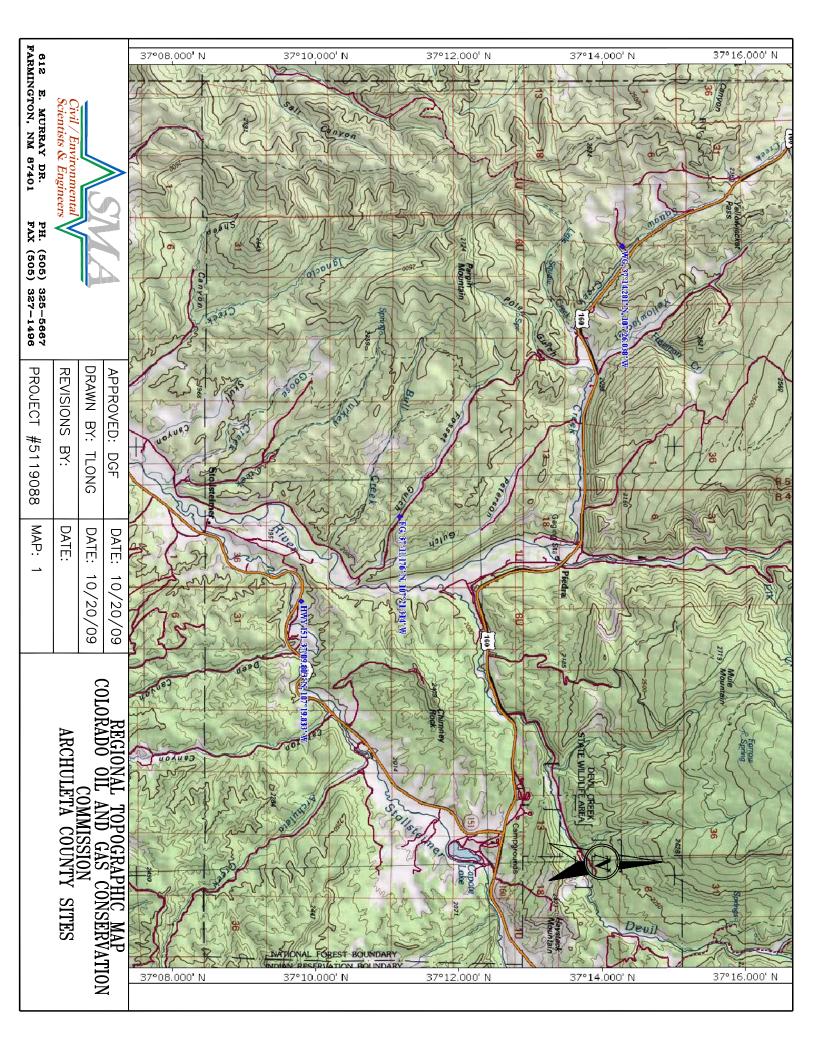
At each location, the Upper Zone, the shallower identified coal interval, was perforated in one borehole and the Lower Zone, deeper identified coal interval, was perforated in the other bore hole.

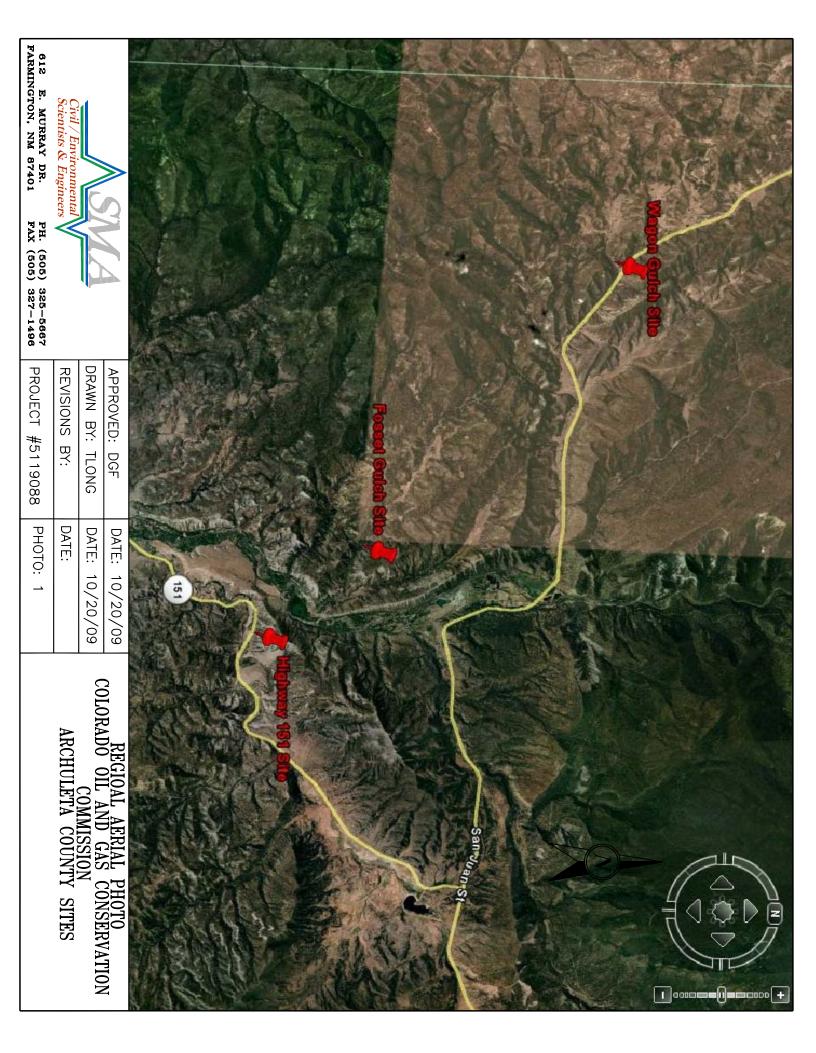
13.0 CONCLUSIONS

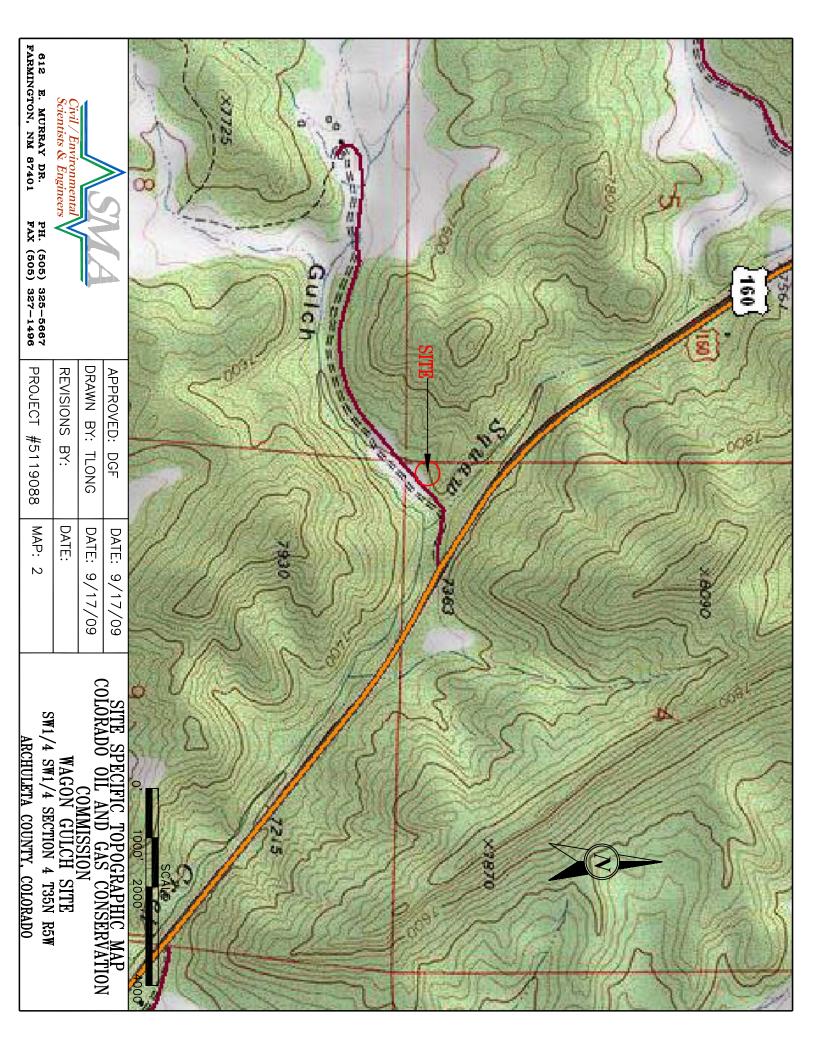
SMA has made the following conclusions:

- 1. Six CBM monitoring wells were successfully drilled and completed with minimal operational problems.
- 2. Lithologic and geophysical logging was successfully conducted on all boreholes
- 3. Coal cores for methane desorption study were collect from three bore holes.
- 4. At each location, remote monitoring equipment was installed, tested and found to functioning properly.

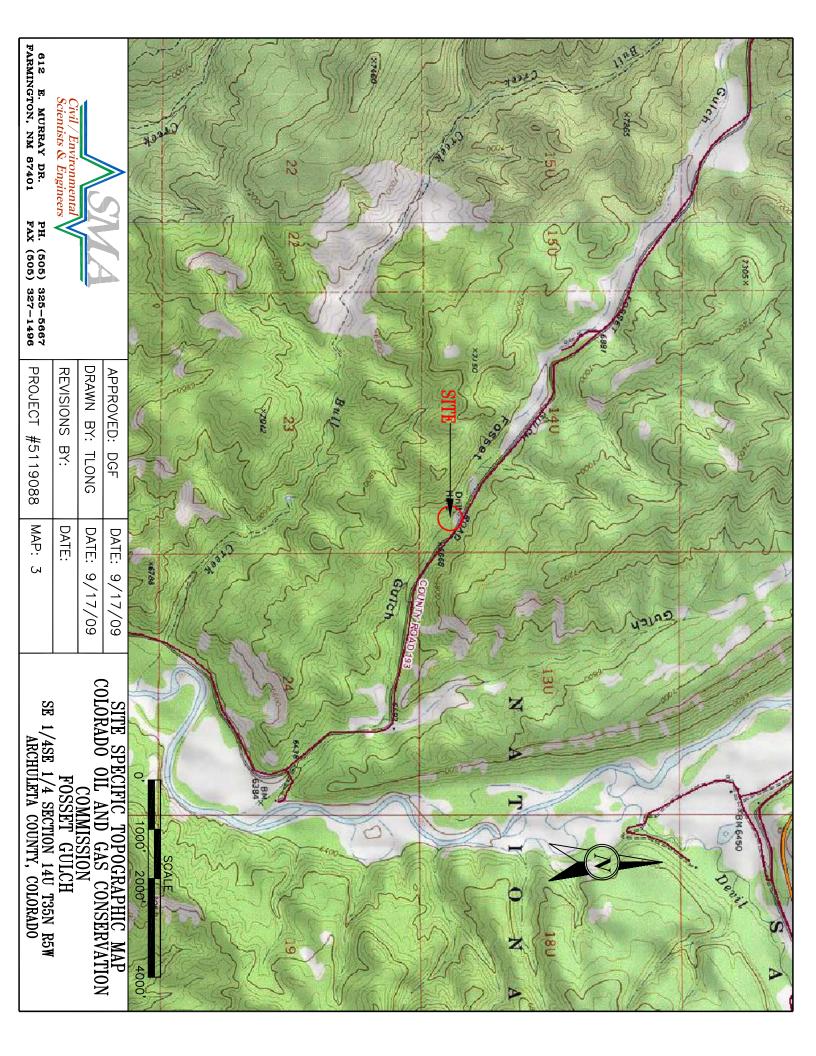
Although core recoveries were rather disappointing, sufficient coal was recovered to yield some desorption and cleat information on the Fruitland Coals. It is anticipated that the formation dip and degree of fracturing of the coal was the cause behind the limited coal recovery. The open hole Acoustic Televiewer log furnished additional information for cleat and fracture analysis.

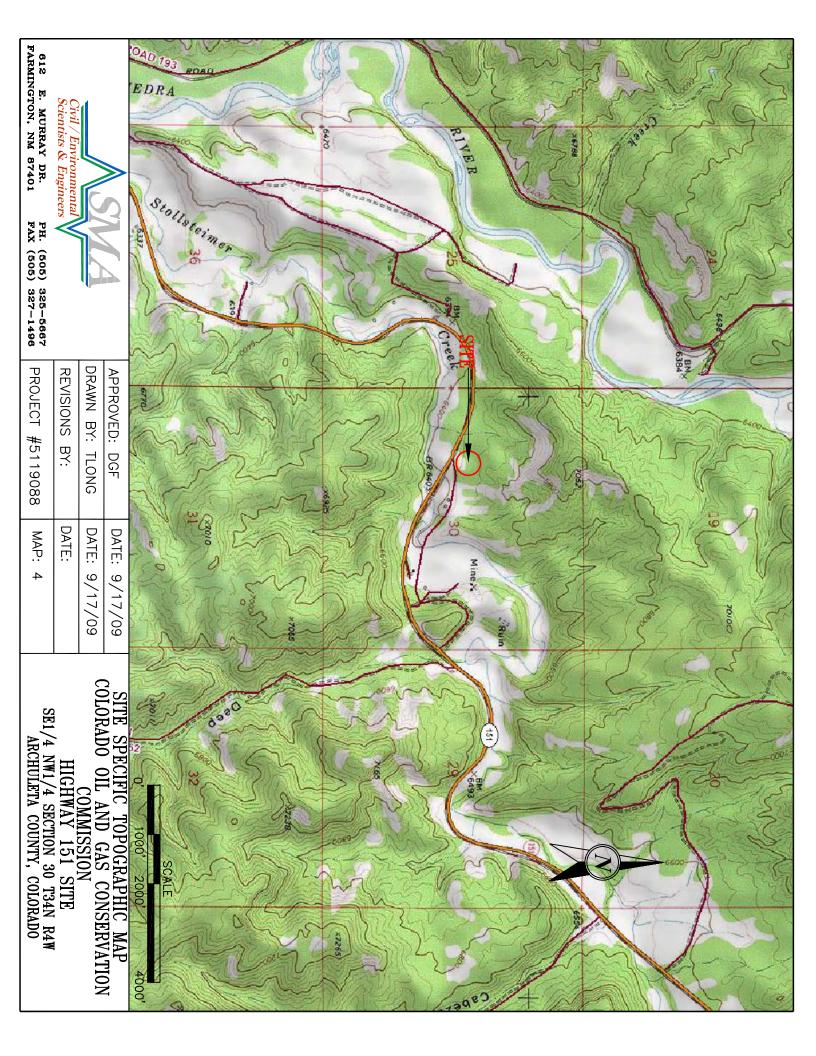

14.0 **RECOMMENDATIONS**

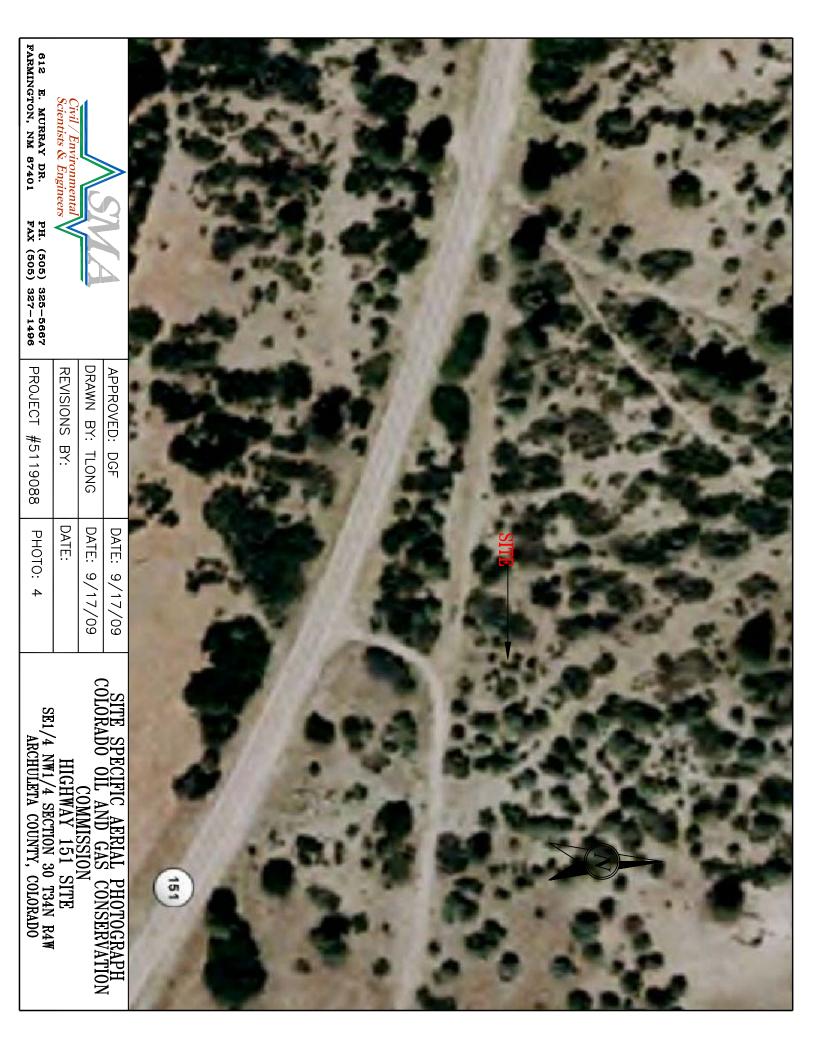

SMA recommends ongoing evaluation of data collected in this study to determine if additional monitoring wells are needed to document potential threats to the environment and the public from CBM seeps.


15.0 REFERENCES

Fasset, James E., United States Geological Survey Professional Paper 1625-B; Chapter Q, Geology and Coal Resources of the Upper Cretaceous Fruitland Formation, San Juan Basin, New Mexico and Colorado.







612 E. MURRAY DR. PH. (505) 325-5667 FARMINGTON, NM 87401 FAX (505) 327-1496	Civil / Environmental Scientists & Engineers			
PROJECT #5119088	REVISIONS BY:	DRAWN BY: TLONG	APPROVED: DGF	C 2009 Tele Atlas
РНОТО: 2	DATE:	DATE: 9/17/09	DATE: 9/17/09	clo Atlas
SW1/4 SW1/4 SECTION 4 T35N R5W ARCHULETA COUNTY, COLORADO	WAGON GULCI	MMISSION	SITE SPECIFIC AERIAL PHOTOGRAPH	

Table 1: Summary of Archuleta County Coal Bed Methane Monitoring Well Details Colorado Oil Gas Conservation Commission Coal Bed Methane Monitoring Project

Archuleta County, Colorado

Location	API Number	Monitoring Well	TRS Location	GPS Coordinates	Perforated Intervals (Feet bgs)	Total Depth (Feet BGS)	Down holeTransducer Depth (Feet bgs)
Wagon Gulch	05-007-06267-00	1	Section 4, Township 34 North,	37.238389° N, 107.433836°	821-833	927	840
Wagon Guich	05-007-06266-00	2	Range 05	W	752-767	883	780
Fosset Gulch	05-007-06264-00	1	Section 14, Township 34 North, Range 05	27 49664° N 407 26627° W	482-502	618	510
Fosset Guich	05-007-06265-00	2	Range 05	37.10051 N, 107.35527 W	525-534;548-551	660	560
Highway 151 Site	05-007-06271-00	1	Section 30, Township 34 North,	37.163685° N, 107.331061°	218-222;231-241	330	250
Figliway 151 Site	05-007-06270-00	2	Range 04	W	268-277;292-301	330	310

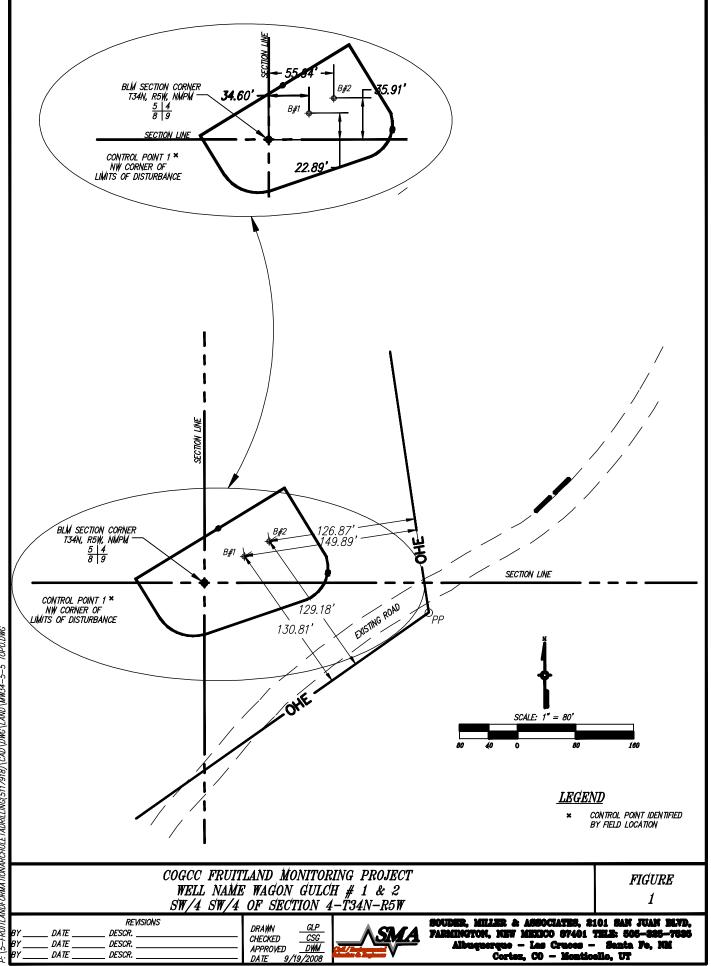
Table 2: Archuleta County Coal Bed Methane Monitoring Well Coal Coring Colorado Oil Gas Conservation Commission Coal Bed Methane Monitoring Project

Archuleta County, Colorado

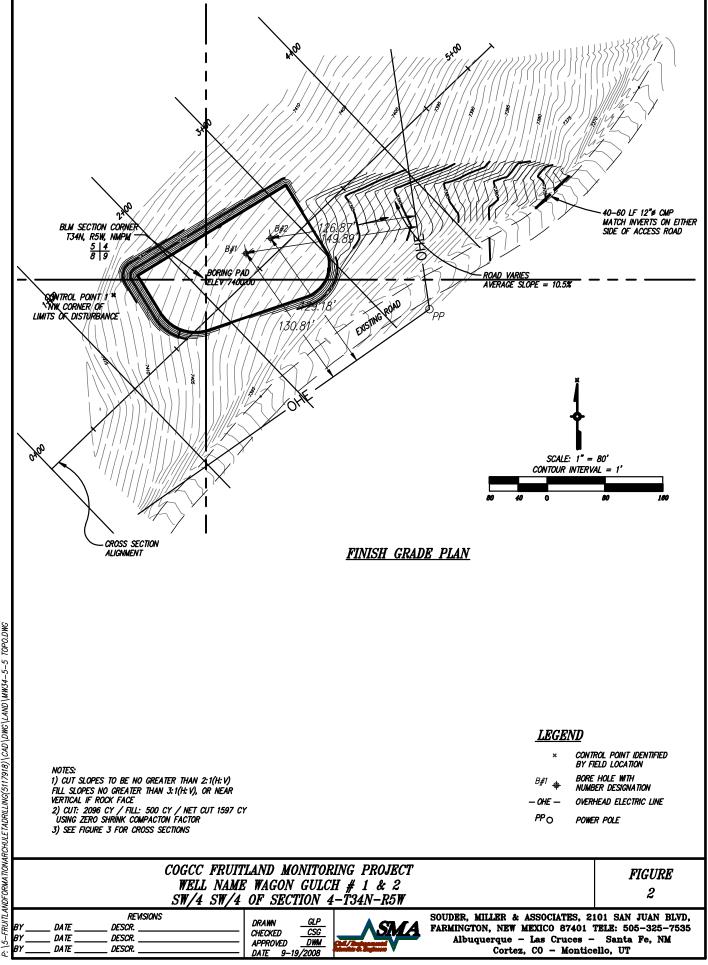
Location	API Number	Monitoring Well	Anticipated Core Interval (feet bgs)	Cored Interval (feet bgs)	Cored Length (feet)	Core Recovered (feet)	Coal Recovered (feet)	Coal Desorption Sample ID	Sample Interval (feet bgs)	Total In-situ Gas Content (scf/ton)				
Wagon			750-770	749-779	30	13	1.0	43100-1	753.5-754.5	259.5				
Gulch	05-007-06266-00	2	810-830	810-826	16.5	7.3	1.0	43100-2	813-814	268.4				
Guion			010-050	810-820	10.5	7.5	1.0	43100-3	815-816	259.63				
	05-007-06264-00			480-506 524-532	26 8.1	8.6	1.0	41547-1	480.3-481.3	114.7				
Facat			478-502 524-532				1.0	41547-2	484.7-485.7	207.1				
Fosset Gulch		1					1.0	41547-3	487.5-488.5	213.0				
Culon						8.1	1.0	41547-4	524-525	6.9				
								524-552	524-552	0.1	0.1	1.0	41547-5	531.1-532.1
			226.246	227-246	10.0	6.0	1.0	41680-1	227.8-228.8	89.7				
Lishuan 454			226-246	221-240	19.0	6.0	1.0	41680-2	229.0-230.0	116.0				
Highway 151 Site	05-007-06271-00	1		268-291			1.0	41680-3	270.5-271.5	192.8				
Sile			266-287		23.0	18.4	1.0	41680-4	271.6-272.3	207.2				
							1.0	41680-5	273.5-274.5	113.6				

Table 3: Archuleta County Coal Bed Methane Monitoring Well Swabbing Activities Colorado Oil Gas Conservation Commission Coal Bed Methane Monitoring Project

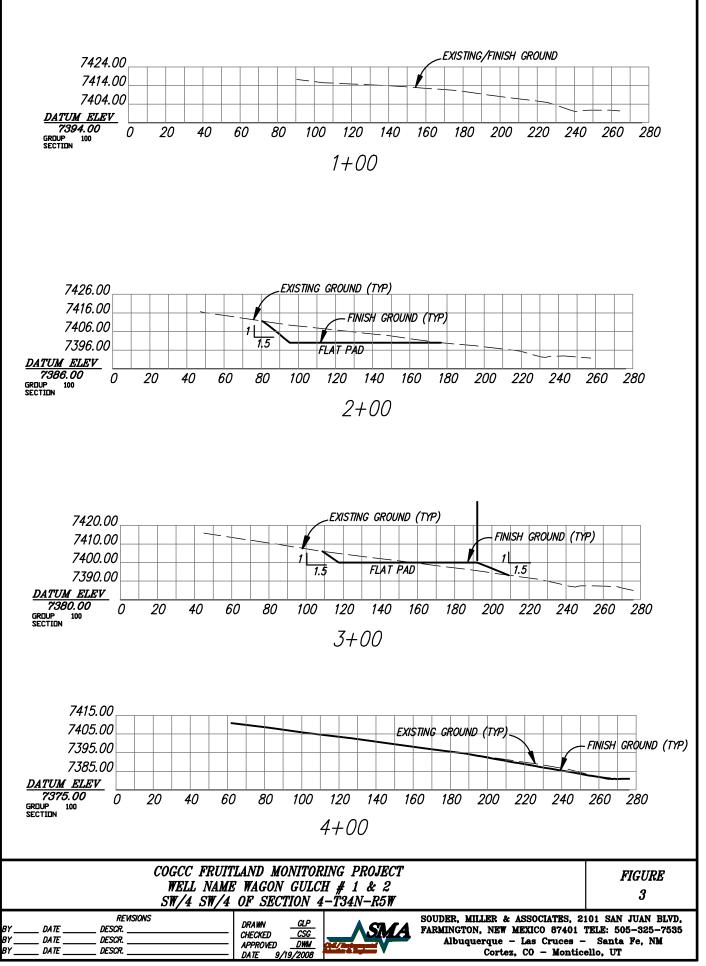
Archuleta County, Colorado


Location	Date	Monitoring Well	Swabbing Run	Depth to Water Encountered at each swabbing run (feet bgs)	Produced Water (bbls)	Total Water Produced (bbls)	
	10/16/2008	_ 1	NA	NA	NA	NA	
Wagon Gulch	10/17/2008		1	790	0.49	0.49	
wayon Guich	10/16/2008	2	NA	NA	5	5	
	10/17/2008		NA	NA	NA	NA	
		4	1	300	2.9	2.4	
		1	2	450	0.5	3.4	
	11/14/2008		1	50	3.6		
		2	2	275	1.6	7.5	
			3	380	2.3	1	
			1	180	2.3		
			2	325	1.99	- 5.61	
Fosset Gulch	11/15/2008	1	3	450	0.5		
			4	430	0.82		
		2	1	130	0.79	5.59	
			2	180	1.75		
			3	290	2.23		
		-	4	430	0.82		
		-	5	>525	0.82		
			<u> </u>	50	2.3		
		1	2	200		2.89	
		· · ·	3	190	0.15 0.44		
	11/16/2008			44			
	11/16/2008	-	1 2	160	1.8		
		2			0.31	3.49	
			3	180	1.1	_	
Highway 151 Site			4	250	0.28		
0			1 2	80 200	<u>1.9</u> 0.15	_	
		1	3	190	0.15	3.25	
		'	4	190	0.3	5.25	
	11/17/2009		5	190	0.6	1	
			1	80	3	3	
		2	2	>268	0		
		T F	3	>268	0		

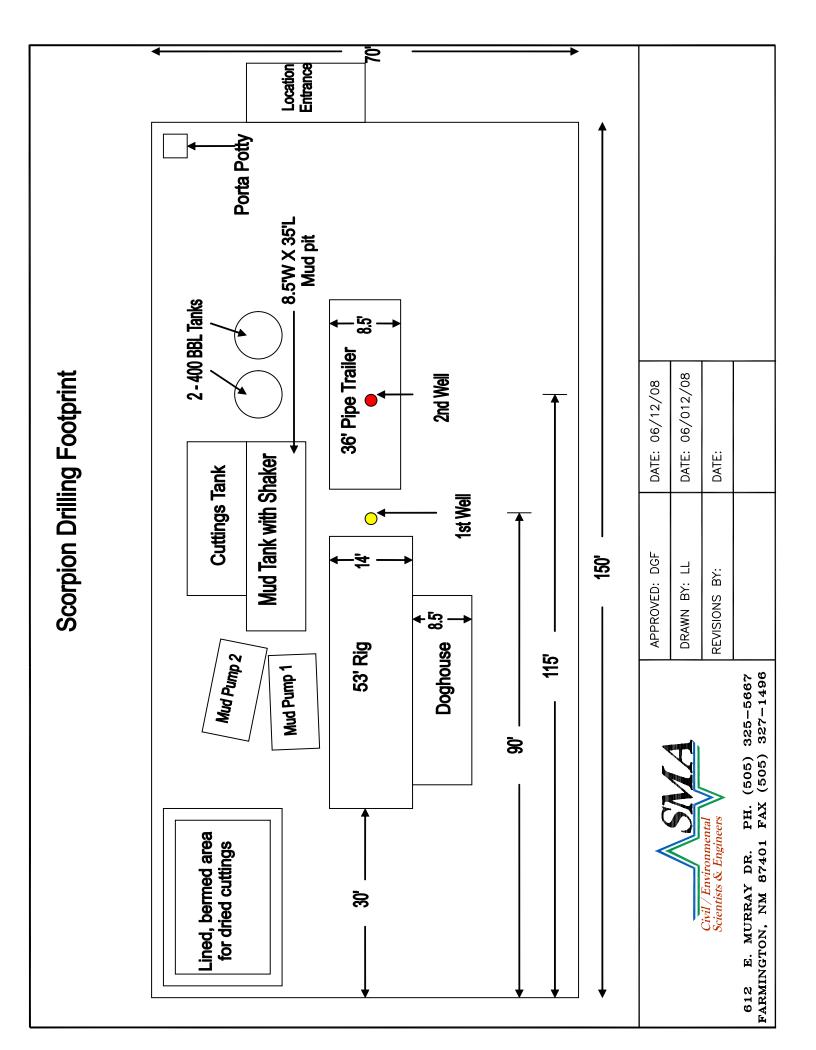
APPENDIX A: APPLICATIONS FOR PERMIT TO DRILL, FIGURES AND DIAGRAMS

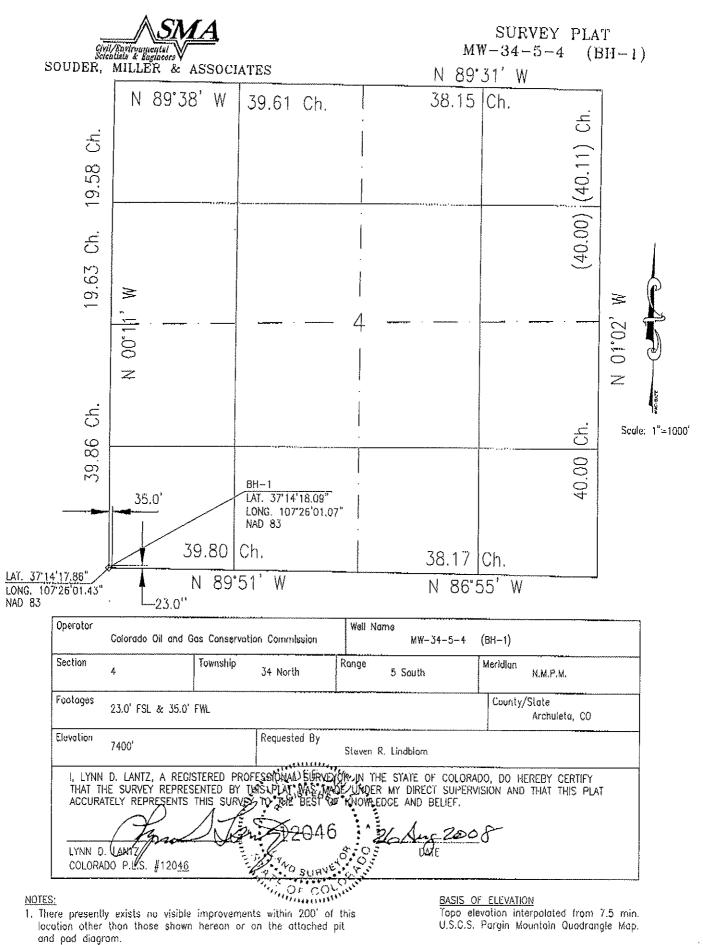

				360770					
FORM 2		State of C		000111	ſ	A 20108200	° C B	ECEI\	/ED
Rev 12/05	20 Luiceth Street, Su		tion Commission 20203 Profile (303)894-2100 2 PERMIT TO:	Fax:(303)894-1	109	NSHA)	S	EP 1 0	2008
Driit TYPE OF WELL	Deepen.	Re-enter,	Recomplete	and Operate	Retaing	- January -	Pluggin	:06(20
OIL GAS		OTHER:	Monitoring COMMINGLE Z	ONES	Sidetra	uk []		nplete Nie ient Checktist	J
	ouder, Miller &	Associates, 612 E			* <u> 5 </u>		APD Orig	& 1 Сору	02 000 90
City Farming: Contact Name: C		State: MA Agent))1)5) 325-560	57	Fax: (505) 327-14			
We≋ Name: Unit Name (if app	10/22/2 22/20 11/2	3∎ MW 34-5-4	<u>#2</u>		Vell Number: Joit Number:		Topo map Mineral te		
Proposed Tetal M	easured Depth:	1400'	OCATION INFORM	ATION				grmt/Surety tice tetter	
0. CarQar SWSV Lauude: 37	V Sec 7.238389			<u> </u>	· / ·	NMPM 🕊	Deviated Except	Drilling Plan ion Location	
Footage At Surfac	:e: 36	- S	56	W			Exception	lequest Loc Waivers	
1 Field Name: 2 Ground Elevation	7400	13.	County: Archule	Field Numbe	a:			ingency Plan ritling Permit	
 GPS Data: Date of Measurer 	nent: 8/2	108 PDOP Rea	ding: 5	Instru	ment Operati	or's Name:	lants		
5. If well is:	Directional	Horizontal (high		it deviated c	frilling plan,	Bottomhole Sei	: Twp Rog:		
ootage At Top of Pro	••••			FELFWL	At Bottom Ho				FEUTW
6. Is location in a hig		استحسب سا	Yes 🔽 No			PL.			
 Distance to the new second seco		blic road, above groun <u>1550 feet</u>		Distance to		permitteo/completeo i	n the same formation	nt N/A	
0. Objective Forma		Formation Code	LEASE, SPACING Spacing Order Num		Unit Acro	RMATION eage Assigned to Wet	Unit Con	figuration (N/2, S	SE/4, etc.)
Fruitland			<u>N/A</u>		N/A				
 Surface Ownersh Is the Surface Ov Is the Surface Ov If 23 is Yes: If 23 is No: Using standard Q Distance to Near 	vner also the Mine Is the Surface Surface O JtrQtr. Sec. Twp. F	Owner(s) signature on whers Agreement Alla Ang format enter entire] Yes [XX Blanket S	this propose	\$2,000 S		\$5,000 Surface edmap If you pro	
27. Is H2S anticipate	d? Yes		DRILLING PL If Yes, attach contingen		PRÓCEDU	IRES]
 Will salt sections Will salt (>15,000 If questions 27 or Mud disposal: (Method: 	be encountered d ppm TDS CI) or c 28 are yes, is this Offsite Land Far	uing dritting? bit based muds be used location in a sensitive Onsite ming Land	Yes d during dritting?	No Yes Yes Disposal Fa	sciity (No No If 28, 29 or 30 Other: Dried y local fire officials.			wirod.
String Surface 8	Size of Hote 3 3/4 in.	Size of Casing 7 In.	Weight Per Foot 20-lb.	250 ft.) Depth	Sacks Cement 63	Cement Bottom 250 ft.	Surface	nt Top
Long String 6	i 1/4 in.	4 1/2 in.	10.5 lb.	1400 ft		180	1400 ft.	Surface	
		·	Stage Tool						
34. Initial Rule 306 has been waive PERMIT SUBN I hereby certify to the best of m	haffer pr4ess Consultation to ed or if good fail AITTED TO COC that a complete	h effort did not resul SCC PRIOR TO CO	WS 10 foot floo 08/12/08 was it in consultation. MPLIANCE WITH RU s been sent to the app	waived, or ULE 306 CO blicable Loca	is not requi NSULTATI Si Governm	ON SHALL BE RE ent Designee(s), and	TURNED UNAPP	ROVED.	
Signe <u>d:</u> Title: <u>E</u>	DS I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_ Print Nam _ Date:9	10167	≥₽ <u>₩</u> ₩₩ <u>5</u> Email: .	HOVEN . In	de lum es	Hark . 10.15
Based on the inform		herein his Applicat	ion for Permit-to-Drill		th COGCC Director o		le orders and is l		ed.
	UMBER	Permit Numb		610	7		ion Date:	= / 10 /	12009
		CO Me	ovide 48 hour s GCC field ins lton (970) 375	pector I -6419 (leslie				
		DIS	triat Eng	men	Ma	VK Wees	vo @ 9	70-20	59-45

	BECEIVED
FORM 2 State of Colora. 01360769	
Oil and Gas Conservation Commission 1120 Lincoln Street, Suite 801, Denver, Colorado 80203 Phone: (303)694-2100	SEP 1 0 2008
APPLICATION FOR PERMIT TO:	<u></u>
2. TYPE OF WELL Refling OIL GAS COALBED OTHER: Monitoring Sidewack Single ZONE MULTIPLE ZONES COMMINGLE ZONES	Plugging Bond Surety ID#
Sindle Envice moletime E 2011.5 commindee 2011.5 commindee 2011.5 3. Name of Operator: COGCC 4. COGCC Operator Number: 5	Attachmont Chockiist
5. Address: c/o Souder, Miller & Associates, 612 E. Murray Drive	APD Orig & 1 Copy
Cay: Farmington State: NM Zip: 87401 6. Contact Name: Denny Foust (SMA Agent) Phone: (505) 325-5667 Fax: (505) 327-1496	Form 2A
7. Well Name: Wagon Gulch Gee MW 34-5-4 ## Well Number: #1	Торо тар
B. Unit Name (if appl):Unit Number: 9. Proposed Total Measured Depth: 1400'	Mineral lease map Surface agrmt/Surety
WELL LOCATION INFORMATION	30 Day notice letter
10. QuQur: SWSW Sec: 4 Twp: 34N Rng: 5W Meridian: NMPM Latitude: 37.238958	Deviated Oriting Plan Exception Location Request
Footage At Surface: 23 S 35 W	Exception Loc Waivers
Field Name: Field Number: 12. Ground Elevation: 7400 13. County: Archuleta	H2S Contingency Plan Federal Dritting Permit
14. GPS Data:	- 1
Date of Measurement: 8 21/08 PDOP Reading: 5 Instrument Operator's Name: LUC	mtz
15. If well is: Directional Horizontal (highly deviated), submit deviated drilling plan. Bottomhole Sec Twp	
Foorage At Top of Prod Zone:	
16. Is location in a high density area (Rule 603b)?	
17. Distance to the nearest building, public road, above ground utility or railroad: 440-89-ft. 31 18. Distance to Nearest Property Line: 1550 feet 19. Distance to nearest well permitted/completed in the	same formation: N/A
20. LEASE, SPACING AND POOLING INFORMATION	
Objective Formation(s) Formation Code Spacing Order Number (s) Unit Acreage Assigned to Well Fruitland FRLDC N/A N/A	Unit Conliguration (N/2, SE/4, etc.)
21. Mineral Ownership: Fee State Federal Indian Lease # <u>N/A</u>	
22. Surface Ownership:	
23a. If 23 is Yes: Is the Surface Owner(s) signature on the lease? Yes Xes Surface Owner(s) signature on the lease? Yes Xes Surface Bond S2,000 Surface Conners Agreement Attached or S25,000 Blanket Surface Bond S2,000 Surface	Bond \$5,000 Surface Bond
24. Using standard QuQur, Sec, Twp, Rng format enter entire mineral lease description upon which this proposed wellsite is located (attach	
25. Distance to Nearest Mineral Lease Line: <u>N/A</u> 26. Total Acros in Lease: <u>N/A</u>	
DRILLING PLANS AND PROCEDURES	
27. Is H2S anticipated? Yes An If Yes, attach contingency plan. 28. Will sait sections be encountered duing drilling? Yes No	
29. Will salt (>15,000 ppm TDS CI) or oli based muds be used during drilling? Yes View No 30. If questions 27 or 28 are yes, is this location in a sensitive area (Rule 903)? Yes No 11 28, 29 or 30 are "	Yes" a pit permit may be required.
31. Mud disposal: Offsite Onsite Method: Land Farming Land Spreading Disposal Facility Øther: Dried cutt	ings buried on sile
NOTE: The use of an earthen pit for Recompletion fluids requires a pit permit (Rule 905b.) If air/gas driting, notify local fire officials.	ment Bottom Cement Top
Surface 8.3/4 in. 7 in. 20 lb. 250 ft. 63 2	250 ft. Surface
Long String 6 1/4 in. 4 1/2 in. 10.5 lb. 1400 ft. 180 14	100 ft. Surface
Stage Tool	
32. BOP Equipment Type: Annular Preventor Double Ram Roteling Head None	
33. Courrients Shaffer pressure control 5m LWS 10 foot floor, rig derrick height 63 feet	
34 Initial Rule 306 Consultation took place on (date) <u>08/12/08</u> , was waived, or is not required. Provide supporting has been waved or if good faith effort did not result in consultation.	
PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RETURN I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and all	
to the best of my knowledge, true, correct, and complete. Signed:	м
Signed: Children Print Name: Stistign UNDG401 Title: UPSI Date: +1, 1006 Email: 3-Ku	un lindblon a state would
Based on the information provided herein, this Application for Permit-to-Drill complies with COGCC Rules and applicable on	ders and is hereby approved.
COGCC Approved: Date & 1 Osline JKD Director of COGCC	Date: 9/11/2008
Permit Number: 2 A 2 1 A Expiration D	Date: 9/10/2009
05. 007 - 062 (3 - 00	
Provide 48 hour spud notice to	
COGCC field inspector Leslie	
Melton (970) 375-6419	


ń

P: \5-FRUITLANDFORMATIONARCHULETADRILLING(5117918)\CAD\DWC\LAND\MW34-5-5 TOPO.DWG

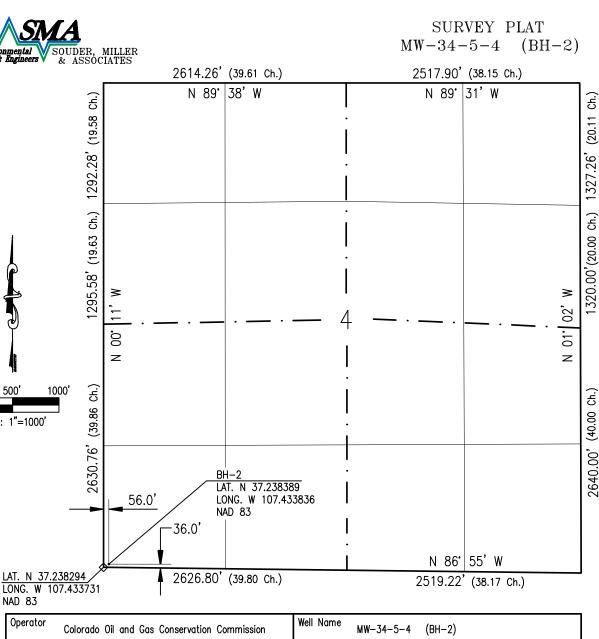

5-FRUITLANDFORMATIONARCHULETADRILLING(5117918)\CAD\DWC\LAND\MW34-5-5 TOPO.DWC



FRUITLANDFORMATIONARCHULETADRILLING(5117918)\CAD\DWG\LAND\MW34-5-5 TOPO.DWG

Υ.

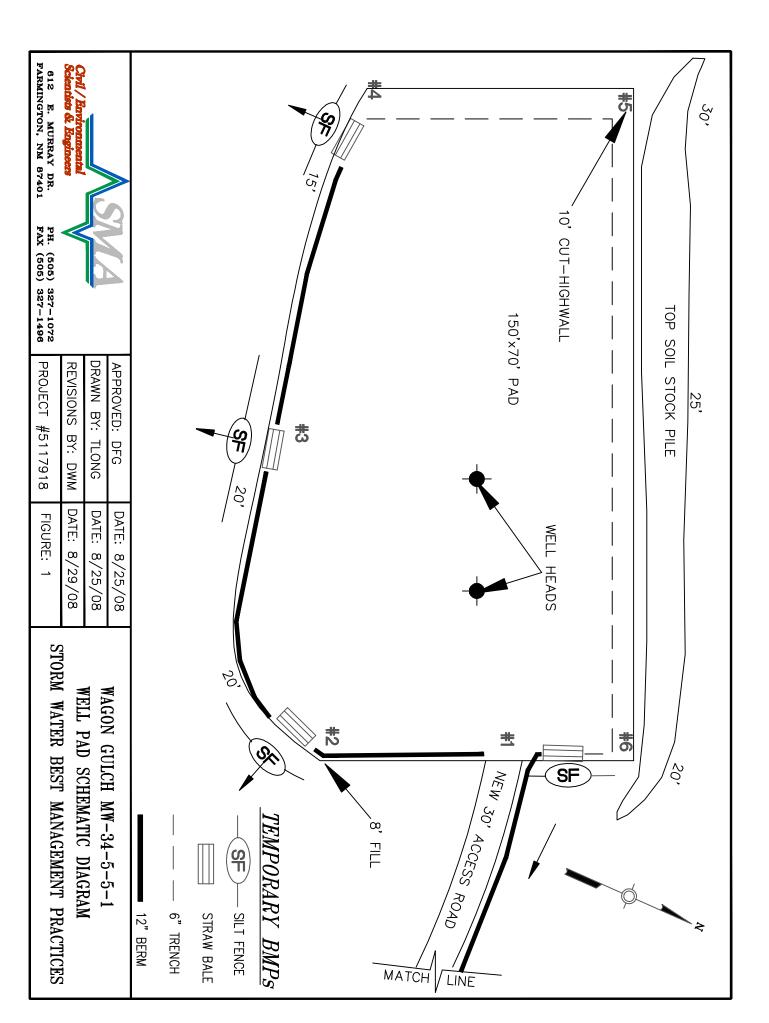
ċ.

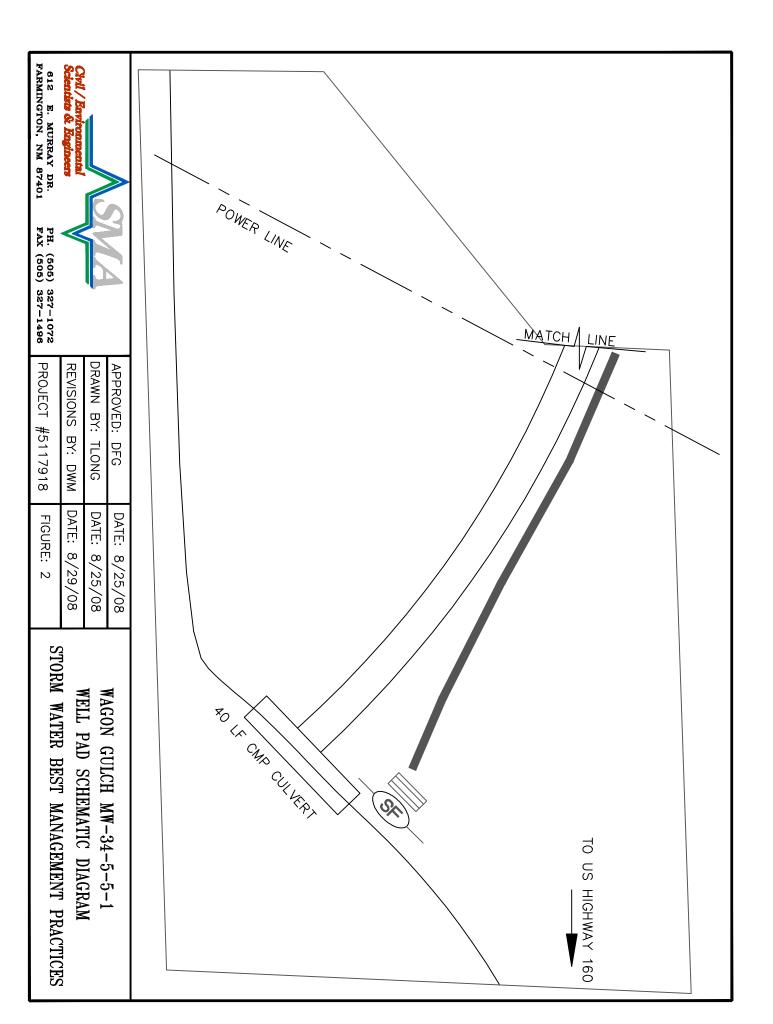

2. Surface use for the land surrounding this location is national forest land.

500

Scale: 1"=1000'

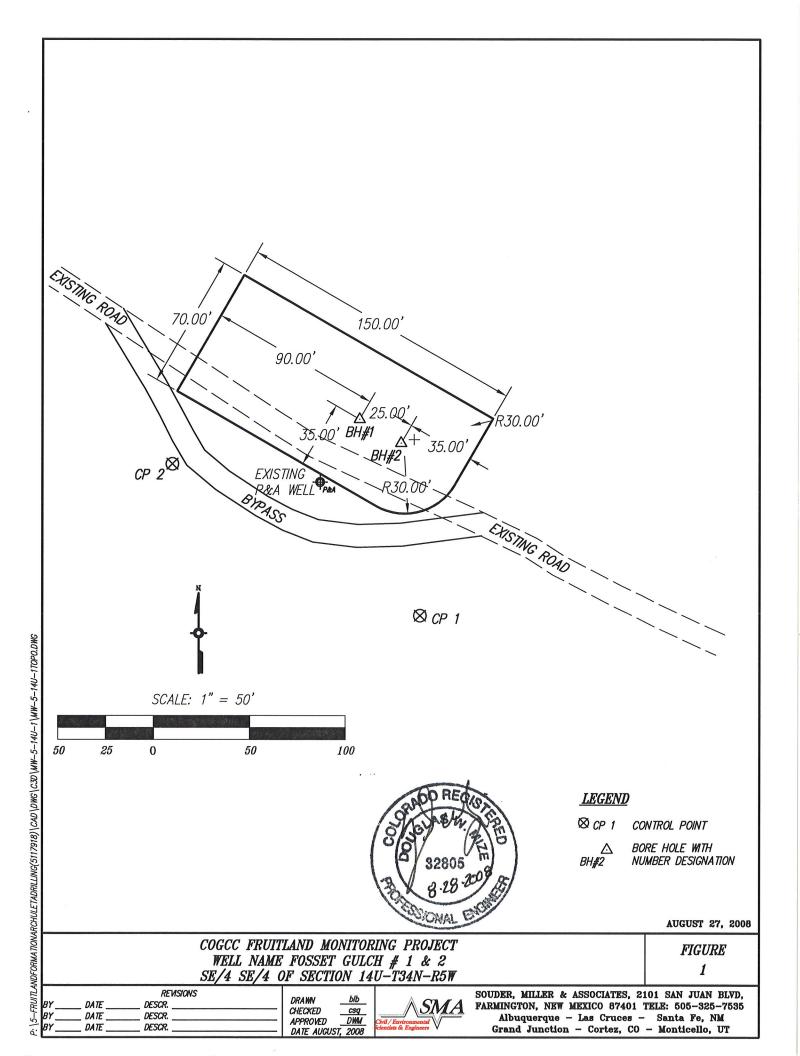
NAD 83

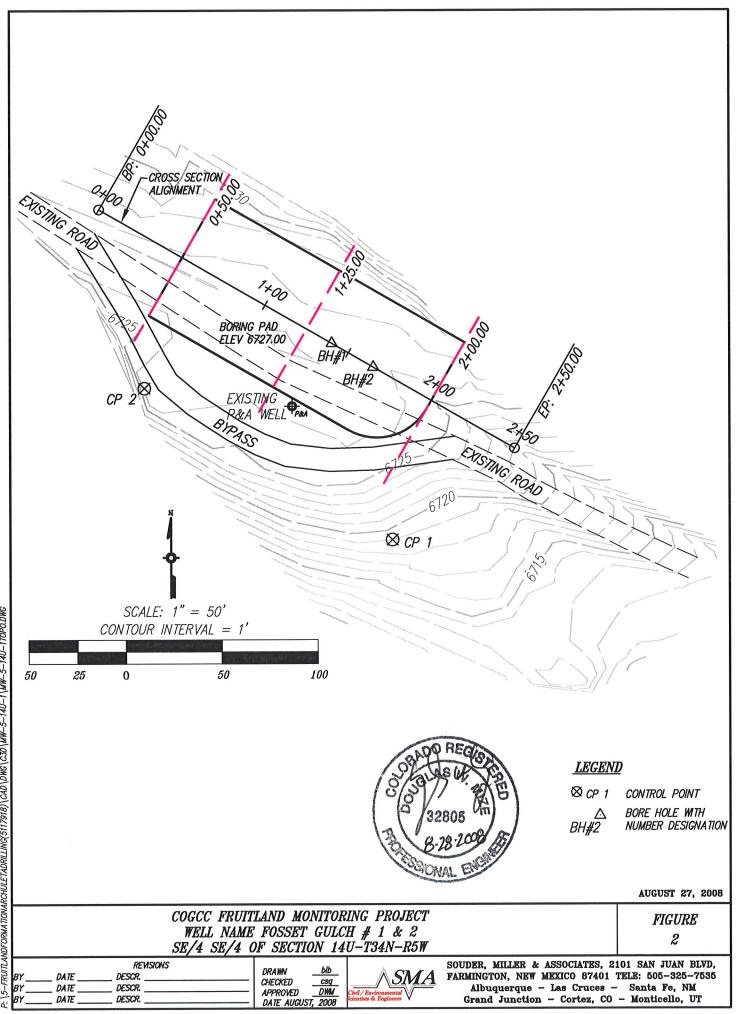


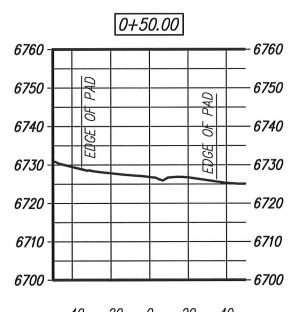

Operator Colorado Oil and Gas Conservation Commission Section Township Meridian Range N.M.P.M. 4 34 North 5 West Footages County/State 36.0' FSL & 56.0' FWL Archuleta, CO DEE LO Elevation **Requested By** 7400' Steven R. Lindblom I, LYNN D. LANTZ, A REGISTERED PROFESSIONAL SURVEYOR IN THE STATE OF COLORADO, DO HEREBY CERTIFY THAT THE SURVEY REPRESENTED BY THIS PLAT WAS MADE UNDER MY DIRECT SUPERVISION AND THAT THIS PLAT ACCURATELY REPRESENTS THIS SURVEY TO THE BEST OF KNOWLEDGE AND BELIEF. 111111 k 2046 0 0 LYNN D. LANTZ DATE OSUANE COLORADO P.L.S. #12046

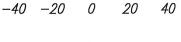
NOTES:

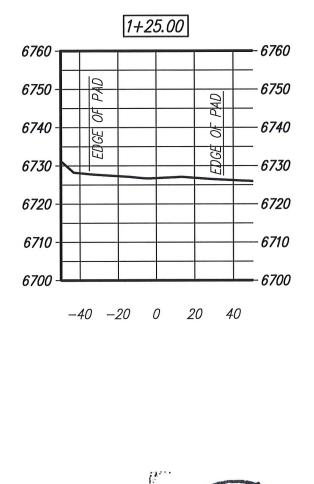
- 1. Basis of bearing is approved plat of resurvey of T 34 N, R 5 W, N.M.P.M., approved June 27, 1947.
- 2. PDOP for this survey is 5.0'.
- 3. Section corner monument is a standard GLO Brass Cap dated 1947, set in an iron pipe sorrounded by a pile of stones. There is a metal witness post 2 feet north of the monument.
- 4. Well location distances calculated from GPS observation collected on 8/21/2008.
- 5. There presently exists no visible improvements within 200' of this location other than those shown hereon or on the attached pit and pad diagram.
- 6. Surface use for the land surrounding this location is national forest land.
- 7. Well location distances are measured perpendicular to section lines.

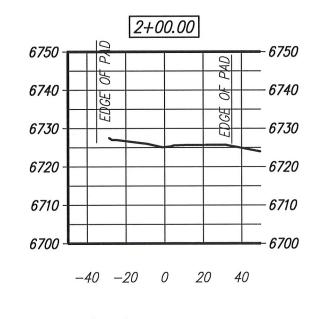

BASIS OF ELEVATION - Topo elevation interpolated from 7.5 min. U.S.G.S. Pargin Mountain Quadrangle Map.




	G
FORM State of Colorado	RECEIVED
2 Oil and Gas Conservation Commission	
1120 Lincoln Street, Suite 201, Denver, Colorado 20203 Prione: (303)894-2109 APPLICATION FOR PERMIT TO:	SEP 1 0 2008
Drill, Deepen, Re-enter, Recomptete and Operate	
OIL GAS COALBED OTHER: MONITOR Siderrack	
	Complete the Attackment Checklist
Name of Operator: COGCC 4 COGCC Operator Number: 5 Address: c/o Souder, Miller & Associates, 612 E. Murray Drive	OP COGCC APD Orig & 1 Copy
City: Farmington State: NM Zip: 87401	Form 2A
6. Contact Name: Denny Foust (SMA) Agent Phone: (505) 325-5667 Fax: (505) 326-144 7 Well Name: Fosset Gulch Ges MW 34-5-14 Well Number: #1	
7 Well Name: Fosset Gulch Gers MW 34-5-14 Well Number: #1 8. Unit Name (if app)): 1 Unit Number:	Topo map Mineral lease map
9 Proposed Total Measured Depth: 750 feet	Surface agrint/Surety
WELL LOCATION INFORMATION 10 Grow, SESE Sec. 14 Twp 34 N Reg. 05 W Meridian: NMPM M 10 N 37 19651	30 Day notice tetter Deviated Dristing Plan Exception Location
Laistude: N 37 .18651 Longitude: W 107.35527	Request
Footage At Surface: 809 S 781 E 11. Fretd Name: Field Number:	Exception Loc Waivers H2S Contingency Plan
12. Ground Elevation: 6727" 13. County: Archuleta	Federal Drilling Permit
14 GPS Data:	
Date of Measurement: 8 21/08 PDOP Reading: 5 Instrument Operator's Name: L	. hants
15. If well is: Directional Horizontal (highly deviated), submit deviated drilling plan. Bottomhole Sec	Twp Rng:
Footage At Top of Prod Zone:	FILATISL FELETINE
16. Is location in a high density area (Rule 603b)? Yes No 17. Distance to the nearest building, public road, above ground utility or raitroad: 10.0 Jf 18. Distance to Nearest Property Line: 17 (g.O 19. Distance to new st well permitted/completed in	the same formation: MA_
20. LEASE, SPACING AND POOLING INFORMATION	
Objective Formation(s) Formation Code Spacing Order Number (s) Unit Acreage Assigned to Wett	Unit Configuration (N/2, SE/4, etc.)
	<u> </u>
21. Mineral Ownership: Fee State Federal Indian Lease # 22. Surface Ownership: Fee State Federal Indian 23. Is the Surface Owner also the Mineral Owner? Yes No Surface Surety ID# 23. If 23 is Yes: Is the Surface Owner(s) signature on the lease? Yes No	
	rface Bond 55.000 Surface Bond fach separate sheet/map if you prefer):
25. Distance to Nearest Mineral Lease Line: 781 ¹ 26. Total Acres in Lease: NA	
DRILLING PLANS AND PROCEDURES	·····
27. Is H2S anticipated? Yes No If Yes, attach contingency plan. 28. Will sak sections be encountered during drilling? Yes No	
28 Will sak sections be encountered duing drilling? Yes Volume 29. Will sak (>15,000 ppm TDS Cl) or oit based muds be used duing drilling? Yes Volume	
30. If questions 27 or 28 are yos, is this tocation in a sensitive area (Rule 903)? Yes No It 28, 29 or 30 a 31. Mud disposat: O'Ottsite Onsite	re "Yes" a pit permit may be required.
Method: Land Farming Land Spreading Disposal Facility Denre Denre	ed cuttings buried on-site
NOTE: The use of an earthen pit for Recompletion fluids requires a pit permit (Rule 905b.) If air/gas drilling, notify local fire officials. String Size of Hole Size of Casing Weight Per Foot Setting Depth Sacks Cement	Cement Bottom Cement Top
Surface 8.3/4" 7" 20# . 250 63	250 surface
Long String 6 1/4" 4 1/2" 10.5# 750 97	750 surface
New York State Tool	
32. BOP Equipment Type: Annular Preventor Double Ram Rotating Head None	
33. Comments Shaffer Pressure Control 5m LWS, rig floor ten feet, derrick is 63", total rig height 73	monta well
34. Initial Rule 306 Consultation took place on (date) 8/12/08 ,was waived, or is not required. Provide suppor	
, inde norde, di la norregalea. I rende appoi	ting documentation if consultation
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and	URNED UNAPPROVED.
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete.	URNED UNAPPROVED. I all statements made in this form are,
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET i hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete. Signed: Print Name:	URNED UNAPPROVED.
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET. I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete. Signed:	URNED UNAPPROVED. 1 all statements made in this form are, MDBLAMA Structure . I includence State. 10.11
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET i hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete. Signed: Print Name:	URNED UNAPPROVED. 1 all statements made in this form are, MDBLAMA Structure . I includence State. 10.11
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET. I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete. Signed: Print Name: Title: 4/10/0 % Date: 4/10/0 % Based on the information privided heref, this Application or Permit-to-Drill complete with COGCC Rules and applicable	URNED UNAPPROVED. J all statements made in this form are, MDBLAMA Structure. I includence State. 10.11 a orders and is hereby approved. Date: 9/11/2005
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET. I hereby certify that a complete permit package has been sent to the applicable Local Government Designes(s), and to the best of my knowledge, true, correct, and complete. Signed: Print Name: Title: 4/10/0 % Based on the information provided hereit, this Application for Permit-to-Drill completes with COGCC Rules and applicable COGCC Approved: Director of COGCC	URNED UNAPPROVED. J all statements made in this form are, MDBLAMA Structure. I includence State. 10.11 a orders and is hereby approved. Date: 9/11/2005
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET. I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete. Signed: Print Name: Title: 4 10/0 % Based on the information provided hered. COGCC Approved: Date: Permit Number: Director of COGCC API NUMBER CONDITIONS OF APPROVAL IF ANY: 05- 007 - 062 54 - 03 Provide 48 hour spud notice to	URNED UNAPPROVED. J all statements made in this form are, MDBLAMA Structure. I includence State. 10.11 a orders and is hereby approved. Date: 9/11/2005
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RET. I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete. Signed: Print Name: Title: 4 10/0 % Based on the information provided heref, the Application for Permit-to-Drill complete with COGCC Rules and applicable COGCC Approved: Det: 01/10/05 Permit Number: Director of COGCC API NUMBER CONDITIONS OF APPROVAL IF ANY:	URNED UNAPPROVED. J all statements made in this form are, MDBLAN Structure. Findblower State. 10.11 e orders and is hereby approved. Date: $9/11/2055$ n Date: $9/10/2055$


	<u> </u>
FORM 2 Rev 1205 Oil and Gas Conservation Commission	RECEIVED
1120 Lincon Street, Suce 801, Denver, Coterade 80203 Prene: (303)894-2100 Bar: (303)894-2109 APPLICATION FOR PERMIT TO: Coterade 80203 Prene: (303)894-2100 Brill, Deepen, Re-enter,	SEP 1 0 2008
2 TYPE OF WELL Refiling Sidetrack	<u>GQQCC::</u>
SINGLE ZONE MULTIPLE ZONES COMMINGLE ZONES 3. Name of Operator COGCC 4. COGCC Operator Number: 5	Complete the Attockenest Checklist
Address: c/o Souder, Miller & Associates, 612 E. Murray Drive City: Farmington State: NM Zip: 87401	APD Orig & 1 Copy
6. Contact Name: Denny Foust (SMA) Agent 7 Phone: (505) 325-5667 Fax: (505) 326-14	196 Vell tocation plat
7. Weit Name: FOSSet Gulch Ges HAP 34-5-14 Weit Number: #2 8. Unit Name (il app): Unit Number:	Topo map Miceral lease map
9. Proposed Total Messured Depth: 750 feet	Surface aginal/Suzety
WELL LOCATION INFORMATION 10. QtrQtr: SESE Sec: 14 Twp: 34 N Rng: 05 W Meridian: NMPM	30 Day notice tetter Deviated Dritting Plan
Lanuude: N 37 .18655 Longitude: W 107.35534	Exception Location Request
Footage At Surface: 822 S 802 E 11. Field Name: Field Number:	Exception Loc Waivers H2S Contingency Plan
12. Ground Elevation: 6727" 13. County: Archuleta	Federal Drilling Permit
14. GPS Data: Date of Measurement: 8/2/68 PDOP Reading: 5 Instrument Operator's Name: L.	Lantz
15. If well is: Directional Horizontal (highly deviated), submit deviated drilling plan. Bottomhole Sec	
Footage At Top of Prod Zone:	
16. Is tocation in a high density area (Rule 603b)? Yes No	
17. Distance to the nearest building, public road, above ground utility or raitroad: 18. Distance to Nearest Property Line: //7(a) 19. Distance to nearest well permitted/completed in	n the same formation:
20. LEASE, SPACING AND POOLING INFORMATION Objective Formation(s) Formation Code Spacing Order Number (s) Unit Acreage Assigned to Well	Unit Conliguration (N/2, SE/4, etc.)
Twit Land Coal FR. LDC	
21. Mineral Ownerstup: ✓ Fee State Federal Indian Lease # 22. Surface Ownerstrip: ✓ Fee State ✓ Federal Indian	
23. Is the Surface Owner also the Mineral Owner? Yes VNO Surface Surety ID#	
23a. If 23 is Yes: Is the Surface Owner(s) signature on the tease? Yes No 23b. If 23 is No: Surface Owners Agreement Attached or \$25,000 Blanket Surface Bond \$2,000 Su 24. Using standard QtrQtr, Sec, Twp. Rng format enter entire mineral lease description upon which this proposed wellsite is located (a \$25,000 Su	rface Bond \$5,000 Surface Bond ttack separate sheet/map if you prefer):
25. Distance to Nearest Mineral Lease Line: <u>802'</u> 26. Total Acres in Lease: <u>NA</u> DRILLING PLANS AND PROCEDURES	
27. Is H2S anticipated? Yes No If Yes, attach contingency plan, 28. Will sat sections be encountered duing drifting? Yes No	
29. Will salt (>15.000 ppm TDS CI) or oit based muds be used during drilling? Yes Ve	
31. Mud disposal: Offsite Onsite	re "Yes" a pit permit may be required.
NOTE: The use of an earthen pit for Recompletion fluids requires a pit permit (Rule 905b.) If air/gas drilling, notify local fire officials.	
String Size of Hole Size of Casing Weight Per Foot Setting Depth Sacks Centent Surface 8.3/4" 7" 20# 250 63	Cement Bottom Cement Top 250 Surface
Long String 6 1/4" 4 1/2" 10.5# 750 97	750 surface
State Tool	
32. BOP Equipment Type: Annular Preventor Doubte Ram Rotating Head None 33. Comments Shaffer Pressure Control 5m LWS, rig floor ten feet, derrick is 63°, total rig height 73	" montor well
34. Initial Rule 306 Consultation took place on (Bate) 8/12/108 was waived, or is not required. Provide suppor	ation 603A(1)
has been waived or if good faith effort did not result in consultation. PERMIT SUBMITTED TO COGCC PRIOR TO COMPLIANCE WITH RULE 306 CONSULTATION SHALL BE RETI	
I hereby certify that a complete permit package has been sent to the applicable Local Government Designee(s), and to the best of my knowledge, true, correct, and complete.	d all statements made in this form are,
Signed: Print Name: Droven L PDB Title: EPS II Date: 91,000 S Email: 5	LOM Lower, Indolome Etable. co. 45
Based on the information provided hereingthis Application for Permit-to-Drill complies with COGCC Rules and applicable	
COGCC Approved: Date & Jasline Der D. Director of COGCC	Date: 5/11/2.0018
Permit Number: 20086110 Expiratio	n Date: <u>9 / 10 / 2051</u>
00-226200-500	
Provide 48 hour spud notice to	
COGCC field inspector Leslie Melton (970) 375-6419 and	
District Engineer Mark Wel	ma at 976-259-4507
and the second s	





(5-FRUITLANDFORMATIONARCHULETADRILLING(5117918)\CAD\DWC\C3D\MW-5-14U-1\MW-5-74U-1TOPO.DWG

SCALE: HORIZ. 1" = 50' VERT. 1" = 25'

DATE

DATE

DATE

BY

RY

a. B)

REVISIONS

DESCR.

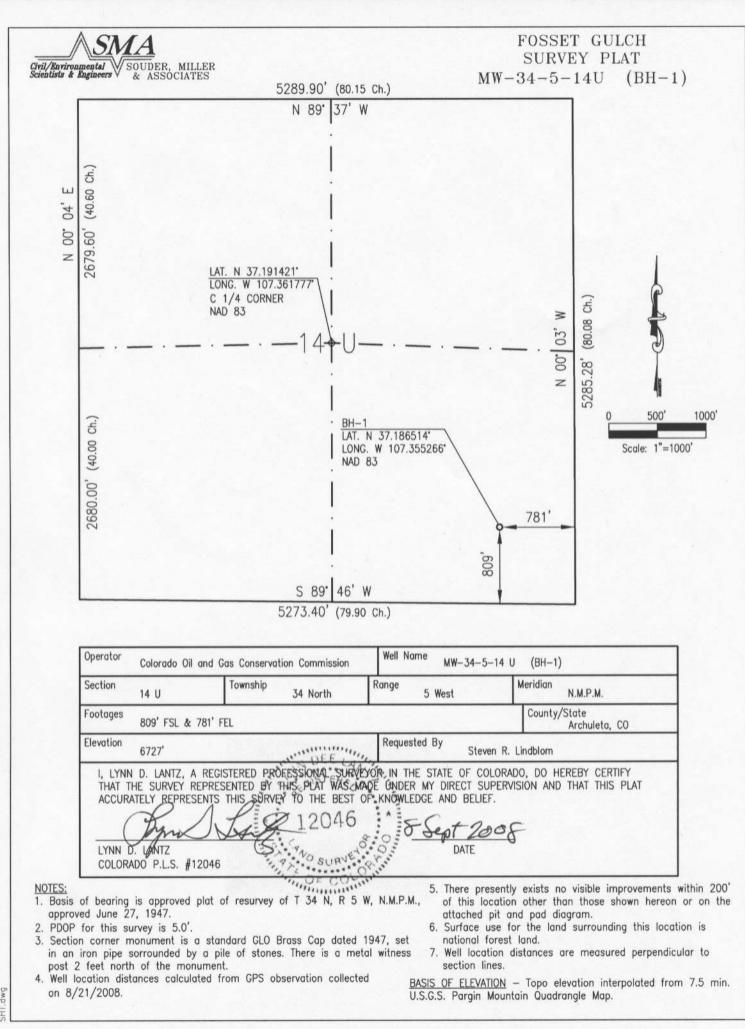
DESCR.

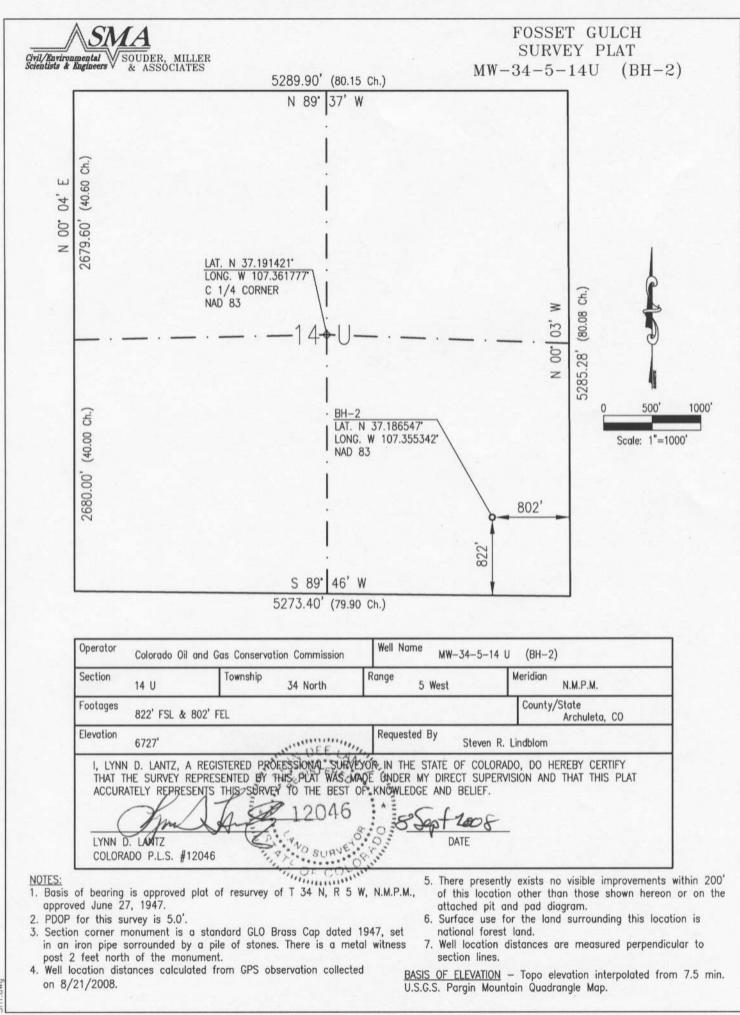
DESCR.

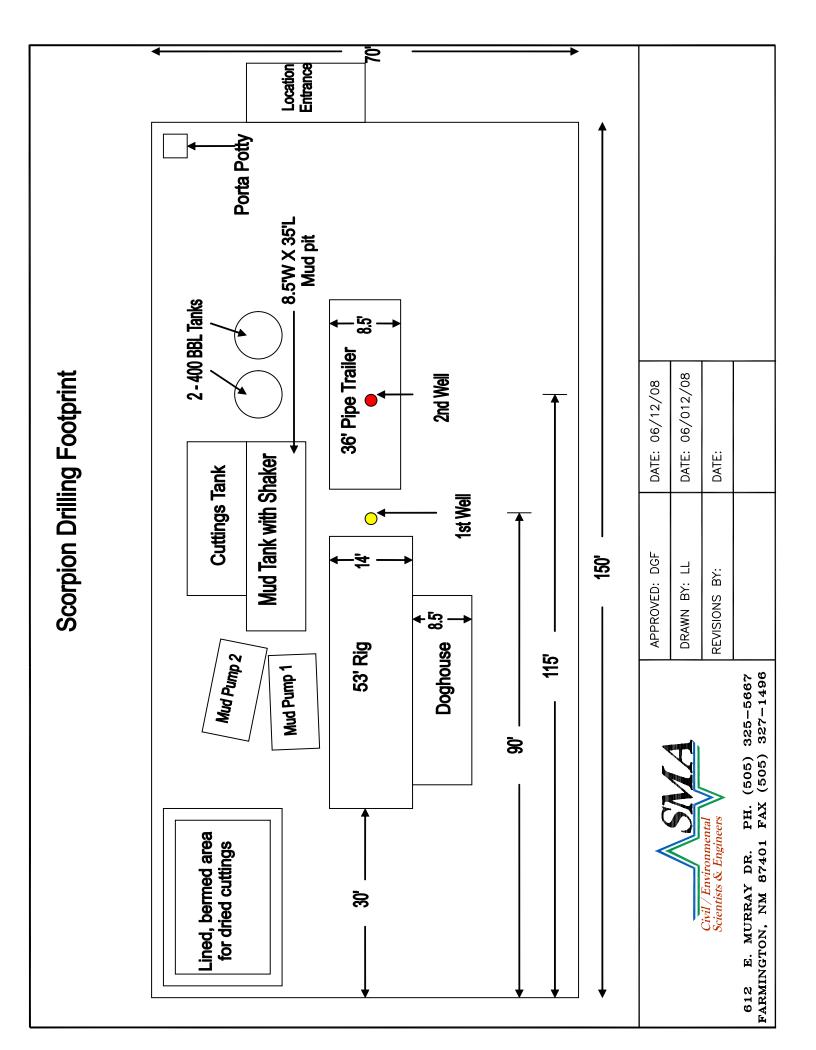
Dise	COGCC FRUITLAND MONITORING PROJECT
	WELL NAME FOSSET GULCH # 1 & 2
	SE/4 SE/4 OF SECTION 14U-T34N-R5W

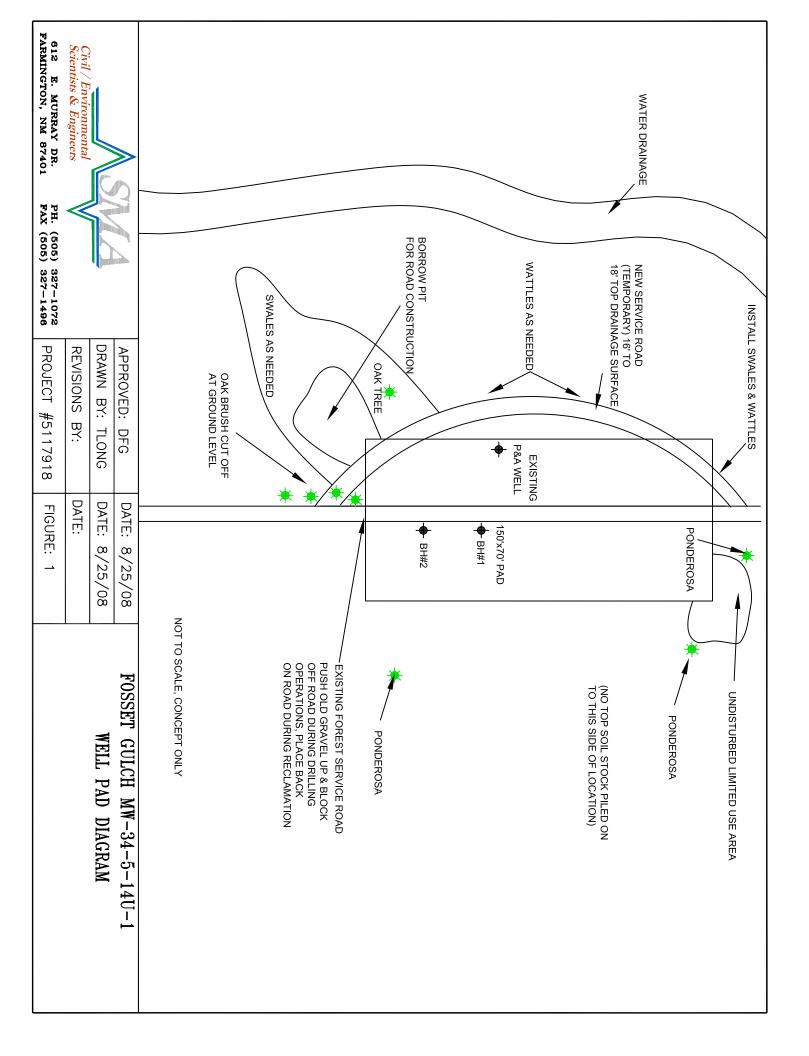
CHECKED <u>csq</u> APPROVED <u>DWM</u> DATE AUGUST, 2008

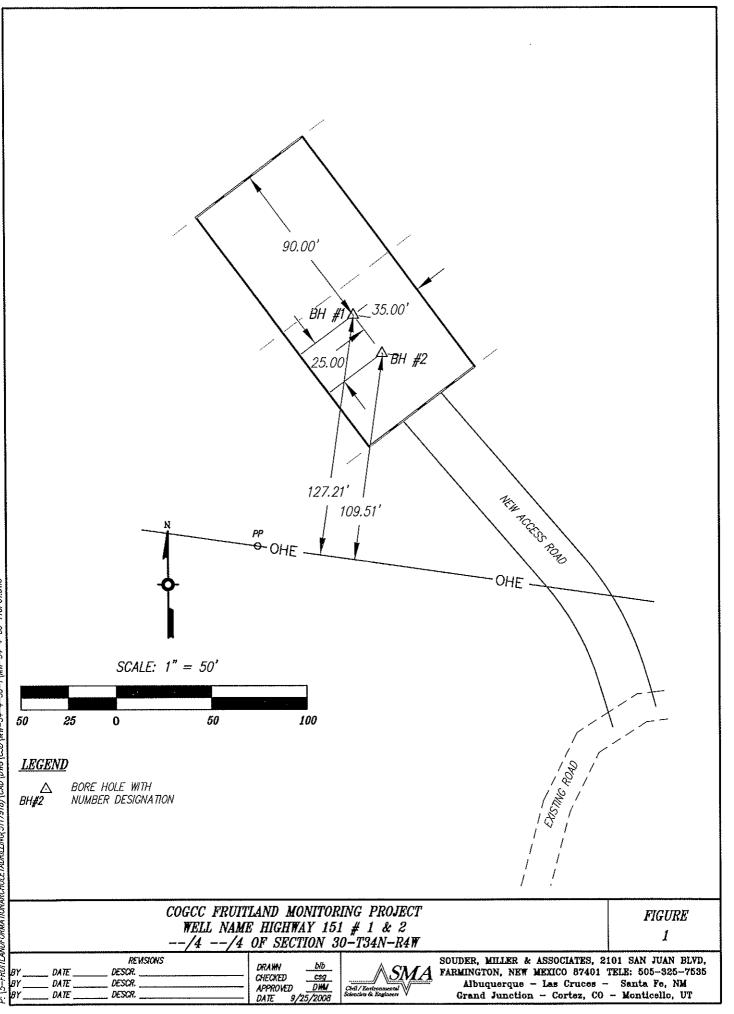
DRAWN

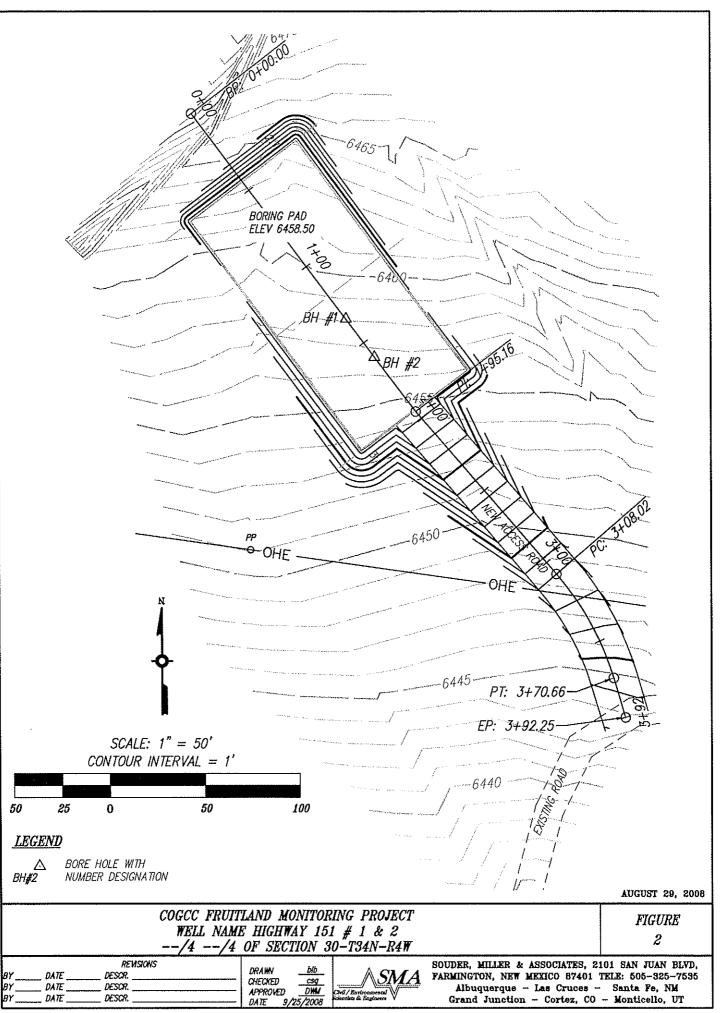

Ыb


SMA

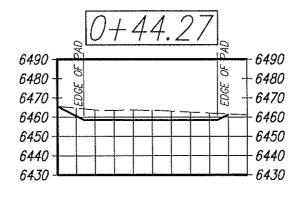

FIGURE 3

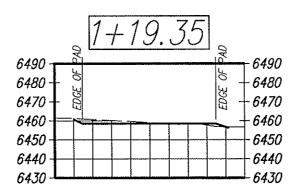

SOUDER, MILLER & ASSOCIATES, 2101 SAN JUAN BLVD, FARMINGTON, NEW MEXICO 87401 TELE: 505-325-7535 Albuquerque - Las Cruces - Santa Fe, NM Grand Junction - Cortez, CO - Monticello, UT

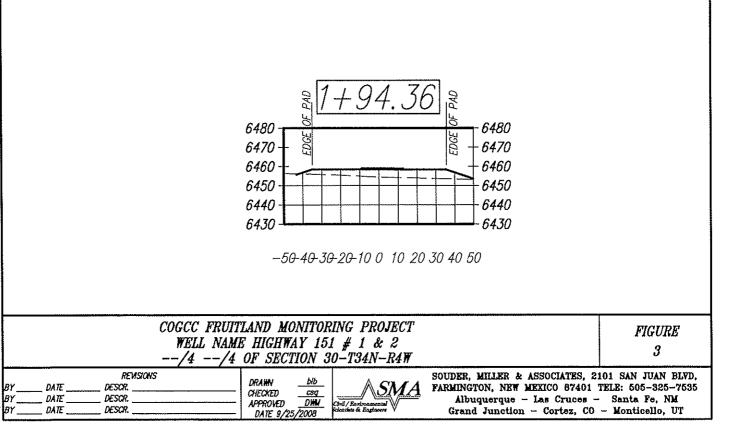

BH2

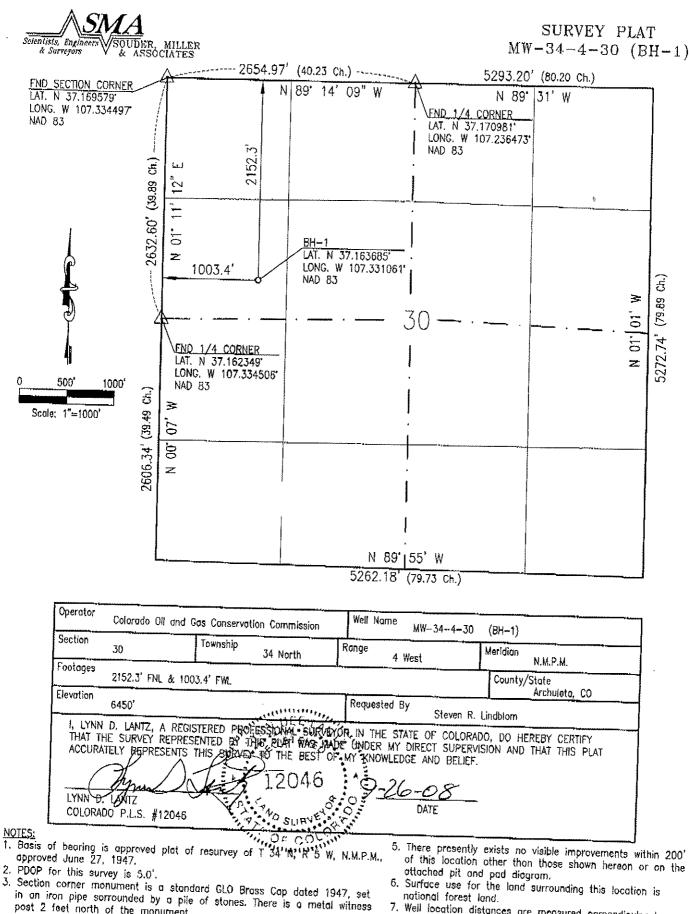


		A BAR					h. Co. 4		LS
ARECEIVED	OCT 2 1 2008	Plug Condecc	APD Orig & 1 Coectilist APD Orig & 1 Copy Form 2A Well location plat Topo map Mineral lesse map	Ministral rease map Surface agrmVSurety 30 Day notice letter Deviated Drilling Plan Exception Location Request Exception Loc Waivers H2S Contingency Plan Federal Dritling Permit	Rng: Instantion: NA Variation: NA Unit Configuration (N2, SE4, etc.)	* # NA \$2,000 Surface Bond \$5,000 Surface Bond \$2,000 Surface Bond \$5,000 Surface Bond \$5	Notifier Number 125 ft. Surface 500 ft. Surface Nell Nell Nell Consultation Ing documentation if consultation I statements made in this form are, <i>L SAT O W/V AP fb/PC . bad A W/A. C S</i>	orders and is hereby approved. Date: 10 / 34 / 300 8	(970) 259-458
26557.00)	OII and Gas Conservation Commission Fax(303)884-2109 1120 Lincoln Street, Suite 801, Denver, Colorado 80203 Phone: (303)884-2109 APPLICATION FOR PERMIT TO:	1. Z Drill, Deepen, Re-enter, Recomplete and Operate 2. TYPE OF WELL 2. TYPE OF WELL 3. TYPE OF WELL 3. OIL GAS 4. COALBED 4. OTHER: MONITOR 5. Substract 5. COMMINGLE ZONES 5. COMMING	lor: COGCC 4. COGCC Operator Numb Souder, Miller & Associates 612 E. Murray Drive gton State: NM Zp: 87401 Denny Foust (SMA Agent) Phone: (505) 325-56 Hwy 151 34-4-30 MW	8. Unit Name (if appl): 001 Name (if appl): 9. Proposed Total Measured Depth: 500 feet Unit Number: 10. QirQtr: SV NW sec: 30 WELL LOCATION INFORMATION NMPM 10. QirQtr: SV NW sec: 30 Twp: 34N Rng: 4W Meridian: NMPM 10. Latitude: N 37.163685 Frans. Longitude: W 107.331061 NMPM 11. Fleid Name: 2152,3 N 10003,4 W N S/S_3/SO 12. Ground Elevation: 6450 13. County: Archuleta X/S_3/SO	Date of Measurement: 08/21/2008 PDOP Reading: 5,0 Instrument Operator's Name: L. Lantz 15. If well is: Directional Horizontal (highty deviated), submit deviated drilling plan. Bottomhole Sec Twp Rng: 15. If well is: Directional Horizontal (highty deviated), submit deviated drilling plan. Bottomhole Sec Twp Rng: 16. If well is: Image: State of Prod Zone: 16. Is is location in a high density area (Rule 603b)? Image: State of Prod Zone: Image: State	Ownership: Fee State Federal Indian Lease Ownership: Fee State Fee Surface Surety ID# es: is the Surface Owner(s) signature on the lease? Yes Yes io: Surface Owner(s) signature on the lease? Yes Yes andard ChClr, Sec, Twp, Rng format enter entire mineral lease description upon which this proposed well No Yes andard ChClr, Sec, Twp, Rng format enter entire mineral lease description upon which this proposed well Surface Bond No Arrest Indian? Z6. Total Arres in Lease. NA Arrest Mineral Lease Line: NA Z6. Total Arres in Lease. NA Arrest Mineral Lease Line: NA Presenting and thing? Yes No Arrest Mineral Lease Line: NA Yes No Yes No Arrest Mineral Lease Line: NA </td <td>Uning Size of Hole Size of Len 10.5 lb 500 ft 67 67 Interval Int</td> <td>ules and applicable COGCC Expiration</td> <td>48 Hour Spud Notice Required: To COGCC field inspector Leslie Melton (970) 375-6419 and distant Engineer Mark Wiems (</td>	Uning Size of Hole Size of Len 10.5 lb 500 ft 67 67 Interval Int	ules and applicable COGCC Expiration	48 Hour Spud Notice Required: To COGCC field inspector Leslie Melton (970) 375-6419 and distant Engineer Mark Wiems (


and the second second			29 X X
PLOG Sond Surety ID COGCC	Attachment Checklist Attachment Checklist Porig & 1 Copy Form 2A Well location plat Topo map Mineral lease map Mineral lease map Surface agrmt/Surety Surface agrmt/Surety 30 Day notice letter Deviated Drilling Plan Exception Location Request Exception Loc Waivers H2S Contingency Plan Federal Drilling Permit	rs Name: L. Lantz Bottombole Sec Twp Ring: Runsa, Bottom Ring: Runsa, Runsa, Bottom Ring: Runsa,	Well Thing documentation if consultation TURNED UNAPPROVED. a all statements made in this form are, a BAC DW/ <i>K bbl re . bald win (2.5 tat fe.</i>) <i>Bate:</i> 10 23 20 Date: 10 23 20 on Date: 10 23 20 <i>Date:</i> 10 20 <i>D</i>
FORM 2 Rev 1205 Rev 120	In the second se	14. GFS Data: Directional Horizonda Entime Directional Horizonda Entime 15. If wells: Directional Horizonda Horizonda Entime Directional Horizonda Entime 16. If wells: Directional Horizonda Horizonda Horizonda Entime Entitle Entime Entitle	22. BOP Equipment Type: Stage Tool Stage Tool 32. Comments: Shaffler pressure control 5m LWS. Rio floor 10 feet. Derrick height 63 feet. Monitor Weil 33. Comments: Shaffler pressure control 5m LWS. Rio floor 10 feet. Derrick height 63 feet. Monitor Weil 34. Comments: Shaffler pressure control 5m LWS. Rio floor 10 feet. Derrick height 63 feet. Monitor Weil 35. Comments: Shaffler pressure control 5m LWS. Rio floor 10 feet. Derrick height 63 feet. Monitor Weil 36. Initial Rue 306 consultation: With Rue 306 consultation 37. Initial Rue 306 consultation: Permit and an exact in consultation. 38. Initial Rue 306 consultation: Permit and an exact in consultation. 10. Interest or 10 coccc Protor to control 5m LWS. Like Point Name: 11. Interest or 10 coccc Protor Destination provided press. 11. Interest or 10 coccc Protor Destination 11. Exact Director of Coccc Rules and an and at statements made in the form are. 11. Interest or 10 coccc Approved: UI U U U 11. Exact Director of Coccc Rules and an and an extra statements made in the form are. 11. Exact Director Issile

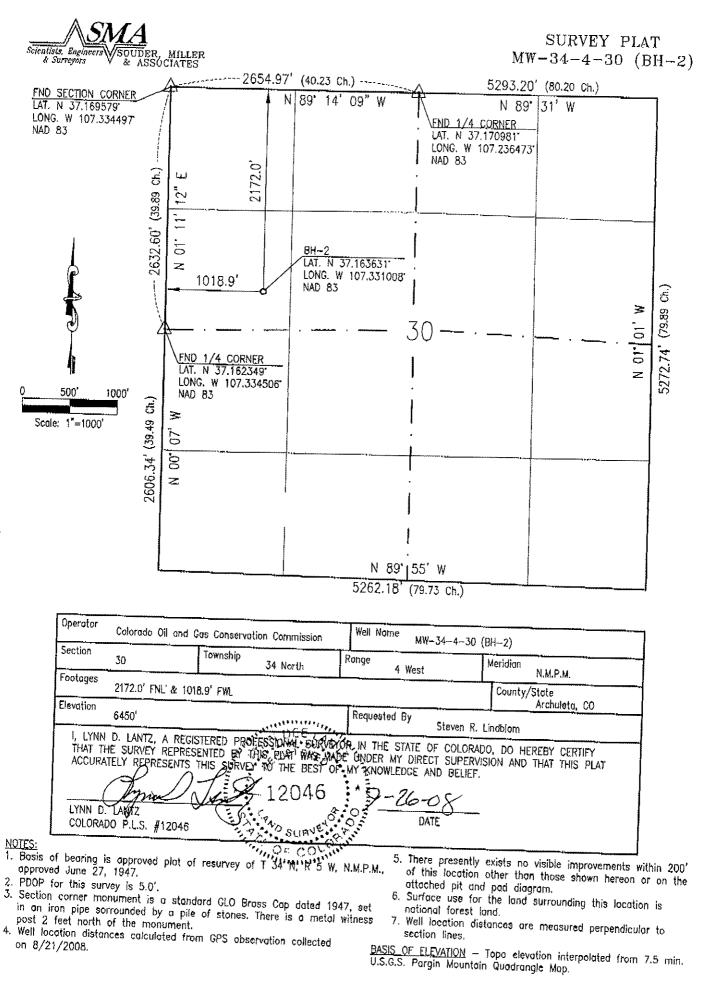

P.\5-FRUITANDFORMATIONARCHULETADRILLING(5117918)\CAD\DHC\C2D\MH-34-4-30-1\MH-34-4-30-110P01.DHG


P. \5-FRUITLANDFORMATTONARCHULETADRILLING(5117918)\CAD\DHC\C3D\MH-34-4-30-1\MH-34-4-30-1TOPO1.DHC

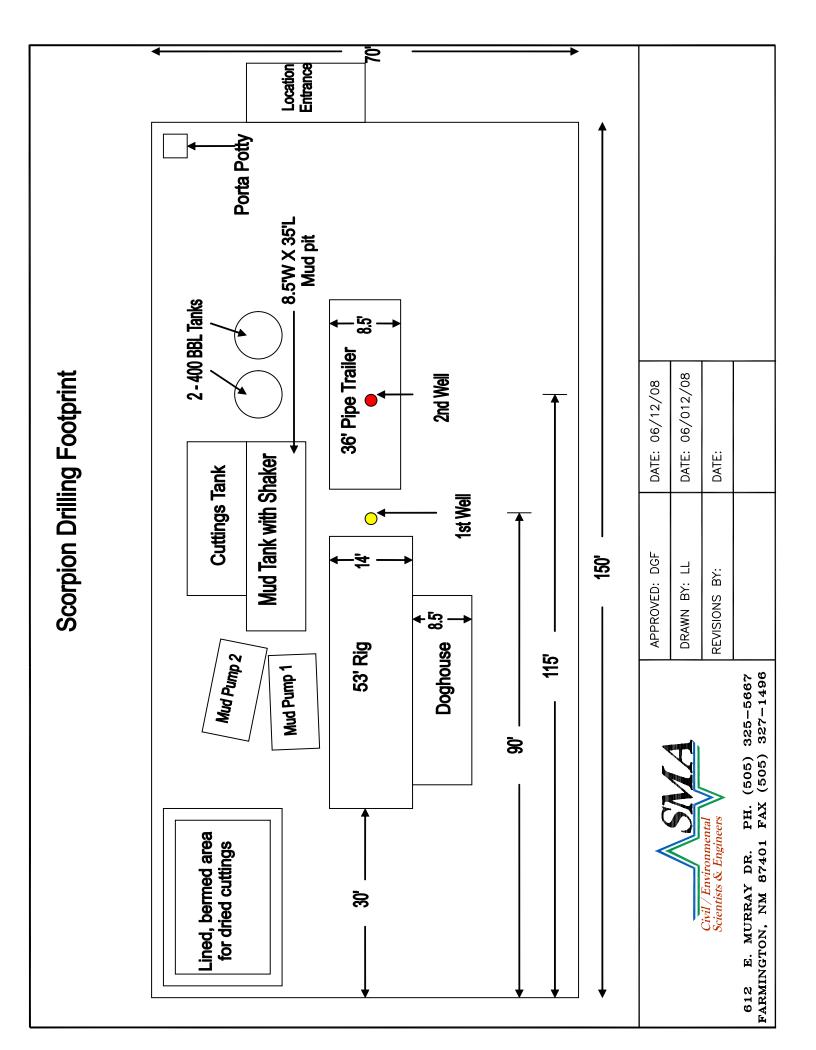

-50-40-30-20-10 0 10 20 30 40 50

-50-40-30-20-10 0 10 20 30 40 50

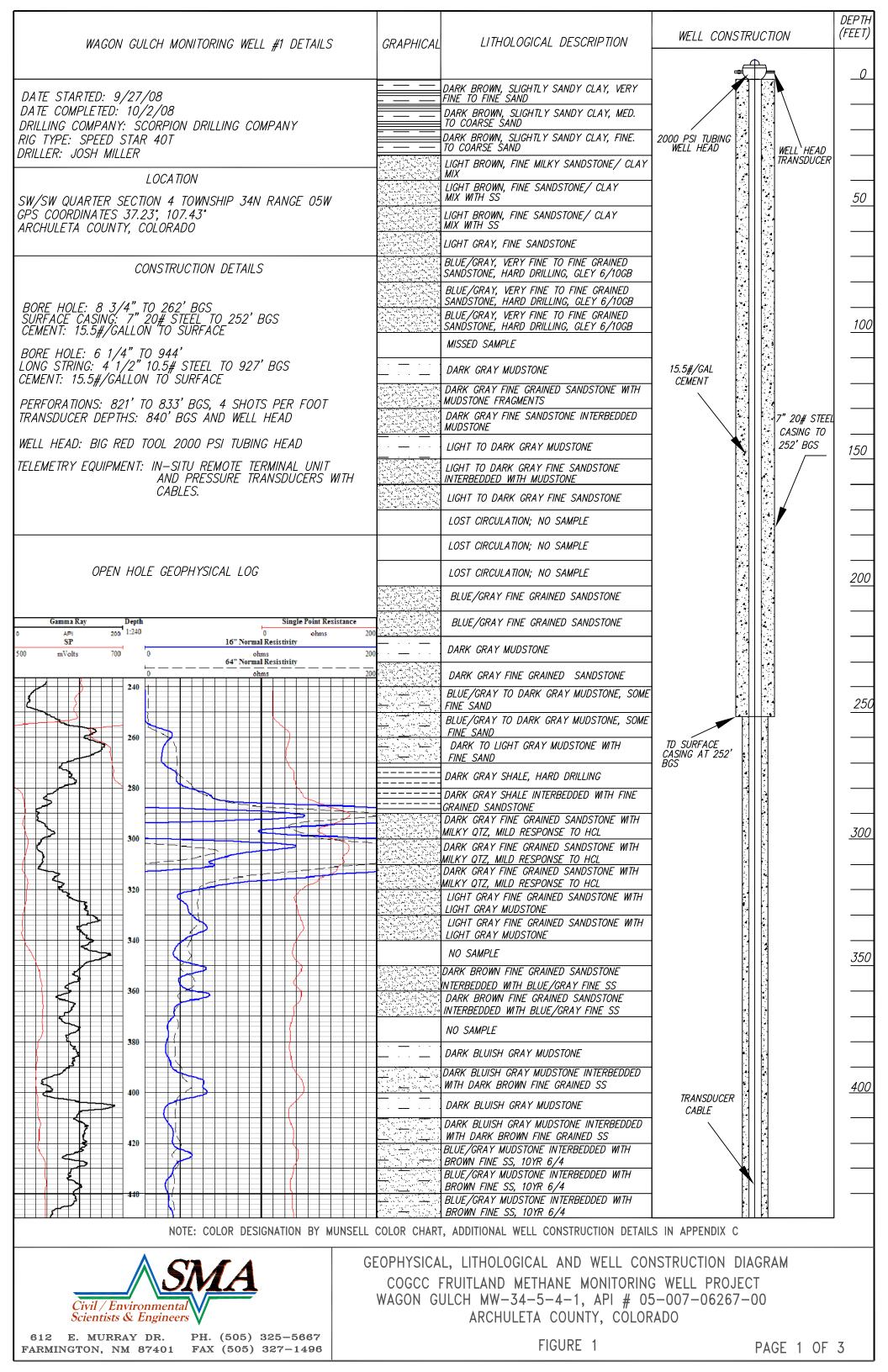
P. \5-FRUITANDFORMATIONARCHULETADRILLING(5117918)\CAD\DHC\C3D\MH-34-4-30-1\MH-34-4-30-110P01.DHC

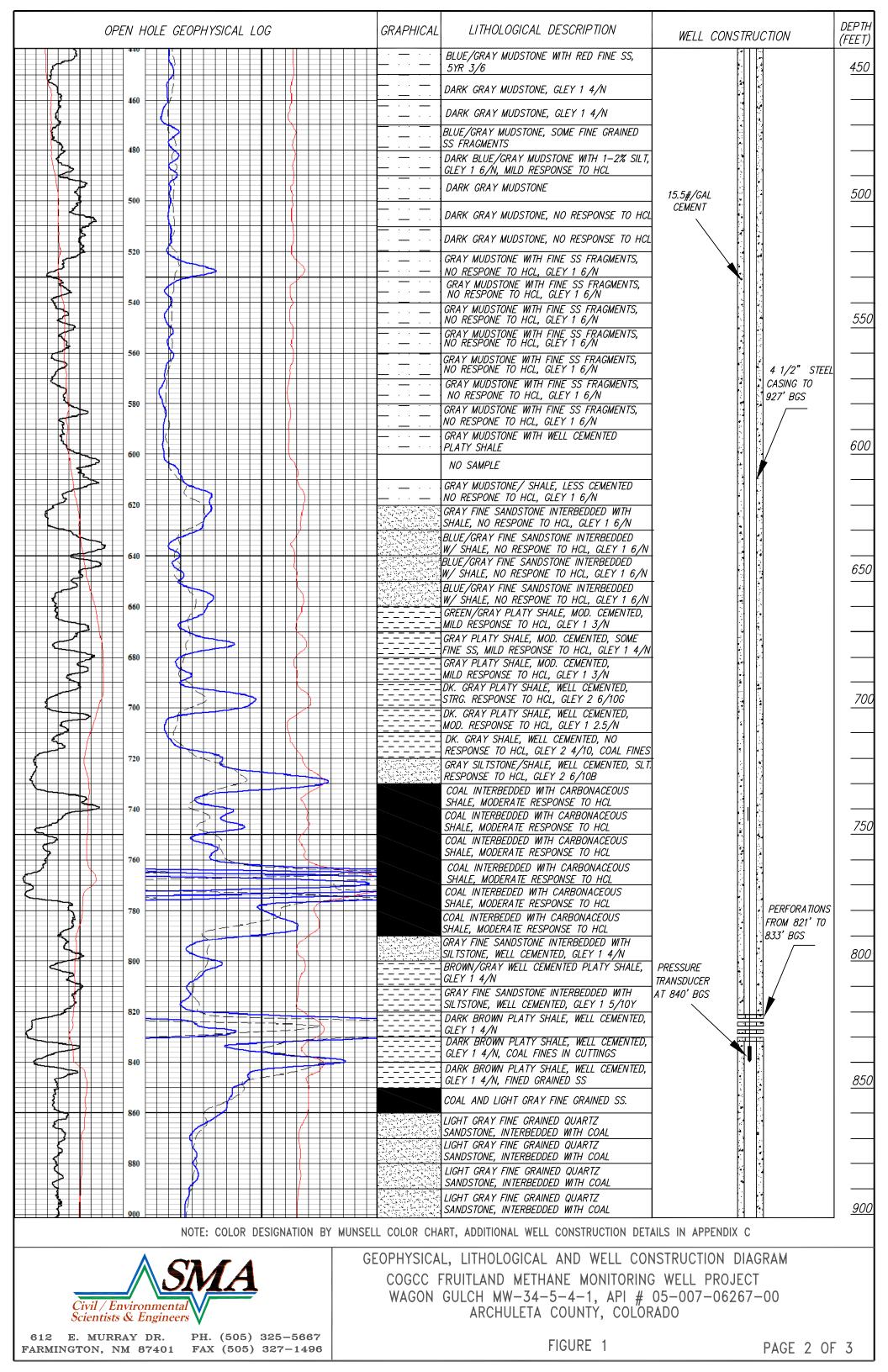


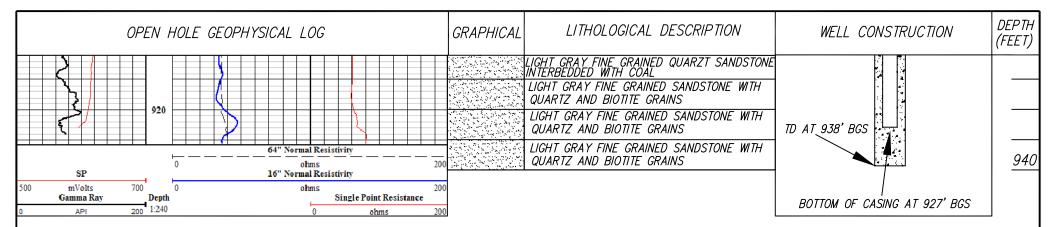
post 2 feet north of the monument. section lines.


4. Well location distances colculated from GPS observation collected on 8/21/2008.

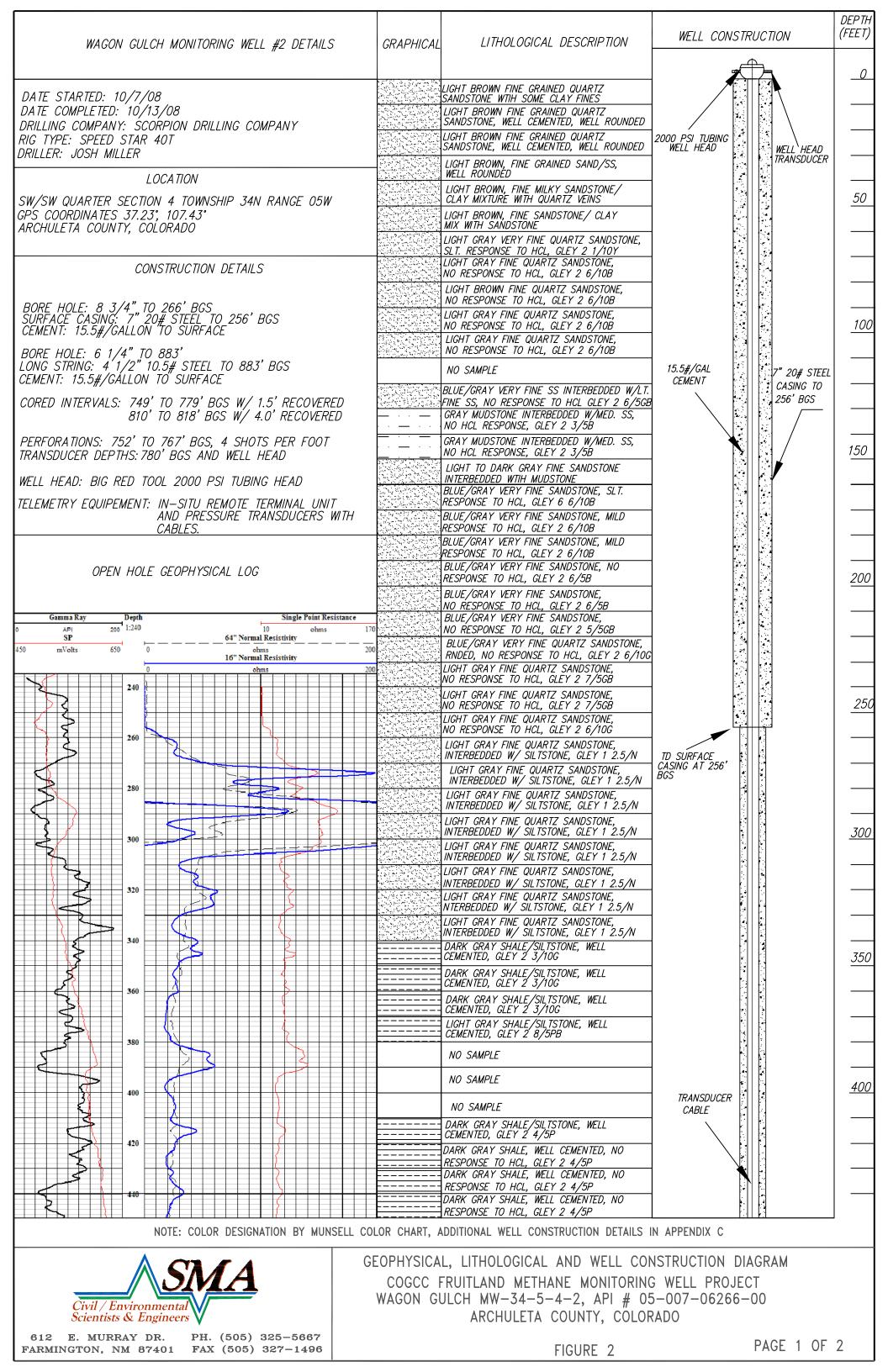
7. Well location distances are measured perpendicular to

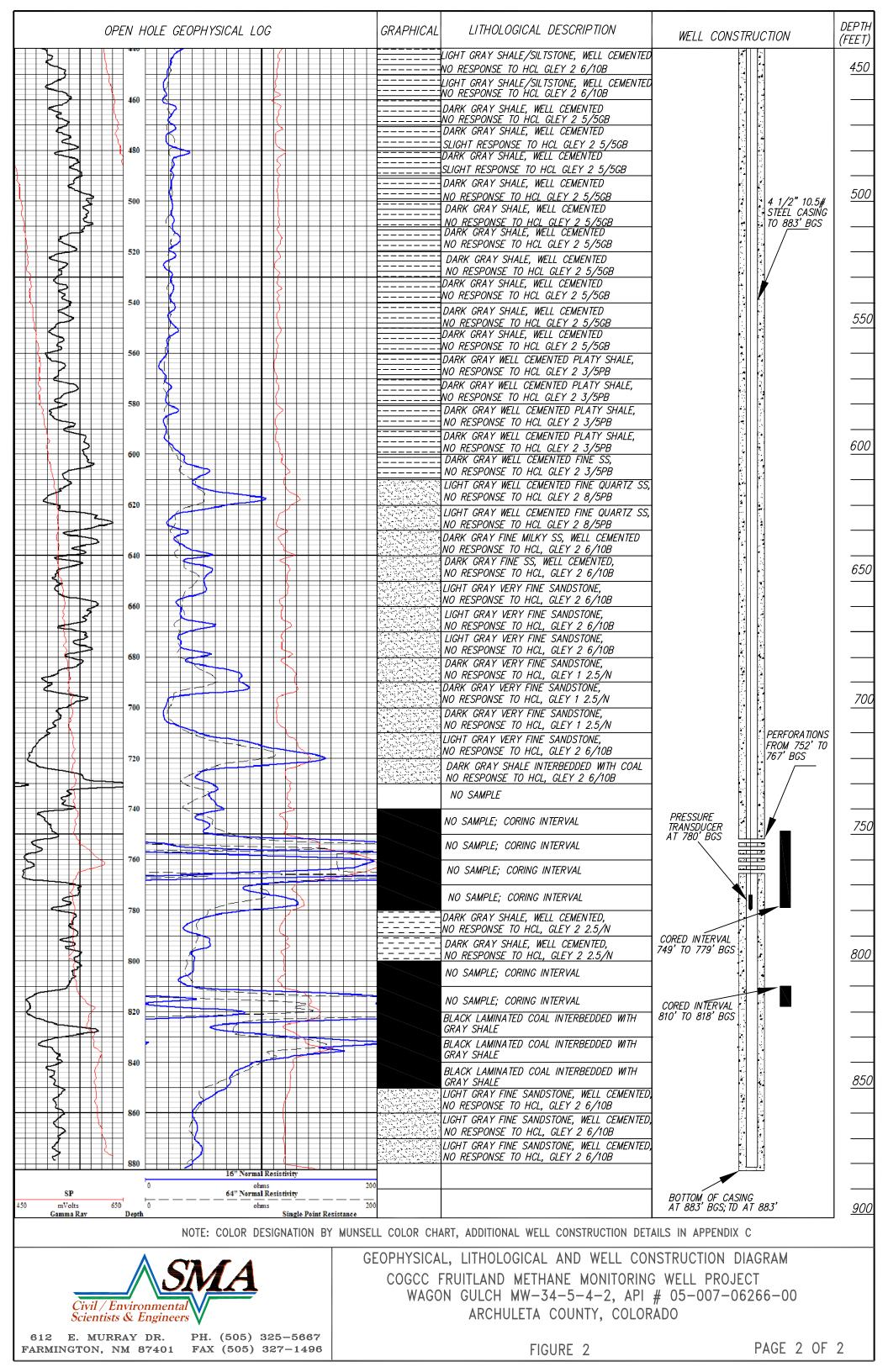

BASIS OF ELEVATION - Topo elevation interpolated from 7.5 min. U.S.G.S. Pargin Mountain Quadrangle Map.

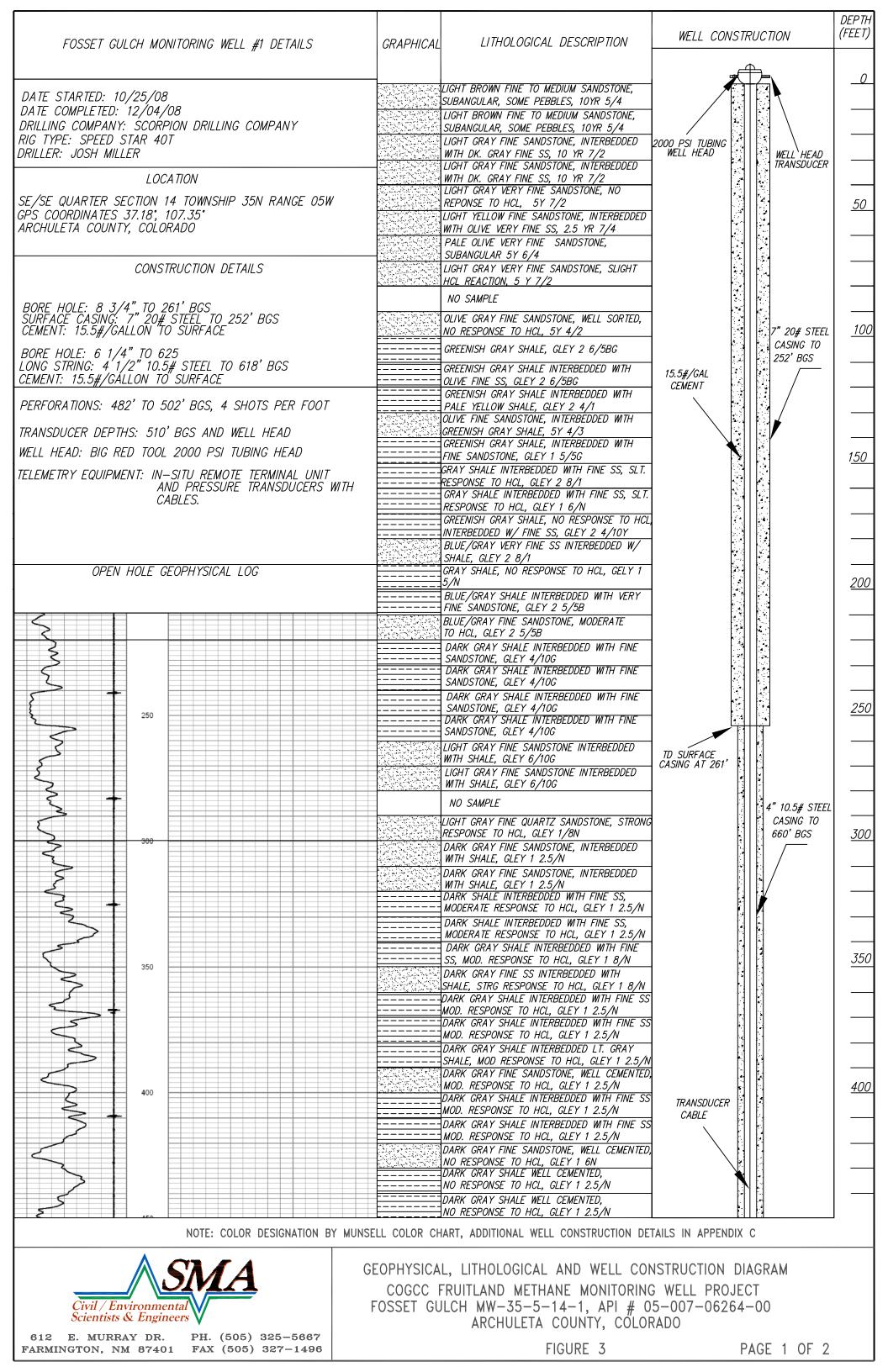


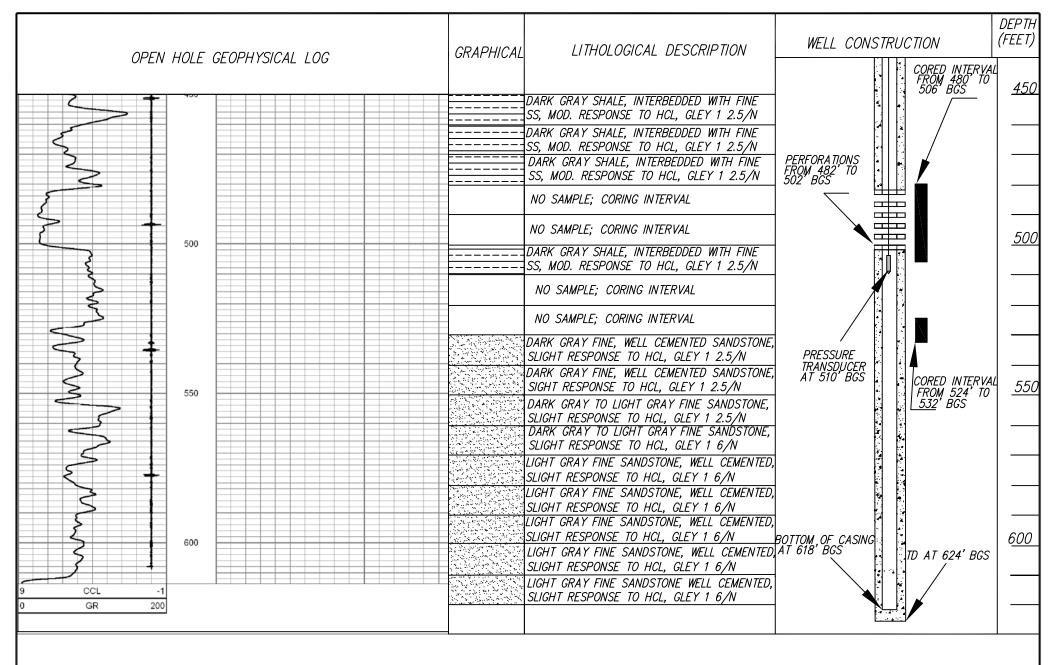

BH 2.dwg

APPENDIX B: GEOPHYSICAL, LITHOLOGICAL & WELL CONSTRUCTION DIAGRAMS


NOTE: COLOR DESIGNATION BY MUNSELL COLOR CHART, ADDITIONAL WELL CONSTRUCTION DETAILS IN APPENDIX C

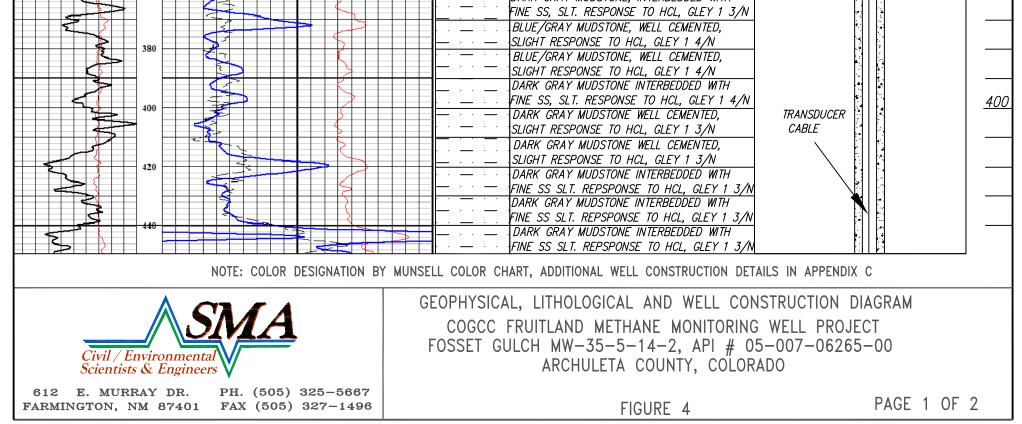



GEOPHYSICAL, LITHOLOGICAL AND WELL CONSTRUCTION DIAGRAM COGCC FRUITLAND METHANE MONITORING WELL PROJECT WAGON GULCH MW-34-5-4-1, API # 05-007-06267-00 ARCHULETA COUNTY, COLORADO


FIGURE 1

PAGE 3 OF 3

NOTE: COLOR DESIGNATION BY MUNSELL COLOR CHART, ADDITIONAL WELL CONSTRUCTION DETAILS IN APPENDIX C



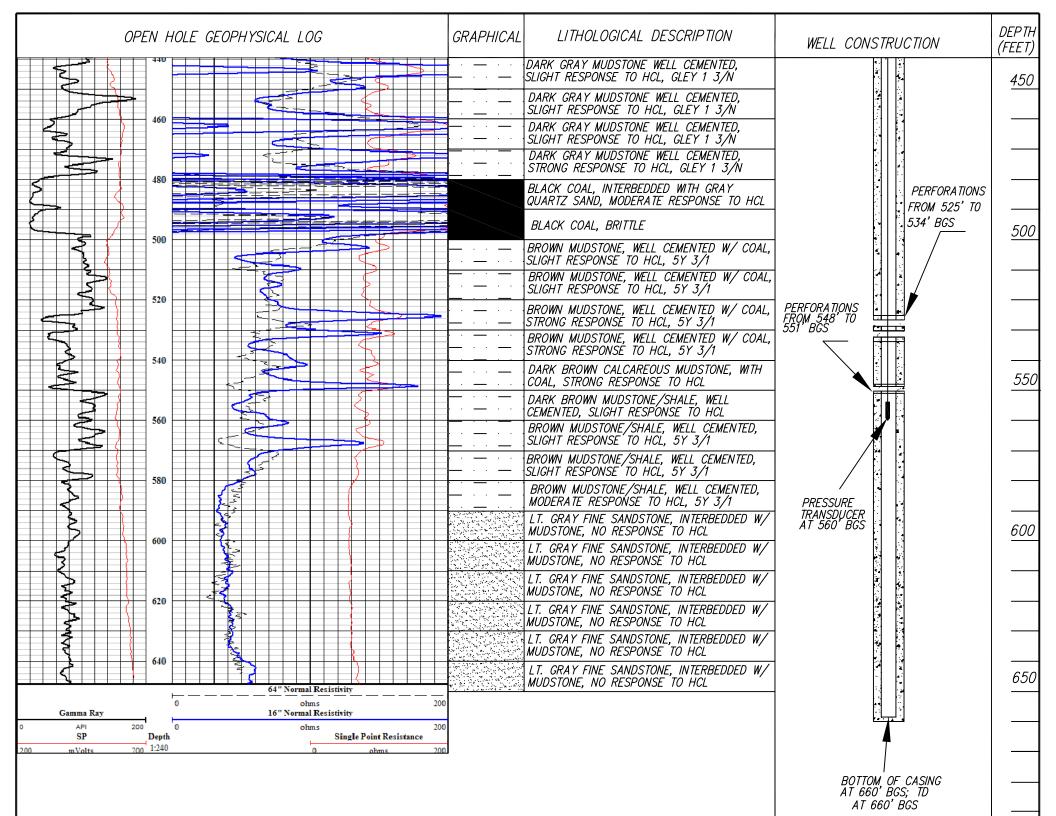
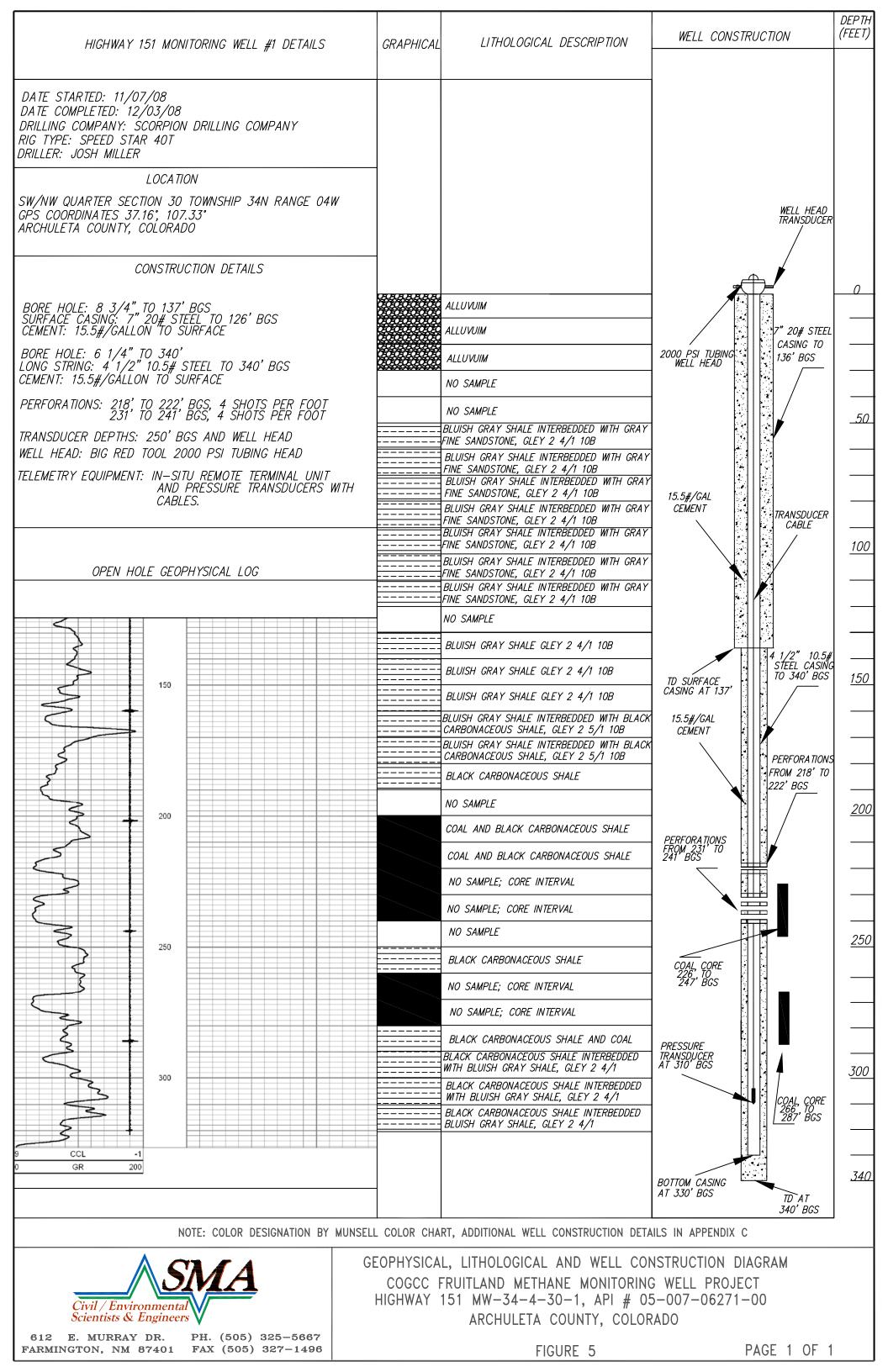

GEOPHYSICAL, LITHOLOGICAL AND WELL CONSTRUCTION DIAGRAM COGCC FRUITLAND METHANE MONITORING WELL PROJECT FOSSET GULCH MW-35-5-14-1, API # 05-007-06264-00 ARCHULETA COUNTY, COLORADO

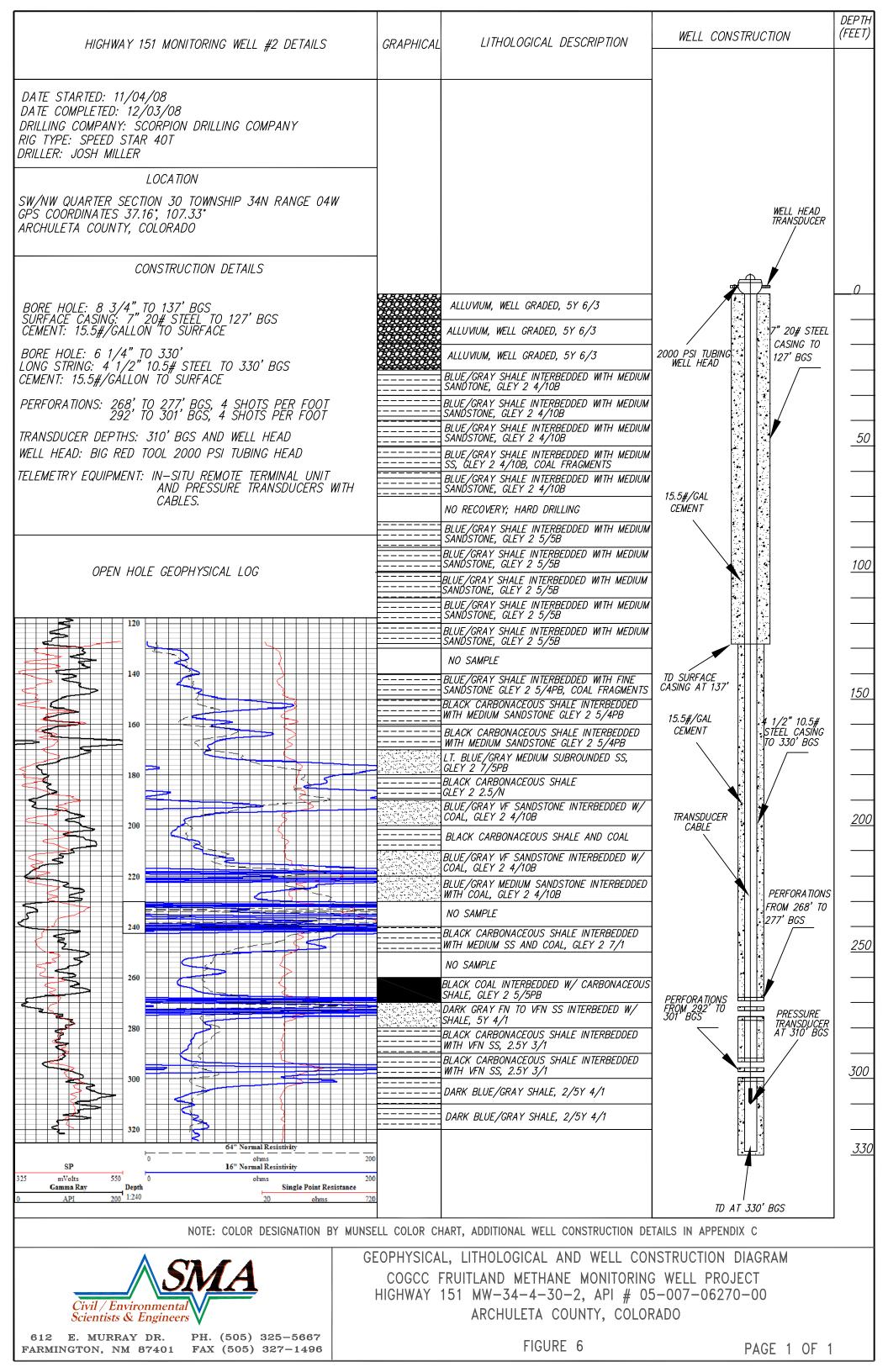
FIGURE 3

PAGE 2 OF 2

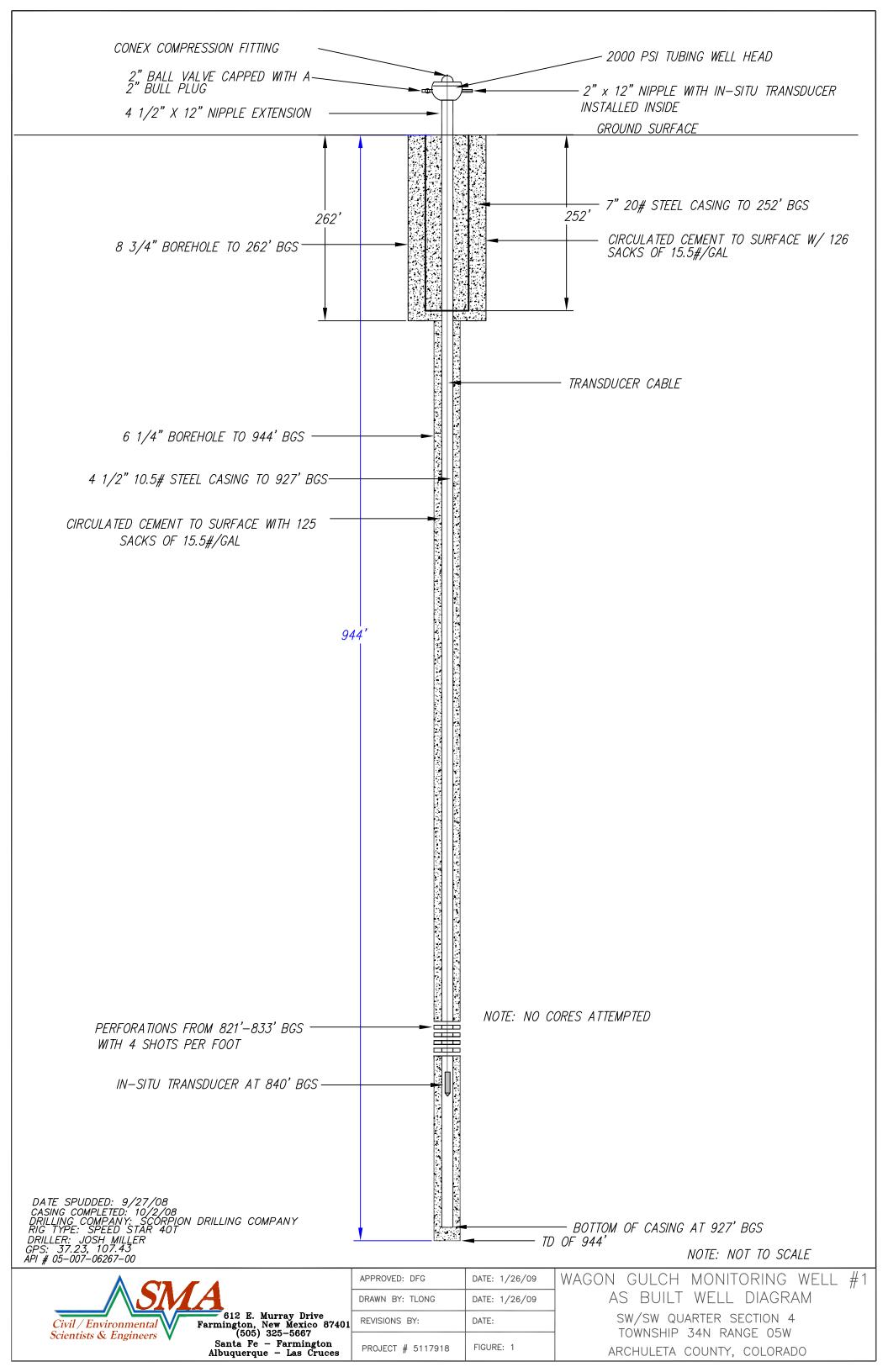
FOSSET GULCH MONITORING WELL #2 DETAILS	GRAPHICAL	LITHOLOGICAL DESCRIPTION	WELL CONSTRUCTION	DEPTI (FEET
ATE STARTED: 10/17/08		ALLUVIUM		0
ATE COMPLETED: 12/04/08		LIGHT BROWN FINE GRAINED SANDSTONE, NO RESPONSE HCL, 2.5Y 6/4		
RILLING COMPANY: SCORPION DRILLING COMPANY G TYPE: SPEED STAR 40T		LIGHT GREEN/GRAY FINE SANDSTONE, NO RESPONSE HCL, GLEY 1 7.10Y	2000 PSI TUBING	
ILLER: JOSH MILLER		LIGHT BROWN, FINE TO VERY FINE SANDSTONE,		
LOCATION SE QUARTER SECTION 14 TOWNSHIP 35N RANGE 05W		NO RESPONSE TO HCL, 2.5 Y 6/3 LIGHT GRAY FN TO VFN SANDSTONE INTERBEDDED W/ BLUE/GRAY SS, 2.5YR 6/2		50
S COORDINATES 37.18°, 107.35° PCHULETA COUNTY, COLORADO		LIGHT GRAY SHALE, NO RESPONSE TO HCL GLEY 1 7/1		
CHOLETA COUNTY, COLONADO		LIGHT GRAY SHALE, NO RESPONSE TO HCL GLEY 1 7/10Y	7" 20# STEEL	
CONSTRUCTION DETAILS		LIGHT GRAY SHALE, NO RESPONSE TO HCL GLEY 1 7/10Y	CASING TO	·
		LIGHT GRAY SHALE, NO RESPONSE TO HCL GLEY 1 7/10Y	2253' BGS	-
ORE HOLE: 8 3/4", TO 266' BGS JRFACE CASING: 7" 20# STEEL TO 253' BGS EMENT: 15.5#/GALLON TO SURFACE		LIGHT GRAY SHALE, NO RESPONSE TO HCL GLEY 1 7/10Y		-
MENT: 15.5#/GALLON TO SURFACE		BLUE/GRAY FINE SANDSTONE. NO RESPONSE		<u> </u>
DRE HOLE: 6 1/4" TO 660 NG STRING: 4 1/2" 10.5# STEEL TO 660' BGS		TO HCL, GLEY 2 5/6PB		-
MENT: 15.5#/GALLON TO SURFACE		GRAY FINE SANDSTONE, INTERBEDDED WITH SHALE GLEY 1 5/N	15.5#/GAL CEMENT	
RFORATIONS: 525', TO 534', BGS, 4 SHOTS PER FOOT 548' TO 551' BGS, 4 SHOTS PER FOOT		GRAY SHALE INTERBEDDED W/ PALE YELLOW FINE SS, GLEY 1 6/N		_
548' TO 551' BGS, 4 SHOTS PER FOOT ANSDUCER DEPTHS:560' BGS AND WELL HEAD		GRAY FINE GRAINED SANDSTONE, SUBANGULAR, CEDAR FIBER PRESENT, GLEY 1 5/N		
LL HEAD: BIG RED TOOL 2000 PSI TUBING HEAD		GREEN/GRAY MED. SANDSTONE, SUBANGULAR, MOD. RESPONSE TO HCL, GLEY 2 7/1		15
EMETRY EQUIPMENT: IN-SITU REMOTE TERMINAL UNIT		OLIVE MED. SANDSTONE, SUBANGULAR,		-
AND PRESSURE TRANSDUCERS WITH		MOD. RESPONSE TO HCL, 5Y 5/3 GREEN/GRAY MED. SANDSTONE, SUBANGULAR,		_
CABLES.		NO RESPONSE TO HCL, GLEY 2 7/1 GREEN/GRAY MED. SANDSTONE, SUBANGULAR,		-
		NO RÉSPONSE TO HCL, GLEY 2 7/1 GREEN/GRAY MED. SANDSTONE, SUBANGULAR,		-
		NO RÉSPONSE TO HCL, GLEY 2 7/1		_
OPEN HOLE GEOPHYSICAL LOG		GREEN/GRAY MED. SANDSTONE, SUBANGULAR, NO RESPONSE TO HCL, GLEY 2 7/1		20
		LIGHT GRAY FINE SANDSTONE, SUBANGULAR, NO RESPONSE TO HCL, GLEY 1 4/5G		
2		DARK GRAY FINE SANDSTONE, SUBANGULAR,		-
220		MOD. RESPONSE TO HCL, GLEY 2 4/5P DARK GRAY FINE SANDSTONE, SUBANGULAR,		_
		NO RESPONSE TO HCL, GLEY 2 4/5P DARK GRAY MUDSTONE INTERBEDDED W/ FINE		_
240		SS, NO RESPONSE TO HCL, GLEY 1 3/N		_
		LIGHT GRAY MUDSTONE INTERBEDDED W/ FINE SS, NO RESPONSE TO HCL, GLEY 1 5/N		2
		LIGHT GRAY MUDSTONE INTERBEDDED W/ FINE SS, NO RESPONSE TO HCL, GLEY 1 5/N	4.5" 10.5# STEE	EL
		LIGHT GRAY FINE TO MED. QUARTZ SS, MOD. RESPONSE TO HCL, GLEY 1 6/N	TD SURFACE CASING TO CASING AT 253' 600' BGS	
		LIGHT GRAY FINE TO MED. QUARTZ SANDSTONE		_
		TO HCL, GLEY 1 6/N DARK GRAY MUDSTONE, MODERATE RESPONSE		_
		TO HCL, GLEY 1 5/N DARK GRAY MUDSTONE, INTERBEDDED WITH		_
300		FINE SS, MOD. RESPONSE TO HCL, GLEY 1 5/N		3
		DARK GRAY MUDSTONE, INTERBEDDED WITH FINE SS, MOD. RESPONSE TO HCL, GLEY 1 3/N		
		DARK GRAY MUDSTONE, INTERBEDDED WITH FINE SS, NO RESPONSE TO HCL, GLEY 1 3/N		
320		DARK GRAY MUDSTONE, WELL CEMENTED,		-
		NO RESPONSE TO HCL, GLEY 1 3/N DARK GRAY MUDSTONE, WELL CEMENTED,		-
340		NO RESPONSE TO HCL, GLEY 1 3/N DARK GRAY MUDSTONE, INTERBEDDED WITH		-
		FINE SS, STG. RESPONSE TO HCL, GLEY 1 3/N		<u>3</u> 3
360		DARK GRAY MUDSTONE, INTERBEDDED WITH FINE SS, SLT. RESPONSE TO HCL, GLEY 1 3/N		
		DARK GRAY MUDSTONE, INTERBEDDED WITH	1 111	

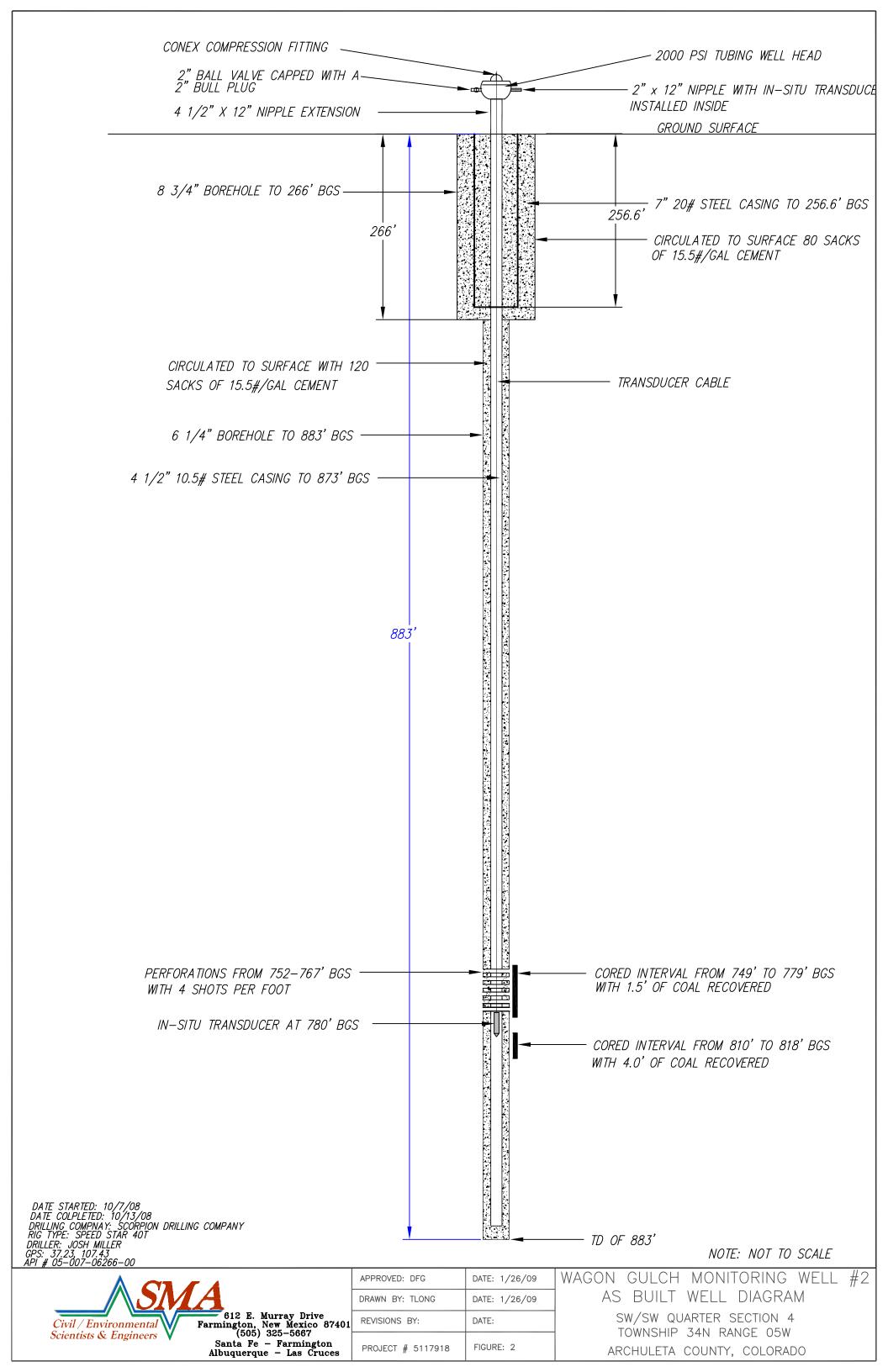
700

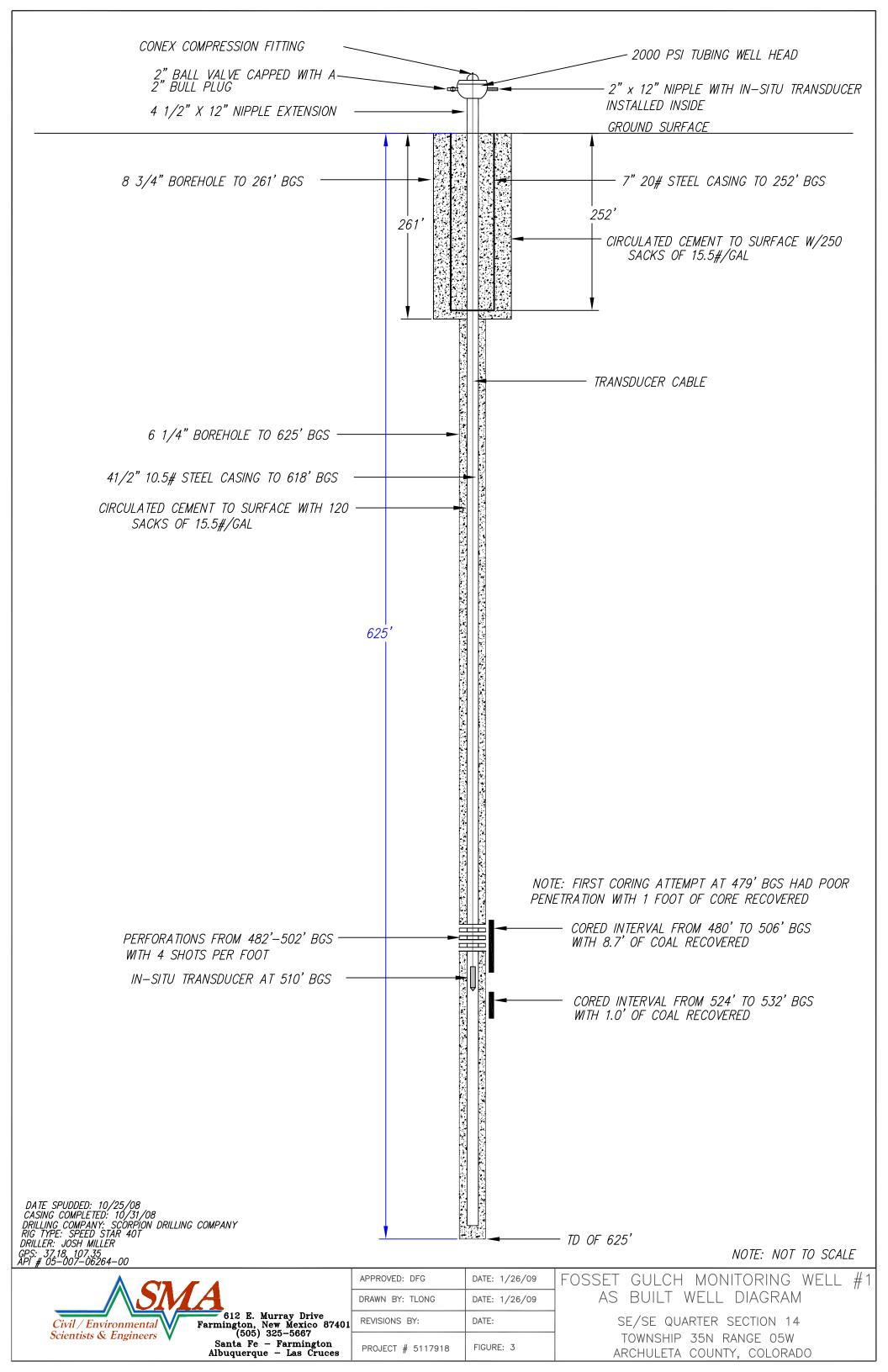

NOTE: COLOR DESIGNATION BY MUNSELL COLOR CHART, ADDITIONAL WELL CONSTRUCTION DETAILS IN APPENDIX C

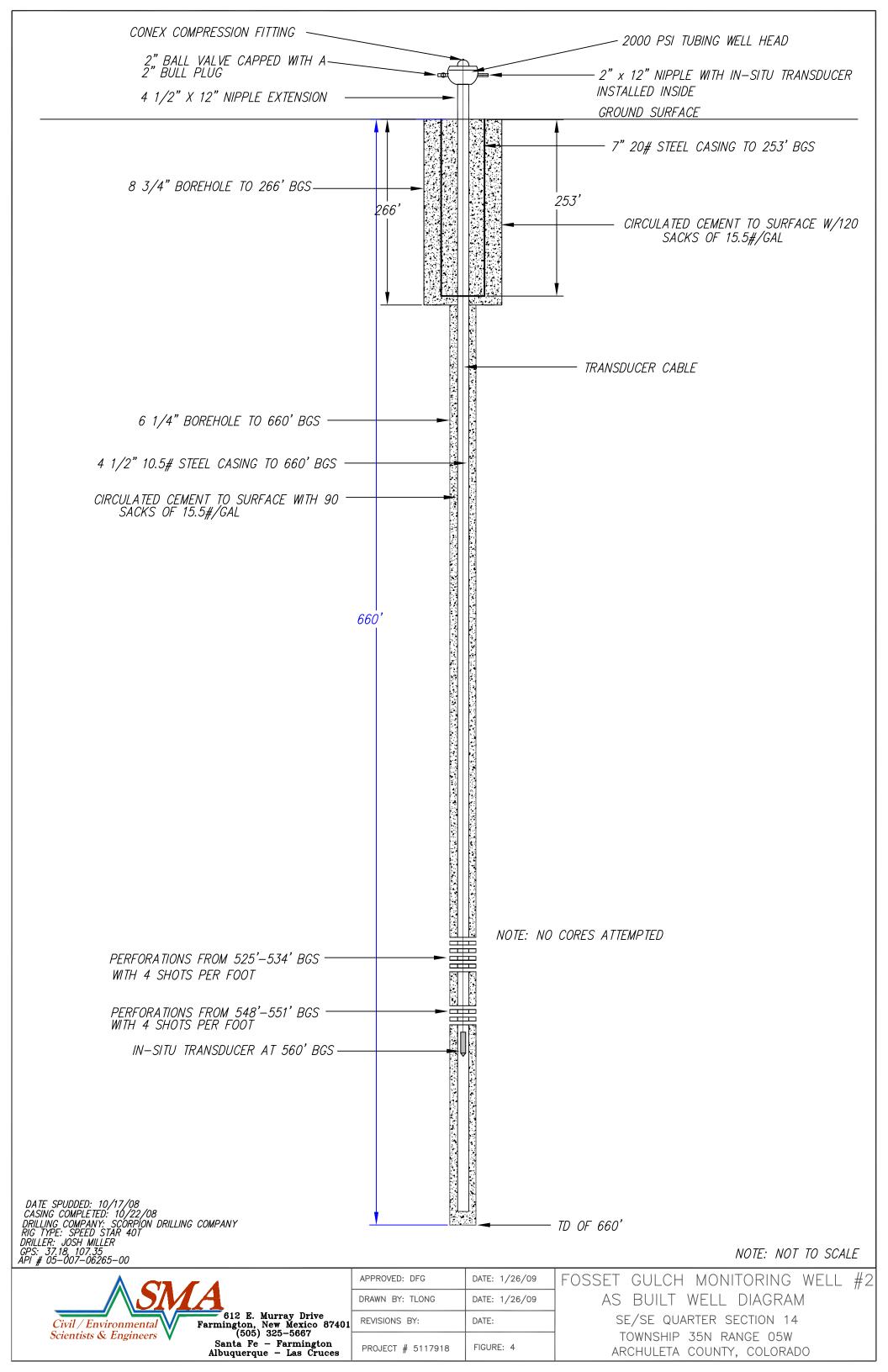


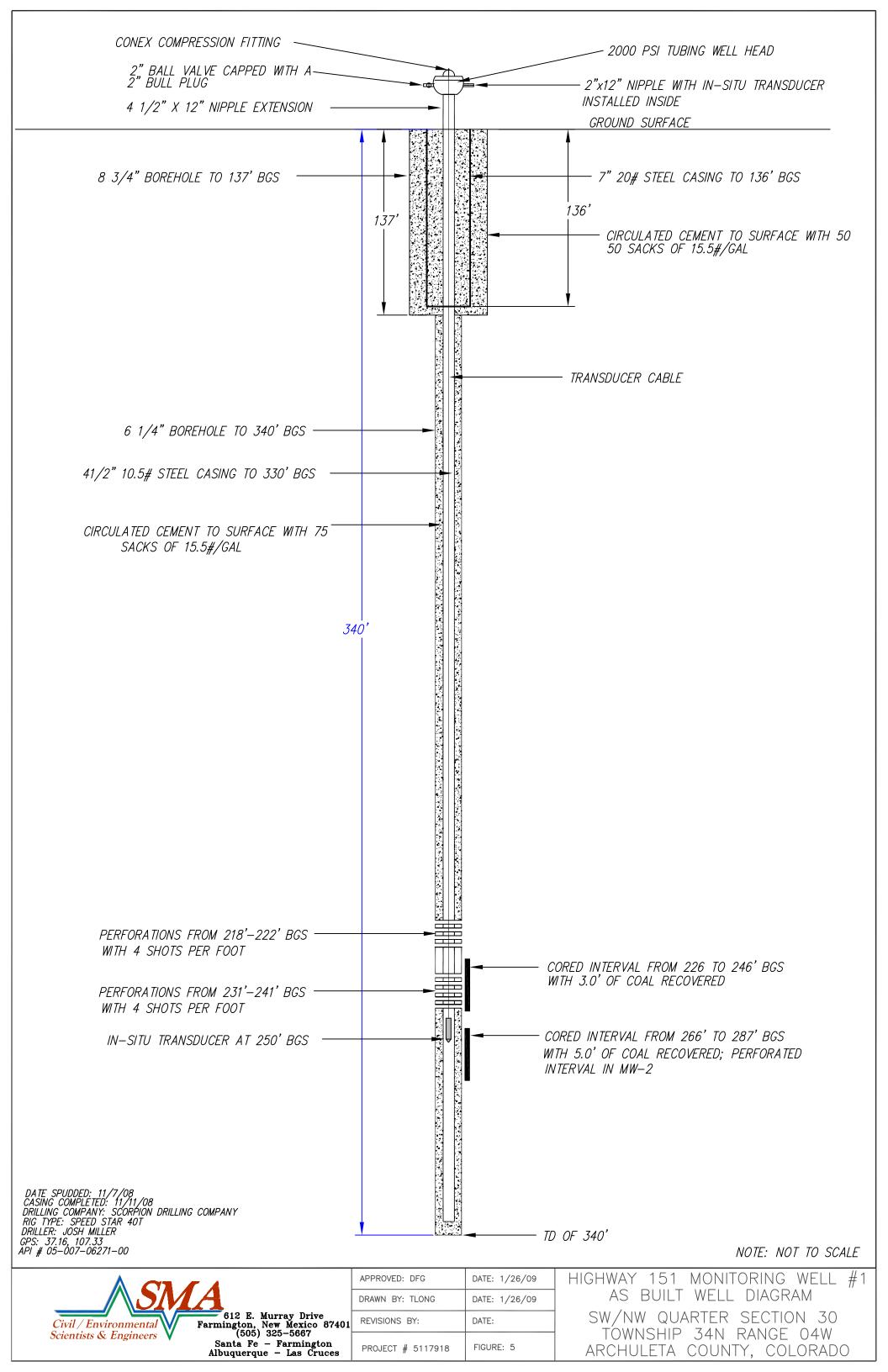
GEOPHYSICAL, LITHOLOGICAL AND WELL CONSTRUCTION DIAGRAM COGCC FRUITLAND METHANE MONITORING WELL PROJECT FOSSET GULCH MW-34-5-4-2, API # 05-007-06265-00 ARCHULETA COUNTY, COLORADO

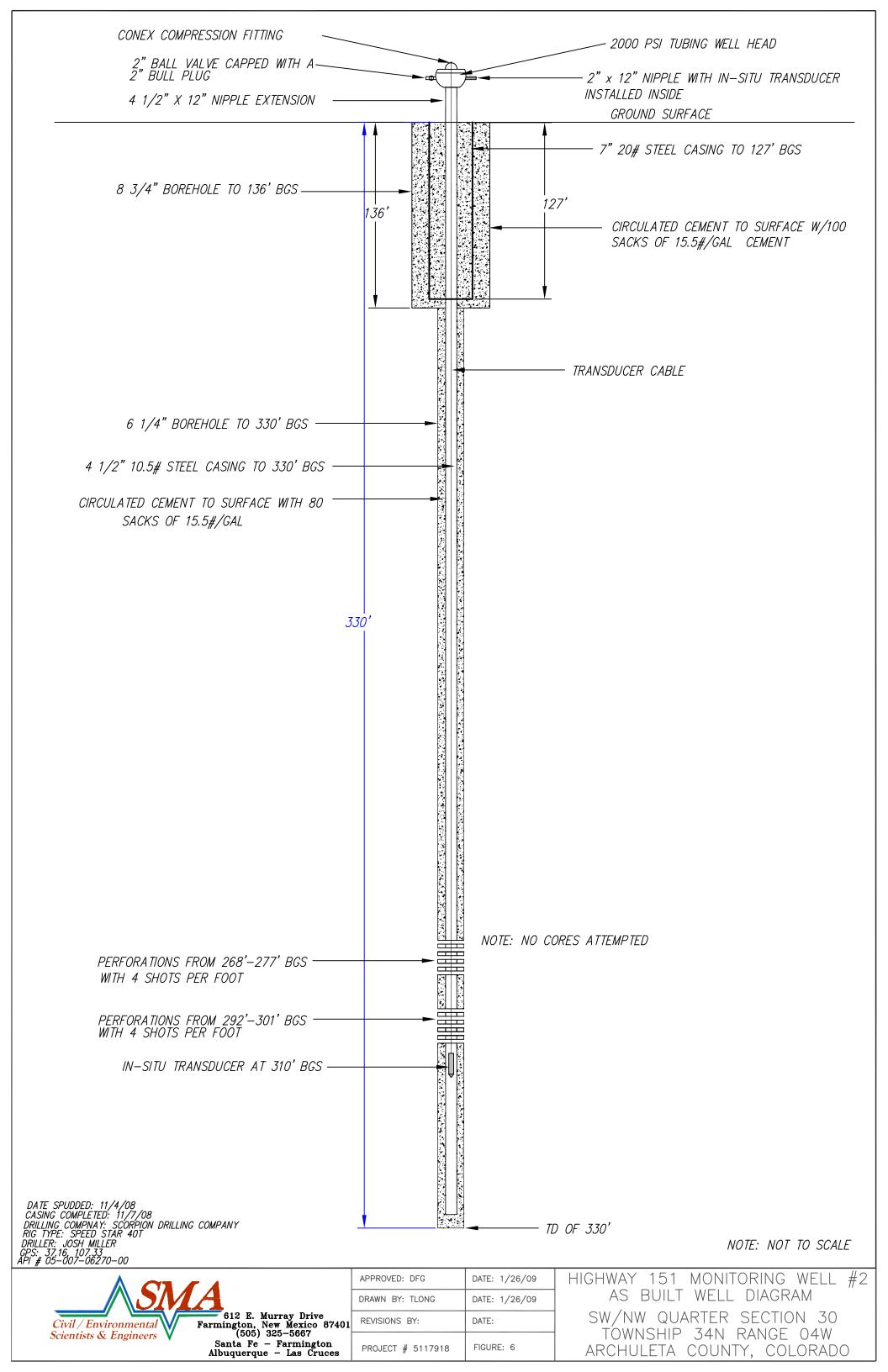

FIGURE 4

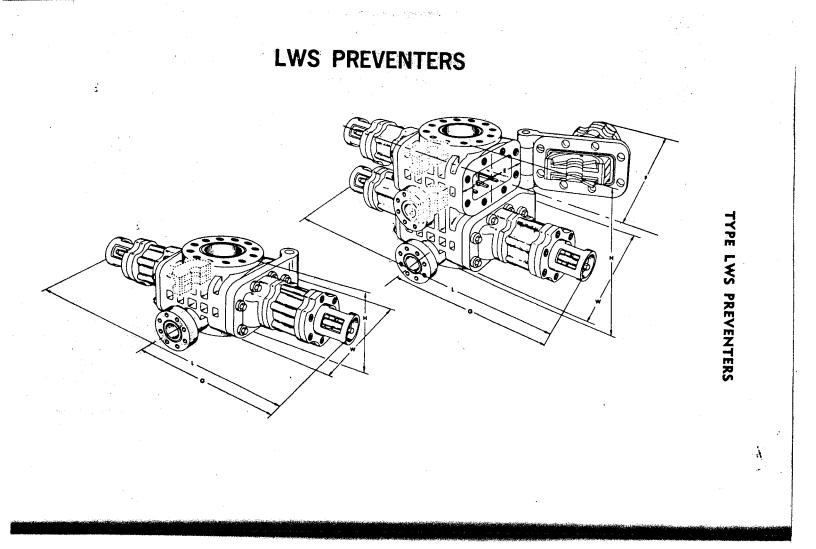

PAGE 2 OF 2






APPENDIX C: AS BUILT WELL DIAGRAMS





APPENDIX D: BOP DIAGRAM

DIMENSIONAL DATA

	PREVENTERS WITH MANUAL LO									AL LOCI	(S			F	G Door			
							D Center	E	Open	Open								
6 :	Working	Test	Vertical		1407.001	Stu	dded	Fla	inged	Stu	dded	Flar	Flanged		Center to	to Change	to Change	Max. Ram
Size Inches	Pressure PSI	Pressure PSI	Bore Inches	Length Inches	Width Inches	Single	Double	Single	Double	Single	Double	Single	Double	Front Inches	Rear Inches	Rams Inches	Rams Inches	Size Inches
4%	10,000	15,000	41/18	42%	22	825*				15%*				10%	11%	131/4	24	21/4
6	3,000	6,000	71/18	58	21%		2,600	1,600	2,830		26¼	26%	36%	9%	121/8	21	34	5%
6	5,000	10,000	7%	58	21%		3,000	1,600	3,340	13%	27%	27%	38%	9%,	12%	21	34	5%,
7 %	15,000	22,500	7 ½	74¾	31		11,200	6,400	12,150		431/2	37%	59%	13%	17%	19%	44	5%
8	3,000	6,000	9	78%	25%		5,300		5,700		29%		41%	11%	14%	23	46	7
8	5,000	10,000	9.	79½	25¾	····· `	5,300		5,900		291/2		45½	11%	14%	23	46	7
9	10,000	15,000*	9	86¼	35	5,8001		6,860		201/2		371/4		14¼	20%	31	50	7
10	3,000	6,000	11	72%	25%	2,400	4,500	2,700	4,800	14%	29%	27%	42	11%	14%	21	42	8%
10	5,000	10,000	11	89%	28%	5,600	7,650	6,600	8,600	17	33 `	34%	. 50%	12%	16	29½	49%	8%
11	10,000	15,000	11	90%	30%	•••••	11,175	6,475	12,950	· · · · · ·	44%	39½	63%	121/8	17%	37	50%	8%
12	3,000	6,000	13%	921/4	30%	4,300	7,500	5,000	8,200	19%	34½.	30%	48	13%	17%	27	51%	10%
13%	5,000	10,000	13%	92%	32%	5,500	9,500	6,250	11,050	25%	36	33%	49%	14%	17%	31	53¾	10%
13%	10,000	15,000	13%	129	421/8		21,790	15,150	24,150	.27	46	45	64	18	24%	41	71	10¾
13%	10,000	(New D	Design	Prevent	er—Se	e Your S	Shaffer F	Represen	tative									· .
16	3,000	4,500	16%	106%	36%	`	8,500		10,256		35		50%	16½	20%	36	59%	13%
16%	5,000	10,000	16%	134	40	11,100	22,350	12,900	24,150	25	50	42½	67½	18	22	41	76	13%
20	2,000	3,000	21%	127	40%	8,100	16,320	9,300	17,600	221/2	471/2	37%	62%	17%	23%	40½	70	16
20	3,000	4,500	21%	127	40%	. 8,400	16,400	10,200	18,350	23%	47%	42%	67%	17%	23%	401/2	70	16

APPENDIX E: GEOPHYSICAL LOGS

APPENDIX F: COAL DESPRPTION ANALYSIS

Final Report Reservoir Property Assessment

Souder, Miller & Associates MW-34-5-4 Fruitland Coals San Juan Basin Archuleta County, Colorado

Submitted to: Mr. Denny Foust Souder, Miller & Associates 612 East Murray Drive Farmington, NM 87499

Mr. Steven Lindblom Colorado Oil and Gas Conservation Commission 1120 Lincoln Street, Suite 801 Denver, CO 80203

> Prepared by: Yi Wang Weatherford Laboratories Project 41300

> > July 23, 2009

Weatherford Laboratories Disclaimer

LEGAL NOTICE: This report was prepared by Weatherford Laboratories as an account of work performed for the client and is intended for informational purposes only. Any use of this information in relation to any specific application should be based on an independent examination and verification of its applicability for such use by professionally qualified personnel. Neither Weatherford Laboratories, nor any persons or organizations acting on its behalf:

- a. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report; or
- b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Table of Contents

Table of Contents	i
List of Tables	i
List of Figures	ii
List of Appendices	ii
Summary	1
Introduction	3
Field Activities	
Laboratory Procedures	
Gas Content Measurement Protocol	
Apparent Diffusivity and Sorption Time	
Gas Composition and Isotope Analysis	8
Sample Bulk Composition and Property Analysis	. 11
Crushed Density Analysis	. 12
Moisture Holding Capacity Analysis	
Chemical Characterization	. 12
Maceral and Mineral Composition	. 13
Coal Vitrinite Reflectance	
Adsorbed Gas Storage Capacity	
Analysis Results	
Core Photography and Lithology	
Gas Content, Diffusivity, and Sorption Time	
Gas Composition and Isotope Summary	
Sample Bulk Composition and Property Analysis Results	. 22
Crushed Density Results	
Chemical Characterization Results	
Petrographic Characterization Results	
Adsorbed Gas Storage Capacity	
Adsorbed Gas-in-Place Estimate	
Final Summary	. 30
References	. 31

List of Tables

Analysis Program Summary	
Diffusivity and Sorption Time Estimates	
Air-Dry Proximate Analysis Data	23
In-Situ Proximate Analysis Data	24
Dry, Ash-Free Ultimate Analysis Data	24
Petrographic Data	
Coal Methane Adsorption Isotherm Parameters	
Gas-in-Place per Unit Volume Summary	
	Analysis Program Summary Core Run Summary Sample Bulk Composition and Property Analysis Methodologies Relative Effect of Various Parameters on Gas Storage Capacity Gas Content Data Diffusivity and Sorption Time Estimates Apparent Adsorbed Gas Composition Results Isotope Results Crushed Density Data Air-Dry Proximate Analysis Data In-Situ Proximate Analysis Data In-Situ Proximate Analysis Data In-Situ Ultimate Analysis Data In-Situ Ultimate Analysis Data Chemical Characterization Data Petrographic Data Coal Methane Adsorption Isotherm Parameters Gas-in-Place per Unit Volume Summary

List of Figures

Figure 1.	Sample Processing and Analysis Flow Chart	6
Figure 2.	Relative Sorption Affinity of Gases	
Figure 3.	Carbon and Hydrogen Isotope Signatures of Methane Sources	
Figure 4.	Gas Content Data Summary	
Figure 5.	Total Gas Content vs. Inorganic Content	
Figure 6.	Adsorbed Gas Composition	
Figure 7.	Natural Gas Classification (Carbon-Deuterium Stable Isotope Plot)	21
Figure 8.	Carbon-13 Concentration vs. Time	21
Figure 9.	Reciprocal Modified Density vs. Dry Ash Content	
Figure 10.	Mineral Matter-Free Basis Maceral Composition Summary	
Figure 11.	Dry, Ash-Free Methane Isotherm	
Figure 12.	In-Situ Methane Isotherms	

List of Appendices

Core Lithology and Photography	Appendix I
Desorption Data and Graphs	Appendix II
Desorption Gas Composition Results	
Adsorption Isotherm Results	

<u>Summary</u>

Weatherford Laboratories (WFT Labs) measured properties of three core samples recovered from Fruitland Coals penetrated by Souder, Miller & Associates' MW-34-5-4 well between October 11 and October 12, 2008. Core was collected between 749 and 826 ft. The goals of this project were to evaluate the sorbed gas content, gas storage capacity, coal properties, and gas-in-place of the Fruitland Coals at the well location.

Three core samples were desorbed to determine total gas content (lost plus measured plus crushed gas content) estimates. All three desorption samples were dedicated to collection of multiple gas composition and two desorption samples were dedicated to collection of isotopic samples throughout the desorption history. Density, moisture, and sulfur analyses were performed on all core samples. Coal characterization was determined for one desorption sample and one composite sample, which included chemical (proximate analysis, ultimate analysis, sulfur content, sulfur-in-ash content, and heating value) and petrological analyses (vitrinite reflectance and maceral composition). One desorption sample and one composite sample were characterized and used for two methane adsorption isotherm measurements to determine methane storage capacity versus pressure at constant temperature.

A variety of factors can influence data quality. Confidence in the analytical results depends on the reliability of reservoir temperature and pressure information available for the cored intervals as well as adherence to sample collection and processing protocols. Relative confidence levels were assigned to describe the reliability of the data discussed in this report. These confidence levels are defined below.

- Low confidence Data should not be considered representative of reservoir conditions.
- Moderate confidence Data are suspect but may be useful in conjunction with other information to describe reservoir conditions.
- High confidence Data are believed to represent reservoir conditions (assuming experimental temperature and pressure data accurately describe initial reservoir conditions).

The conclusions and the confidence in these conclusions are summarized in the remainder of this section.

- 1. Confidence in the desorption data was high. The lost gas fraction of the three desorption samples ranged from 5.7 to 11.6% of the total gas content. At the conclusion of desorption experiments, all three desorption samples were crushed to determine the remaining gas content as required for accurate total gas content estimates. The percentage of the total gas released by crushing ranged from 20.7 to 34.4% of the total gas content. The average dry, ash-free and in-situ gas contents were 359.5 scf/ton (standard cubic feet per ton) and 262.5 scf/ton, respectively.
- 2. Estimates of the diffusivity at 75°F, the desorption temperature, ranged from 0.036 to 0.160 μ s⁻¹. This range corresponded to sorption times (time to desorb 63% of the gas at the desorption temperature and atmospheric pressure) ranging from 116 to 512 hours. Confidence in this data was high as there was high confidence in the desorption data.
- 3. Multiple desorption gas samples were collected from three dedicated desorption canisters. These data were integrated as a function of the desorbed gas fraction to estimate the original adsorbed gas composition. Estimates of the adsorbed gas composition included 98.14 mol% methane, with minor concentrations of carbon dioxide (1.48 mol%), propane and heavier hydrocarbons (0.23 mol%), and carbon dioxide (0.15 mol%). The confidence in these data was moderate as there was substantial air contamination in some of the gas composition samples.
- **4.** Results of isotopic analysis for two samples indicated that the released gas was thermogenic in origin. Confidence in this data was high.

- 5. The density of the three desorption samples was determined after crushing with a helium pycnometer. The density ranged from 1.368 to 1.468 g/cm³ on an in-situ basis. Confidence in these data was moderate.
- 6. Estimates of the organic fraction density and inorganic fraction density were of moderate accuracy due to minor variation in the sample moist density. The organic fraction density estimate of 1.184 g/cm³ was consistent with the maceral composition. The inorganic fraction density of 3.892 g/cm³ was much greater than the density of moist montmorillonite (2.12 g/cm³) and moist kaolinite (2.42 g/cm³). Due to a limited number of points and a relatively small range in ash content, the organic and inorganic density estimates are subject to error.
- 7. Ash contents from the three desorption samples were moderate, ranging from 0.1988 to 0.2786 weight fraction on an in-situ basis. The moisture holding capacity (in-situ or inherent moisture content) was moderate, ranging from 0.0118 to 0.0181 weight fraction. The sulfur content was low, ranging from 0.0067 to 0.0074 weight fraction on an in-situ basis. Confidence in these data was high.
- 8. Coal rank is best determined using calorific value data on a moist, mineral-matter-free basis when the dry, mineral-matter-free fixed carbon values are less than 0.69 weight fraction and the moist, mineral-matter-free calorific value is less than 14,000 BTU/lbm. This was not the case for the two isotherm samples. The moist, mineral-matter-free calorific value for sample 41300-1 was 15,162 BTU/lbm and for sample 41300-COMP-1 was 15,368 BTU/lbm. For coal ranks of medium volatile bituminous or greater, coal rank is best determined using vitrinite reflectance data. The meanmaximum vitrinite reflectance for sample 41300-1 was 0.96% in oil and for sample 41300-COMP-1 was 0.99% in oil placing the rank in the high volatile A bituminous range. There was high confidence in these data.
- 9. The maceral compositions were determined for the two adsorption isotherm samples. For sample 41300-1, the composition included 87.0% vitrinite, 11.5% inertinite, and 1.5% liptinite. For sample 41300-COMP-1, the composition included 91.7% vitrinite, 6.2% inertinite, and 2.1% liptinite. Confidence in these estimates was high.
- 10. Confidence in the measured adsorbed methane storage capacity data at the measurement temperature was high as all measurements were performed with state of the art equipment adhering to strict protocols. Two isotherms were determined from one desorption sample and one composite sample. Based upon the reservoir temperature data, the in-situ temperature was 75°F. The isotherm data were measured on samples 41300-1 and 41300-COMP-1, which had ash contents of 0.2786 and 0.2209 weight fraction and moisture contents of 0.0175 and 0.0147 weight fraction. The dry, ash-free Langmuir methane storage capacity for sample 41300-1 was 498.3 scf/ton. At the in-situ ash content and moisture content, the Langmuir methane storage capacity was 347.8 scf/ton. The Langmuir pressure was 219.2 psia. The dry, ash-free Langmuir methane storage capacity was 435.8 scf/ton. The Langmuir methane storage capacity was 435.8 scf/ton.
- 11. At 350.8 psia, the estimated average dry, ash-free methane storage capacity was 333.9 scf/ton. This was less than the average dry, ash-free gas content of 359.8 scf/ton, which indicated the reservoir was saturated. The conclusion may not be accurate if the estimated reservoir conditions were incorrect, e.g. reservoir pressure was underestimated, or reservoir temperature was overestimated.
- 12. The density and gas content of the coal samples were used to estimate the adsorbed gas-inplace (GIP) volume per unit coal volume. The gas-in-place volume per unit thickness was 506.1 Mscf/acre-ft (thousand standard cubic feet per acre-foot of coal). Confidence in this estimate was high as there was high confidence in the gas content and density data.

Introduction

This report summarizes the procedures and results of the gas desorption and coal characterization program conducted on three core samples recovered from the Souder, Miller & Associates' MW-34-5-4 well between October 11 and October 12, 2008, from depths between 749 and 826 ft. The well is located in the San Juan Basin, specifically Section 5, Township 134N, Range 5W, Archuleta County, Colorado. At the request of Mr. Denny Foust of Souder, Miller & Associates, WFT Labs conducted analyses on the core samples. The goals of this project were to evaluate the sorbed gas content, gas storage capacity, coal properties, and gas-in-place of the Fruitland Coals at the well location.

Many of the values presented in this report are time specific. For instance, references to gas content and gas composition are valid on the date the reservoir was sampled. These properties may have been affected by fluid production from the study well, offset wells, or drainage by mining activities since the samples were collected.

Table 1 summarizes the detailed analysis program conducted on the samples after they arrived at WFT Labs' laboratory. Sample 41300-COMP-1 is a mixture of desorption samples 41300-2 and 41300-3. Information concerning the details of the measurements and the resulting data are discussed throughout this report.

Table 1.

Analysis Program Summary

Sample ID	Can ID	Drill Depth (ft)	Reservoir System	Premium Sample	Sample Handling	Core Photography	Core Lithology	Gas Composition	Isotope	Long-term Residual Gas	Composite Preparation	Density	Moisture/Ash/Sulfur	Moisture Holding Capacity	Proximate/Ultimate/BTU/SO ₃ in Ash	Comprehensive Petrography	Isotherm Preparation	lsotherm
41300-1	GT-83	753.5-754.5	Fruitland Coals	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	CH_4
41300-2	GT-184	813.0-814.0	Fruitland Coals	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х				
41300-3	GT-210	815.0-816.0	Fruitland Coals	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
41300-COMP-1	-	813.0-816.0	Fruitland Coals									Х	Х	Х	Х	Х	Х	CH_4

Field Activities

WFT Labs field personnel were on location at the well site between October 10 and October 13, 2008. WFT Labs collected drilling and coring operations data, three core samples for desorption measurements, desorbed gas content data, samples for gas composition determination from three canisters, samples for isotopic determination from two canisters, and core that was retained for additional analyses. This section summarizes the field activities.

References to core depths throughout this report are based on driller's depths and may require a depth correction to agree with log depths.

On October 11, 2008, Mr. Denny Foust provided a reservoir temperature of 75°F.

Reservoir pressure data were unavailable at the time this report was written. Estimates of reservoir pressure were based upon a gradient of 0.433 psi/ft. This gradient is equivalent to the pressure exerted by a column of fresh water from the depth of the reservoir to surface.

Scorpion Drilling (Rig #2) from Farmington, Colorado, conducted the drilling operations for the well. Core point depth (749 ft) was reached on October 11, 2008. Coring operations commenced on October 11, 2008, and were completed on October 12, 2008, with a total of two intermittent core runs. A summary of all core runs is presented in Table 2. A field report was issued previously containing details of these operations.¹

Reed-Hycalog conducted the coring operations. Tools used for coring operations included a 6 1/2-inch CD 93 core bit and a 30-foot long conventional barrel with a solid plastic liner. Coring fluid was composed of polymer-based water.

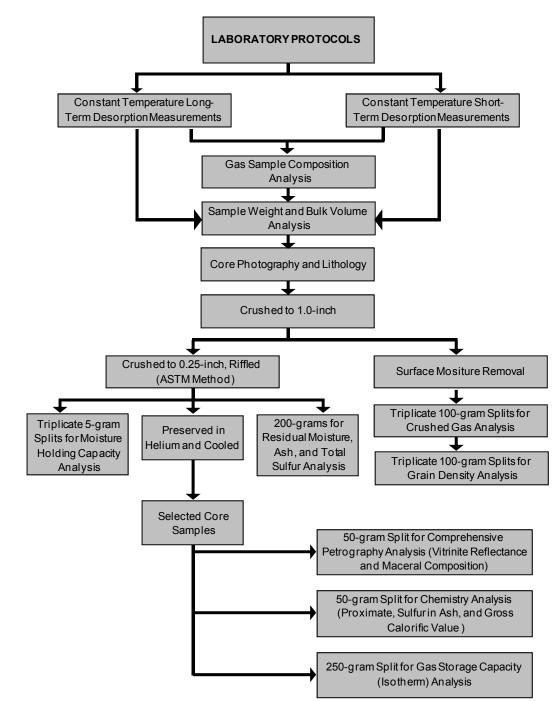
Core Run Summary

Core Run	Cored Interval	Lengt h Cored	Length Recovered	Core Recovery Success	Core Recovery Time	Circulatin g Fluid Temp.	Fluid Density	Number of Canistered Samples
#	ft	ft	ft	%	min	°F	ppg	#
1	749.0-779.0	30.0	13.0	43.3	72	67.4	8.5	1
2	810.0-826.0	16.5	7.3	44.2	60	67.9	8.5	2
Total	-	46.5	20.3	43.7	-	-	-	3

Table 2.

Three desorption samples were collected from Fruitland Coals. The core samples were sealed in individual desorption canisters equilibrated to approximate in-situ temperature (75°F) for gas content analysis. All canisters were filled with potable water to minimize headspace volume within the canister. Reduced head space increased the accuracy of the gas content measurements, maximized the quality of gas samples collected for compositional analysis, and reduced oxidation and desiccation of the core. Desorption readings were taken every few minutes for the first few hours, which was important for accurate lost gas content estimates. Gas content measurements continued for at least 24 hours at the well site. Gas composition samples were collected on all canisters. Two canisters (samples 41300-1 and 41300-3) were selected for isotopic analysis.

Samples not involved in desorption analysis were sealed in plastic liners and placed in core boxes. These samples and the desorption samples were delivered to WFT Labs' Arvada, Colorado, laboratory.



Laboratory Procedures

WFT Labs performed long-term desorption tests, gas composition analysis, sample bulk composition and property analysis including moisture, density, proximate analysis, ultimate analysis, sulfur-in-ash, gross calorific value, and adsorption isotherm measurements on selected samples. WFT Labs sub-contracted petrography and isotopic analyses on selected samples. The following details typical laboratory procedures and analyses conducted for a coal reservoir property assessment; although, these analyses may or may have been performed on the samples collected at this well.

Samples were processed using systematic procedures that minimized sample aerial oxidation, aerial desiccation (moisture loss), and gas loss. WFT Labs used an in-house improved procedure to air-dry processed samples that differs from the air-drying procedure described in the ASTM Method D 3302. WFT Labs' air-drying procedure attempts not to over-dry samples by only removing surface moisture. Figure 1 summarizes the general sample processing and analysis steps in the form of a flow chart. Some of the analyses summarized in this figure may not have been performed on samples from this project. Sample methodologies rigorously followed best practice analysis protocols developed by ASTM, the Gas Technology Institute (GTI), and WFT Labs.^{2,3,4,5,6}

Figure 1. Sample Processing and Analysis Flow Chart

Gas Content Measurement Protocol

Desorbed gas volumes were measured as a function of time to the nearest 1 milliliter by head-pressure equalized fluid displacement. The frequency of the measurements was greatest during the early time of desorption tests to ensure sufficient data were available for lost gas content determination. The gas desorption data collected during the gas desorption tests were used to calculate the lost gas content. Lost gas content estimates were obtained from the early time gas content data using WFT Labs' modified version of the U.S. Bureau of Mines' Direct Method.^{5,6}

Samples were removed from the canister and the particle size was reduced to a one-inch diameter top size. Triplicate representative splits, approximately 100 grams each, were quickly removed from the gross sample for crushed gas analysis. The splits were individually pulverized to -200 mesh in specialized sealed crushing vessels under an inert gas (helium) atmosphere at approximate reservoir temperature. The released (crushed) gas volume was measured periodically until no measurable gas was released from the crushing vessel. The crushed gas content of the samples was calculated by dividing the released gas volume by the sample weight. An average of gas content from the triplicate splits was used as the final estimate of the crushed gas content.

RapidGas[™] is WFT Lab's methodology when samples are removed from desorption samples within three weeks of the start of desorption and pulverized to determine the released gas volume with the crushed gas method. WFT Labs uses the term accelerated gas to describe crushed gas analysis when the desorption time is greater than for *RapidGas* samples but less than the time for long-term desorption samples.

Crushed gas content (also referred to as residual gas content) is used to describe the released gas content when samples are crushed after long-term desorption at approximate reservoir temperature. WFT Labs terminates the long-term desorption measurements when the released gas volume is less than or equal to 0.05 scf/ton-D (standard cubic feet per ton-day) over a several day period.

The total air-dry gas contents were calculated by the sum of the lost gas, measured gas, and crushed gas contents. Residual moisture, ash, moisture holding capacity, and total sulfur content data were then used to convert air-dry basis gas content data to other bases (e.g., dry; dry, ash-free; and in-situ bases). All gas content volumes were converted to and reported in standard cubic feet per ton (2,000 lbm) of rock (scf/ton).

Apparent Diffusivity and Sorption Time

Gas storage and flow through coal seams are generally modeled with dual porosity reservoir models.⁶ Gas is stored by adsorption within the primary porosity system within the organic component of the coal matrix. The primary porosity consists of micro- (<2 nanometer diameter) and meso-porosity (2 to 50 nanometer diameter) pores. Gas flows to wells through the secondary porosity system, which consists of macro-pores (>50 nanometers diameter) and natural fractures. Gas flow through the primary porosity is dominated by diffusion and quantified with Fick's Law while gas flow through the secondary porosity is driven by pressure gradients and quantified with Darcy's Law.

Diffusivity is the diffusion coefficient divided by the square of an average diffusion distance. Diffusivity can be estimated from the method used for determining lost gas volume using the relationship listed in Equation 1.

$$\frac{D}{r^2} = \left(\frac{m}{203.1G_{ad}}\right)^2 \tag{1}$$

where:

 D/r^2 diffusivity, sec⁻¹ m slope of gas content versus square-root time graph, scf/ton-hr^{0.5}

G_{cad} air-dry basis total gas content, scf/ton

Although diffusivity values are used in reservoir models, an easier concept to understand is the sorption time. Sorption time is defined as the time required to desorb 63.2% of the original gas content if a sample is maintained at constant temperature. The relationship used to relate sorption time to diffusivity is listed in Equation 2.

$$\tau = \left(3600\alpha \frac{D}{r^2}\right)^{-1}$$
(2)

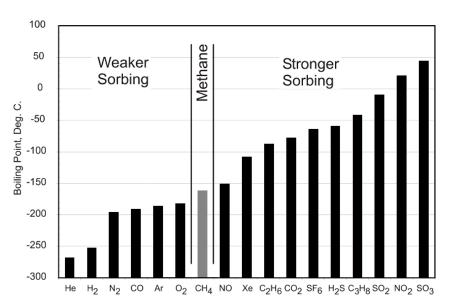
where:

 τ sorption time, hr

 α geometrical shale factor, cm^2

The geometrical shape factor for a sphere, the most common assumed geometry, is 15. The accuracy of the diffusivity value depends weakly upon the competency of the core sample and strongly upon the determination of the lost gas content.

Gas Composition and Isotope Analysis


It is important to determine the composition of the adsorbed gas as the gas composition directly affects the gas storage capacity and critical desorption pressure. The adsorption affinity of gases is related to their atmospheric pressure boiling point as illustrated by Figure 2. Nitrogen tends to decrease in-situ multi-component gas storage capacity while carbon dioxide, ethane, and heavier hydrocarbon gases tend to increase storage capacity. The composition of the gas desorbed from the core samples changes with time, and concentrations of heavier hydrocarbon species tend to increase relative to methane.

The gas composition as a function of desorbed gas fraction data (cumulative desorbed gas content divided by the total gas content) was integrated to determine the adsorbed gas composition for coal samples or for an average of the free and adsorbed gas compositions for shale samples. Gas composition samples were collected from dedicated canisters. These canisters are usually purged with helium at the time of sealing to reduce air contamination. Gas samples were collected periodically before measuring the released gas volume. The gas composition of the initial released gas was determined by extrapolation to zero desorbed gas content. The accuracy of the extrapolation is strongly dependent upon the lost gas content and the number of desorption gas samples taken early in the desorption measurements. If lost gas content is large, i.e., greater than 25%, the estimates of the lost gas composition of the gas released by crushing the samples at the end of the desorption measurements must also be corrected for contamination by air.

Figure 2.

Gas sample composition was analyzed at WFT Labs by gas chromatography in accordance with ASTM Method D 1945 (modified). The gas composition was calculated by integrating the gas composition as a function of cumulative desorbed gas content.

Determining the origin of the gas is important in understanding the characteristics of natural gas in a reservoir system or basin. Natural gas derived from two distinct sources listed below can be distinguished based on isotopic composition.⁷ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. Gas isotope ratios were determined by isotope ratio mass spectroscopy.

- 1. Biogenic Gas: Gas generated by anaerobic decomposition of organic matter in a shallow, low temperature sedimentary environment.
- 2. Thermogenic Gas: Gas formed in deeply buried sediments by thermal cracking of sedimentary organic matter into hydrocarbon liquids and gas (primary thermogenic gas), or by thermal cracking of oil at high temperatures into gas (secondary thermogenic gas).

Biogenic gas consists primarily of methane and is often referred to as a "dry" gas. Thermogenic gas can be dry or contain concentrations of heavier hydrocarbons (C_{2+}).

The following information is derived from Reference 7. In isotope geochemistry, it is common practice to express isotopic composition in terms of a delta (δ) value, which is a difference from a standard sample. For example, the delta value for substance A is defined by Equation 3.

$$\delta_A = 10^3 \left(\frac{R_A}{R_{st}} - 1 \right) \tag{3}$$

where:

 δ_A delta value of element A, parts per thousands, ‰

- R_A isotopic ratio of A, dimensionless
- R_{st} isotopic ratio of a standard, dimensionless

Carbon has two stable isotopes: ¹²C and ¹³C. ¹²C accounts for 98.89% of all carbon and ¹³C accounts for 1.11% of the remaining carbon. When the delta value is greater, it is common to consider substance A enriched in the rare, heavier isotope.

Hydrogen has two stable isotopes: H and ²D (deuterium). H accounts for 99.9844% of all hydrogen and ²D accounts for 0.0156% of the remaining hydrogen. Hydrogen exhibits the largest variations in stable isotope ratios of all elements.

Biogenic methane commonly occurs in recent anoxic (low oxygen concentration) sediments in both fresh water, such as lakes and swamps, and marine environments, such as estuaries and shelf regions. There are two primary pathways for methanogenesis, fermentation of acetate and reduction of CO_2 . Acetate fermentation is dominant in freshwater environments while CO_2 reduction is dominate in marine environments.

During methanogenic bacterial decomposition of organic material, methane is highly depleted in δ^{13} C and results in δ^{13} C values between -110 and -50‰. In marine sediments, methane formed by CO₂ reduction is often more depleted in ¹³C than when formed by acetate fermentation. Typical values for δ^{13} C in methane from marine environments range from -110 to -60‰ while those in methane from freshwater environments range from -50‰.

The difference in methane composition from both environments is even greater for the hydrogen isotopes. Marine bacterial methane has δD values between -250 and -170‰ while biogenic methane in freshwater environments is strongly depleted in deuterium with δD values between -400 to -250‰. This difference is due to the source of the hydrogen. Hydrogen comes from formation water during CO₂ reduction. Seventy-five percent of the hydrogen created by fermentation comes from the methyl group, which is extremely depleted in deuterium.

Thermogenic gas is produced in deeply buried sediments due to modification of the organic matter by various chemical reactions, such as cracking of kerogen. The ¹²C – ¹³C bonds are preferentially broken during the first stages of maturation resulting in ¹³C enrichment, which continues as temperature increases. In general, as thermal maturity of methane increases, the δ^{13} C values increase. Thermogenic methane commonly has δ^{13} C values between -50 and -20‰. Methane from non-marine (humic) sources are isotopically enriched relative to those generated from marine (sapropelic sources) and similar levels of thermal maturity. In contrast, δ D values are independent on the source of organic material but are highly dependent on the thermal maturity.

As a side note, migration can enrich methane in δ^{12} C or δ^{13} C depending upon the properties of the rock through which the gas is migrating. Recent experiments have demonstrated that δ^{13} C can be depleted during migration through shale to different degrees depending upon the organic content of the shale.⁸

The process of diffusion can cause significant isotope fractionization. In general, light isotopes are more mobile and diffuse about 1% faster than the heavier isotopes. As a result, light isotopes escape more readily leaving the remaining methane enriched in ¹³C causing greater δ^{13} C values.

A gas mixture subjected to a temperature gradient will tend to separate by thermal diffusion; the greater mass species will migrate to the colder temperatures. Gravitational settling in porous media can also cause the heavier isotope to migrate downward.

Whiticar⁹ developed a chart for identification of methane sources based upon isotopic ratios. This chart, extracted from Reference 7, is illustrated in Figure 3. The term SMOW in the horizontal axis refers to the standard for hydrogen isotopes, which comes from a sample of mean ocean water distributed in Vienna by the International Atomic Energy Agency. The term PDB in the vertical axis refers to the standard for carbon isotopes, which is a based on Cretaceous PeeDee Belemnites found in South Carolina.

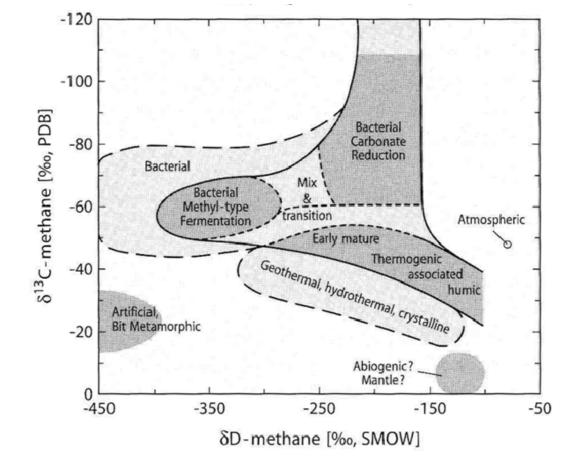


Figure 3. Carbon and Hydrogen Isotope Signatures of Methane Sources

When a helium purged canistered sample is selected for isotope analysis, one or two samples of released gas are collected from the core sample during the desorption measurements after sufficient volume of gas is measured in order to clear the canister head space of residual air. If two gas samples were collected, one sample was taken within the first few hours of the desorption measurements and the second was collected when the rate of desorption decreased significantly but still had enough volume to fill the collection tube (100 ml). If only one gas sample was collected for isotopic analysis, the sample was taken within the first few hours of the desorption analysis, the sample was taken within the first few hours of the desorption measurements. The gas samples collected should be representative of the reservoir gas and are analyzed by isotope-ratio mass spectrometry (IRMS) at Isotech Laboratories, Inc.

Sample Bulk Composition and Property Analysis

Sample bulk composition and property analyses were performed according to ASTM or other standardized methodologies listed in Table 3. Chemical analysis (proximate, total sulfur, sulfur in ash, and heating value) and comprehensive petrography analysis (maceral matter composition, mineral matter composition, and vitrinite reflectance analyses) are typically conducted on selected samples to determine coal composition and thermal maturity (rank). The Center for Applied Energy Research (University of Kentucky) conducts the petrographic analysis. All other listed bulk composition and property analyses were conducted in-house by WFT Labs. Density, moisture holding capacity, chemical analysis, and petrographic analysis procedures are discussed in the following sections.

Table 3. Sample Bulk Composition and Property Analysis Methodologies

Analysis	Methodology
Air-dry moisture loss	WFT Labs' improved methodology
Sample bulk volume	Standard water displacement technique
Density	Helium multi-pycnometry
Moisture holding capacity	WFT Labs' improved methodology
Residual moisture	ASTM D 5142
Ash content	ASTM D 5142
Proximate	ASTM D 5142
Total sulfur	ASTM D 4239C
Sulfur in Ash	ASTM D 5016
Gross calorific value	ASTM D 5865
Maceral and mineral composition	ASTM D 2799
Vitrinite reflectance	ASTM D 2798

Crushed Density Analysis

Density by helium pycnometry determines crushed density values (i.e., density excluding large-scale gas filled pore volume). For coal, the crushed density is almost identical to the bulk density. Crushed density analysis requires the measurement of sample volume and mass. Sample volumes were measured at room temperature conditions on triplicate air-dried samples (representative of each desorption sample) of approximately 100 grams using a helium multi-pycnometer. Helium can penetrate the coal micro-pore structure without adsorption and does not add moisture to the sample. Sample weights were determined to the nearest 0.001 gram using an electronic balance. Sample densities were calculated by dividing the measured sample mass by the sample volume.

Moisture Holding Capacity Analysis

The in-situ (or inherent) moisture of coal is the amount of moisture the coal can hold at 100 percent relative humidity without any moisture present on the surface of the coal particles. The moisture holding capacity approximates the in-situ moisture content of the coal seam.²

The moisture holding capacity analysis procedure used by WFT Labs is in accordance with the ASTM Method D 1412 (Equilibrium Moisture). The equilibrium moisture value is defined as the average percentage weight loss upon drying triplicate 5-gram water saturated coal samples [particle size -16 US mesh (1.18 mm)], following equilibration at 96 to 97% relative humidity and 86°F (30°C) for 48 to 72 hours.

Chemical Characterization

Proximate and ultimate analysis provides chemical composition data. Proximate analysis results in estimates of the weight fraction of residual moisture, ash, and volatile matter and the calculation of fixed carbon by difference. Data from proximate analyses are used to classify coal rank and to determine the ratio of combustible to incombustible constituents. Ultimate analysis results in the weight fraction of sulfur, carbon, hydrogen, nitrogen, and oxygen by difference.²

The total sulfur content represents the sulfur occurring in both the organic and inorganic components of the coal sample. The total sulfur content is determined in accordance with ASTM D 4239C.

Residual moisture is neither a standard state nor a characteristic property of coal.² Residual moisture is dependent on the sample handling, desorption methodology, and the method used to remove excess moisture before analysis. For coal samples, it is important to maintain the residual moisture content at levels slightly greater than the inherent, or in-situ, moisture content. When the total moisture is reduced to the residual moisture value following careful methods, subsequent analyses can be reported on the ASTM as-determined mass basis.

Maceral and Mineral Composition

Maceral and mineral analysis provides organic and mineral composition data. Petrographic characterization of coal reservoir systems is performed by microscopic examination of polished surfaces of crushed particle pellets under reflected white light and ultraviolet light. The volume fraction of organic (maceral) and inorganic (mineral) components is quantified by manual point counting. The volume fraction of clay, quartz, carbonate, and sulfide minerals is also quantified by point counting. The point counting technique is a subjective process and requires a knowledgeable and highly experienced petrographer to obtain consistent data. A third-party commercial laboratory, Center for Applied Energy Research (University of Kentucky), conducted the maceral and mineral testing.

Coal Vitrinite Reflectance

The thermal maturity of coal can be quantified petrographically by vitrinite reflectance. The measurement is typically conducted on the polished surface of the crushed particle pellets used for the maceral analysis. Incident white light is reflected off the surface of vitrinite macerals immersed in oil of a specific refractive index. The reflected light is captured by a photo multiplier and converted to analog and digital output. The reflected light is typically reported as the mean-maximum reflectance since vitrinite is anisotropic under incident. Vitrinite reflectance may be the most sensitive indicator of thermal maturity for macerals that have attained a coal rank of medium volatile bituminous and greater. A third-party commercial laboratory, Center for Applied Energy Research (University of Kentucky), conducted the vitrinite reflectance testing.

Adsorbed Gas Storage Capacity

Adsorption isotherm data are important because isotherm behavior indicates the maximum gas volume that can be stored at a specific temperature and pressure. The adsorption isotherm determines the gas storage capacity of crushed samples as a function of pressure at constant temperature, which is usually the reservoir temperature. A known weight of crushed rock sample is placed in a volumetric isotherm apparatus and subjected to increasing pressure steps.¹⁰ Gas storage capacity is estimated by material balance analysis of the pressure behavior. For coal, the measurement is performed on samples equilibrated to the inherent, or in-situ, moisture content.

The gas storage capacity of coal typically increases non-linearly as pressure increases. Gas storage capacity also varies as a function of the type of gas species, coal maceral composition, and organic material thermal maturity.

The Langmuir equation listed in Equation 4 is used to model the variation of gas storage capacity as a function of pressure.¹¹

$$G_s = G_{sL} \frac{p}{p + p_L} \tag{4}$$

where:

- G_s gas storage capacity, scf/ton
- G_{sL} Langmuir storage capacity, sct/ton
- p pressure, psia
- p_L Langmuir pressure, psia

The Langmuir storage capacity is the gas storage capacity of the sample at infinite pressure and the Langmuir pressure is the pressure at which the gas storage capacity of the sample equals one-half the Langmuir storage capacity value.

Gas storage capacity is dependent upon pressure, temperature, and organic composition. Table 4 summarizes the effect that each of these parameters has on the gas storage capacity when all other parameters are held constant.

Parameters	As the Parameter:	Gas Storage Capacity:
Pressure	Increases	Increases
Temperature	Increases	Decreases
Moisture Content	Increases	Decreases
Vitrinite/Kerogen III Concentration	Increases	Increases
Thermal Maturity	Increases	Increases

Table 4. Relative Effect of Various Parameters on Gas Storage Capacity

Gas adsorbed in reservoirs typically contains gases other than methane, each gas having different adsorptive affinity, which is related to its atmospheric pressure boiling point. The extended Langmuir equation is used to model multi-component gas storage capacity when gas mixtures are present in coal reservoirs. Adsorption isotherm measurements are conducted independently for each gas component present and then combined mathematically with the extended Langmuir model to produce isotherm data that are representative of the reservoir's gas composition.

Multi-component isotherm relationships can be computed from single component data by use of extended Langmuir theory.¹² Equation 5 lists the extended Langmuir relationship.

$$G_{si} = G_{sLi} \frac{\frac{py_i}{p_{Li}}}{1 + p \sum_{j=1}^{nc} \frac{y_i}{p_{Li}}}$$
(5)

where:

G_{si}	multi-component storage capacity of component i, scf/ton
G_{sLi}	single component Langmuir storage capacity of component i, scf/ton
p_{Li}, p_{Lj}	single component Langmuir pressure of component i or j, psia
$y_i or y_j$	mole fraction of component i or j in the free gas (vapor) phase, dimensionless
пс	number of components
р	pressure of the free gas phase, psia

One limitation in the current application of Equations 4 and 5 is that gas storage capacity is a function of temperature. No simple method accounts for temperature variations unless the isotherms are measured at multiple temperatures. Consequently, the laboratory isotherm data should be measured at an average reservoir temperature or at multiple temperatures to allow for proper correction.

Initial reservoir gas saturation (gas content divided by gas storage capacity) and critical desorption pressure (pressure at which adsorbed gas is released from the adsorbed state) are estimated from the adsorption isotherm analysis and desorption data.⁴ The critical desorption pressure is determined by calculating the pressure at which the in-situ gas content equals the in-situ gas storage capacity.

Analysis Results

This section provides summaries and discussions of the analytical results. Laboratory reports (raw data) are provided in the appendices where indicated.

Core Photography and Lithology

At the conclusion of the desorption tests, the samples were removed from desorption canisters. Digital photographs were taken and lithologic descriptions of the desorption samples immediately followed. Photographs and lithologies are included in Appendix I.

Gas Content, Diffusivity, and Sorption Time

The total gas content was determined by summing the lost gas content, measured gas content (desorbed gas content), and the gas content liberated from the crushed sample at the end of desorbed gas analysis. The gas volume measurements were corrected for canister and ambient temperature and ambient pressure variations. Gas contents were reported at standard conditions of 14.7 psia and 60°F. The total gas content estimate was based upon the air-dried sample mass. Residual moisture, moisture holding capacity, ash, and total sulfur content data were used to convert air-dry basis gas content data to other bases (i.e., dry; dry, ash-free; and in-situ bases). Figure 4 illustrates the lost, measured, and crushed gas content on an air-dry basis for each sample. The average air-dry, in-situ, and dry, ash-free adsorbed gas content estimates for core samples are summarized in Table 5. Desorption data including total gas content, measured gas content, and crushed gas content are illustrated in Appendix II.

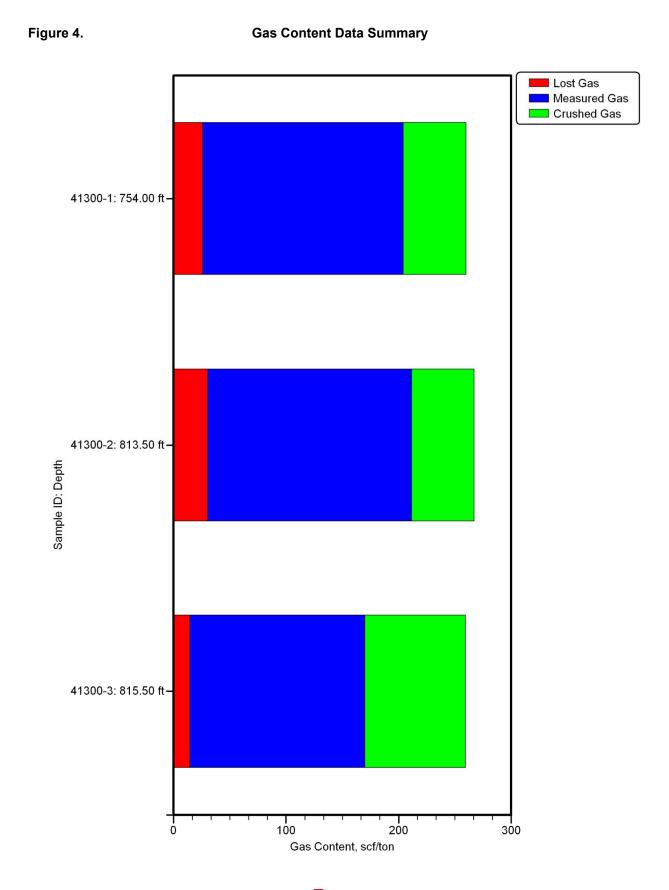
For the core samples, lost gas contents were obtained from the early time gas content data using WFT Lab's modified version of the Direct Method.^{5,6} Extrapolations were made of the early time desorption data measured at reservoir temperature to determine the lost gas content. The lost gas time (time interval used for lost gas extrapolations) ranged from 2.0 to 2.2 hours and all lost gas content values were less than 12% of the total gas content.

Measured gas contents determined from desorption tests for all desorption samples are presented in Table 5. Desorption graphs and data are included in Appendix II.

Crushed gas content was determined for all desorption samples. Crushed gas content data are presented in Table 5.

Diffusivity and sorption time estimates for the core samples are listed in Table 6. The diffusion values were obtained from the gradient of the lost gas slope. Sorption time was computed from the diffusivity values.

In many cases, there is a relationship between the total gas content and the inorganic content of each sample. Figure 5 illustrates this relationship listed in Equation 6. The relationship had a squared correlation coefficient of 0.1856, which was not statistically significant. The poor relationship was due to a limited number of points and a relatively small range in ash contents. The extrapolation to zero inorganic content suggested the organic fraction gas content was 251.2 scf/ton, which was smaller than the average dry, ash-free gas content of 359.5 scf/ton. Because of the poor relationship in the data, the average dry, ash-free gas content was the better gas content average to compare to the adsorption isotherm data to determine the degree of gas saturation.


$$G_c = 251.2 - 41.74(w_a + w_w + w_s) \tag{6}$$

where:

- G_c total gas content, scf/ton
- w_a ash content, weight fraction
- w_w moisture content, weight fraction
- *w_s* sulfur content, weight fraction

Table 5.

Gas Content Data

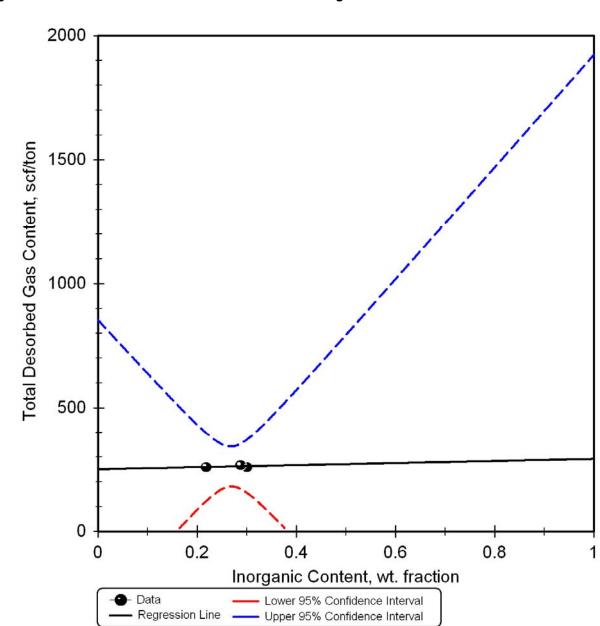

Sample ID	Midpoint Depth	Mass	Lost Gas Time	Lost Gas Fraction	Measured Gas Fraction	Crushed Gas Fraction	Lost Gas Content	Measured Gas Content	Crushed Gas Content	Total Air-Dry Gas Content	Total Dry, Ash- Free Gas Content	Total In- Situ Gas Content
	ft	g	hours	%	%	%	scf/ton	scf/ton	scf/ton	scf/ton	scf/ton	scf/ton
41300-1	754.0	2,200	2.06	10.15	68.45	21.40	26.4	178.1	55.7	260.2	371.8	259.5
41300-2	813.5	1,733	2.03	11.56	67.76	20.69	30.9	181.1	55.3	267.3	374.9	268.4
41300-3	815.5	2,186	2.19	5.72	59.93	34.35	14.9	155.6	89.1	259.6	331.7	259.6
Average	-	2,040	2.09	9.14	65.38	25.48	24.1	171.6	66.7	262.3	359.5	262.5

Table 6.

Diffusivity and Sorption Time Estimates

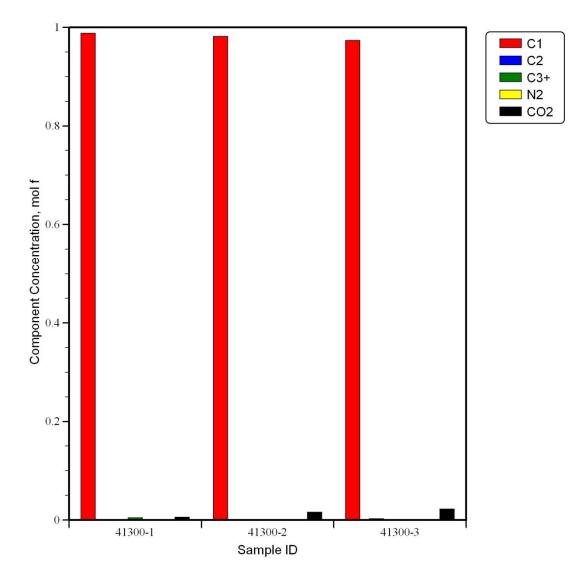
Samula ID	Top Depth	Bottom Depth	Sorption Time	Diffusivity
Sample ID	ft	ft	hr	1/µs
41300-1	753.5	754.5	151.7	0.122
41300-2	813.0	814.0	115.6	0.160
41300-3	815.0	816.0	511.8	0.036
Average	-	-	259.7	0.106

Figure 5. Total Gas Content vs. Inorganic Content

Gas Composition and Isotope Summary

Natural gas produced from coal reservoirs may contain significant volumes of carbon dioxide, nitrogen, and other hydrocarbons in addition to methane. Knowledge of the desorbed gas composition is required to properly evaluate the gas storage capacity. Three canisters were dedicated to collection of multiple desorption gas samples. The gas compositions were corrected for air and hydrogen contamination. The degree of contamination was such that it was necessary to remove all of the nitrogen as well.

Table 7 summarizes the apparent adsorbed gas composition for three samples. The sorbed gas consisted primarily of methane (98.14 mol%). Carbon dioxide (1.48 mol%), propane and heavier hydrocarbons (0.23 mol%), and ethane (0.15 mol%) were also present in smaller concentrations. While


nitrogen may be present in the adsorbed gas, contamination precluded an estimate for the adsorbed nitrogen content. Figure 6 graphically illustrates the apparent adsorbed gas composition of the samples. The original gas compositions, contamination corrected gas compositions, gas compositions as a function of desorption fractions, and integrated (adsorbed) gas compositions are all reported in Appendix III.

Sample ID	Midpoint Depth	C ₁	C ₂	C ₃₊	CO ₂	Total
	ft	mol frac	mol frac	mol frac	mol frac	mol frac
41300-1	754.0	0.9885	0.0009	0.0045	0.0061	1.0000
41300-2	813.5	0.9817	0.0014	0.0012	0.0157	1.0000
41300-3	815.5	0.9739	0.0023	0.0012	0.0225	1.0000
Average	-	0.9814	0.0015	0.0023	0.0148	1.0000

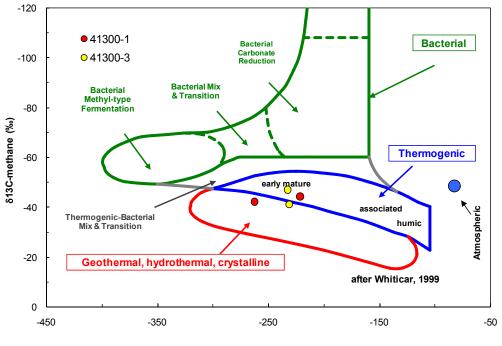
Table 7. Apparent Adsorbed Gas Composition Results

Figure 6.

Adsorbed Gas Composition

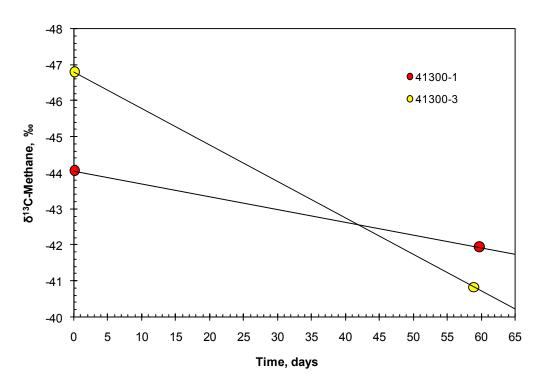
Data obtained from stable isotope analysis from the samples indicate the gas was thermogenic in origin. Results of isotopic analysis for the selected samples are listed in Table 8 and are illustrated by the colored dots in Figure 7 and Figure 8.

¹²C is lighter than ¹³C; therefore, it releases from the core samples sooner. This phenomenon was observed when multiple samples of released gas from the same core sample were compared over a period of time. Figure 8 illustrates the increase in ¹³C concentration with time.


Table 8.

Isotope Results

Parameter	Unit	41300-1-1	41300-1-A	41300-3-1	41300-3-A
Midpoint Depth	ft	754.0	754.0	815.5	815.5
Formation	-	Fruitland Coals			
Date/Time Sampled	mm/dd/yyyy hh:mm:ss	10/11/2008 8:32:00	12/10/2008 16:18:00	10/12/2008 16:14:00	12/11/2008 11:53:00
CO ₂ Conc.	mol frac	0.6311	0.9242	2.8139	1.5686
C ₁ Conc.	mol frac	99.3528	98.9394	96.9697	97.9085
C ₂ Conc.	mol frac	0.0324	0.1152	0.1645	0.4405
C ₃ Conc.	mol frac	0.0113	0.0015	0.0022	0.0065
iC4 Conc.	mol frac	0.0065	0.0409	0.0022	0.0118
nC4 Conc.	mol frac	0.0113	0.0015	0.0000	0.0013
iC₅ Conc.	mol frac	0.0049	0.0061	0.0000	0.0026
nC₅ Conc.	mol frac	0.0081	0.0000	0.0000	0.0000
C ₆₊ Conc.	mol frac	0.0113	0.0030	0.0043	0.0026
Total	mol frac	1.0000	1.0000	1.0000	1.0000
$\delta^{13}C_1$	‰	-44.05	-41.93	-46.79	-40.84
δDC_1	‰	-221.0	-262.0	-232.0	-231.0



δD-methane (‰)

Carbon-13 Concentration vs. Time

Sample Bulk Composition and Property Analysis Results

The crushed density, proximate analysis, ultimate analysis, total sulfur, sulfur in ash, gross calorific value, and petrography results for the selected core samples are discussed in the following sub-sections.

Crushed Density Results

Crushed density results are listed in Table 9. The density of coal varies as a function of its composition. Since the mineral matter component of the coal has a significantly higher density than the organic matter component, the density of coal varies as a function of its mineral matter content. The ash content of coal represents the mineral matter component of the coal. When total sulfur content is significant, the total mineral matter present is a function of the ash and sulfur content.

The average organic and inorganic (mineral matter) densities can often be estimated by linear regression of reciprocal density and ash content data.⁴ Figure 9 illustrates the relationship between reciprocal modified density and dry ash content for the desorption samples. The relationship was statistically significant (squared correlation coefficient, 0.917).

Figure 9. Reciprocal Modified Density vs. Dry Ash Content

The estimated organic density was 1.184 g/cm³ and the estimated inorganic density was 3.892 g/cm³. The organic density of coal in the sub-bituminous and bituminous rank range varies between 1.18 to 1.40 g/cm³ and depends upon the maceral composition.

The inorganic density is often between the densities of moist montmorillonite (2.12 g/cm³), moist kaolinite (2.42 g/cm³), and that of quartz (2.65 g/cm³). Occasionally, values are observed that approach 3 g/cm³ due to the presence of carbonates and heavy minerals. The average inorganic density value of 3.892 g/cm³ was much greater than results observed in the past for San Juan Basin coal. Due to a limited number of points and a relatively small range in ash content, the organic and inorganic density estimates are subject to error.

Sample ID	Top Depth	Top Depth Bottom Depth		In-Situ Helium Density	
	ft	ft	g/cm³	g/cm ³	
41300-1	753.5	754.5	1.472	1.468	
41300-2	813.0	814.0	1.411	1.417	
41300-3	815.0	816.0	1.368	1.368	
Average	-	-	1.417	1.418	

Table 9.

Chemical Characterization Results

Residual moisture, ash, and total sulfur analyses are used to convert data reported on an as-received mass basis to other mass bases such as dry; dry, ash-free; mineral-matter-free (moist or dry); and in-situ bases. It is useful to report data on the dry mass basis to review data without the effect of moisture. It is also useful to report data on the dry, ash-free mass basis to review analyses normalized to 100% organic material. Dry, ash-free values are used to compare gas content and gas storage capacity between different zones or wells since the adsorbed gas is stored predominantly by organic material (i.e., the macerals in coal). Table 10 summarizes the proximate analysis results, which include residual moisture, moisture holding capacity, ash, volatile matter, and fixed carbon results for the desorption samples on an air-dry basis. Complete proximate analysis was performed only on samples selected for isotherm analysis. In-situ proximate analysis results have also been provided in Table 11.

Sample ID	Top Depth	Bottom Depth	Moisture Holding Capacity	Air-Dry Moisture Content	Air-Dry Ash Content	Air-Dry Volatile Matter Content	Air-Dry Fixed Carbon Content
	ft	ft	wt frac	wt frac	wt frac	wt frac	wt frac
41300-1	753.5	754.5	0.0175	0.0151	0.2793	0.2832	0.4224
41300-2	813.0	814.0	0.0181	0.0221	0.2574	-	-
41300-3	815.0	816.0	0.0118	0.0120	0.1987	-	-
41300-COMP-1	813.0	816.0	0.0147	0.0134	0.2212	0.2910	0.4744
Average	-	-	0.0155	0.0157	0.2392	0.2871	0.4484

Air-Dry Proximate Analysis Data

Table 10.

Crushed Density Data

-

Sample ID	Top Depth	Bottom Depth	In-Situ Moisture Content	In-Situ Ash Content	In-Situ Volatile Matter Content	In-Situ Fixed Carbon Content
	ft	ft	wt frac	wt frac	wt frac	wt frac
41300-1	753.5	754.5	0.0175	0.2786	0.2826	0.4213
41300-2	813.0	814.0	0.0181	0.2585	-	-
41300-3	815.0	816.0	0.0118	0.1988	-	-
41300-COMP-1	813.0	816.0	0.0147	0.2209	0.2906	0.4738
Average	-	-	0.0155	0.2392	0.2866	0.4476

Table 11.

In-Situ Proximate Analysis Data

Ultimate analysis data are summarized in Table 12 on a dry, ash-free basis. Complete ultimate analysis was performed only on samples selected for isotherm analysis. In-situ ultimate analysis results have also been provided in Table 13.

Dry, Ash-Free Ultimate Analysis Data

Bottom Sulfur Carbon Nitrogen Hydrogen Oxygen **Top Depth** Depth Content Content Content Content Content Sample ID ft ft wt frac wt frac wt frac wt frac wt frac 41300-1 753.5 754.5 0.0084 0.8627 0.0183 0.0641 0.0466 41300-2 813.0 814.0 0.0103 ---815.0 41300-3 816.0 0.0085 41300-COMP-1 813.0 816.0 0.0092 0.8714 0.0182 0.0610 0.0402 --0.0182 Average 0.0091 0.8671 0.0625 0.0434

Table 12.

Table 13.

In-Situ Ultimate Analysis Data

Sample ID	Top Depth ft	Bottom Depth ft	Sulfur Content wt frac	Carbon Content wt frac	Hydrogen Content wt frac	Nitrogen Content wt frac	Oxygen Content wt frac
41300-1	753.5	754.5	0.0059	0.6072	0.0129	0.0451	0.0328
41300-2	813.0	814.0	0.0074	-	-	-	-
41300-3	815.0	816.0	0.0067	-	-	-	-
41300-COMP-1	813.0	816.0	0.0070	0.6661	0.0139	0.0466	0.0307
Average	-	-	0.0068	0.6367	0.0134	0.0459	0.0318

Gross calorific value, fixed carbon content, and volatile matter content were determined to estimate the coal rank (thermal maturity) for the isotherm sample. The procedure documented in ASTM D 388 was used to correct ash content for sulfur in ash, to convert fixed carbon and volatile matter to a dry, mineral matter free basis, and to convert calorific value to a moist, mineral-matter-free basis.¹³ The moisture holding capacity data were used to convert dry basis data to a moist basis.

Table 14 summarizes the chemical characterization of the isotherm samples. Coal rank is best determined using calorific value data on a moist, mineral-matter-free basis when the dry, mineral-matterfree fixed carbon values are less than 0.69 weight fraction and the moist, mineral-matter-free calorific

value is less than 14,000 BTU/lbm. This was not the case for the two isotherm samples. Vitrinite reflectance data provide more accurate results for coal rank classification.

Table 14.

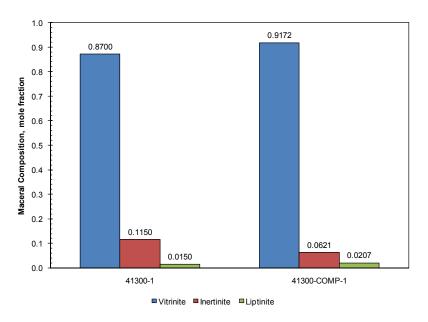
Chemical Characterization Data

Parameter	Unit	41300-1	41300-COMP-1
Top Depth	ft	753.5	813.0
Bottom Depth	ft	754.5	816.0
Chemical C	haracterization Data	I	
Moisture Holding Capacity, in-situ basis ¹	wt frac	0.0175	0.0147
Residual Moisture, as received basis	wt frac	0.0151	0.0134
Ash Content, moist basis ²	wt frac	0.2786	0.2209
Sulfur Content, moist basis	wt frac	0.0059	0.0070
Volatile Matter Content, DMMF basis ³	wt frac	0.5097	0.5039
Fixed Carbon Content, DMMF basis ³	wt frac	0.4903	0.4961
Sulfur-in-Ash Content, moist basis	wt frac	0.0089	0.0038
Calorific Value, MMMF basis ⁴	BTU/lbm	15,162	15,368

Notes:

1. Moisture holding capacity determined by moisture equilibration at 86°F for 72 hrs at 96-97% relative humidity.

2. Ash content corrected for sulfur-in-ash content.


3. DMMF = Dry, mineral-matter-free basis determined with sulfur corrections in accordance with ASTM D 388.

4. MMMF = Moist, mineral-matter-free basis determined with sulfur corrections in accordance with ASTM D 388.

Petrographic Characterization Results

This section provides a summary of the petrographic analytical results. Figure 10 illustrates the maceral composition summarized in Table 15, which also includes mineral results. For coal ranks of medium volatile bituminous or greater, coal rank is best determined using vitrinite reflectance data. The mean-maximum vitrinite reflectance for sample 41300-1 was 0.96% in oil and for sample 41300-COMP-1 was 0.99% in oil, which placed the rank in the high volatile A bituminous range.

Figure 10. Mineral Matter-Free Basis Maceral Composition Summary

Table 15.

Petrographic Data

Parameter	Unit	41300-1	41300-COMP-1
Vitrinite Gro	oup Macerals,	Mineral-Matter Free Basis	
Telinite	vol frac	0.1550	0.1494
Collotelinite	vol frac	0.5525	0.4184
Vitrodetrinite	vol frac	0.0775	0.2690
Collodetrinite	vol frac	0.0000	0.0000
Corpogelinite	vol frac	0.0850	0.0805
Gelinite	vol frac	0.0000	0.0000
Total Vitrinite	vol frac	0.8700	0.9172
Inertinite Gr	oup Macerals,	Mineral-Matter Free Basis	
Fusinite	vol frac	0.0550	0.0138
Semifusinite	vol frac	0.0500	0.0299
Micrinite	vol frac	0.0000	0.0000
Macrinite	vol frac	0.0050	0.0092
Secretinite	vol frac	0.0000	0.0000
Funginite	vol frac	0.0050	0.0092
Inertodetrinite	vol frac	0.0000	0.0000
Total Inertinite	vol frac	0.1150	0.0621
Liptinite Gro	oup Macerals,	Mineral-Matter Free Basis	
Sporinite	vol frac	0.0025	0.0023
Cutinite	vol frac	0.0025	0.0046
Resinite	vol frac	0.0100	0.0138
Alginite	vol frac	0.0000	0.0000
Liptodetrinite	vol frac	0.0000	0.0000
Suberinite	vol frac	0.0000	0.0000
Exsudatinite	vol frac	0.0000	0.0000
Total Liptinite	vol frac	0.0150	0.0207
Minera	I Composition	n, Maceral-Fee Basis	
Clay	vol frac	0.9100	0.9077
Quartz	vol frac	0.0200	0.0154
Carbonate	vol frac	0.0400	0.0000
Sulfide	vol frac	0.0300	0.0769
Total	vol frac	1.0000	1.0000
	Vitrinite R	eflectance	
Mean-Maximum Reflectance	% in oil	0.96	0.99
Standard Deviation	% in oil	0.05	0.05
Coal Rank based on Vitrinite Reflectance	-	high volatile A	A bituminous

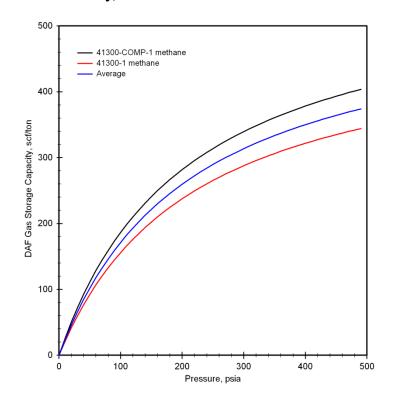
Adsorbed Gas Storage Capacity

Two methane isotherm measurements were performed by WFT Labs. The isotherm parameters and gas storage capacity estimates are summarized in Table 16. Figures 11 and 12 illustrate the methane storage capacity as a function of pressure on a dry, ash-free and in-situ basis, respectively.

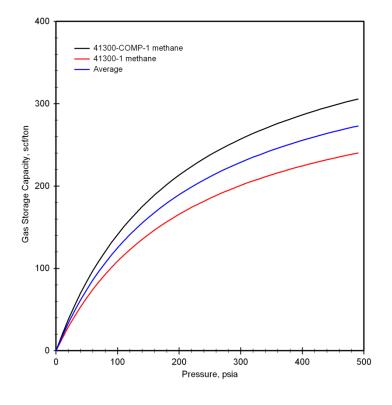
Parameter	Unit	41300-1	41300-COMP-1
Sample Para	ameters		
Top Depth	ft	753.5	813.0
Bottom Depth	ft	754.5	816.0
Measurement Gas	-	Methane	Methane
Measurement Temperature	°F	75.0	75.0
Moisture Content, in-situ basis	wt frac	0.0175	0.0147
Ash Content, in-situ basis	wt frac	0.2786	0.2209
Sulfur Content, in-situ basis	wt frac	0.0059	0.0070
Organic Content, in-situ basis	wt frac	0.6980	0.7573
Vitrinite Content, mineral-matter-free basis	vol frac	0.870	0.917
inertinite Content, mineral-matter-free basis	vol frac	0.115	0.062
Liptinite Content, mineral matter-free basis	vol frac	0.015	0.021
Calorific Value, moist, mineral-matter-free basis	BTU/lbm	14,914	15,189
Langmuir Pa	rameters		
Langmuir Storage Capacity, dry, ash-free	scf/ton	498.30	575.39
Langmuir Storage Capacity, in-situ	scf/ton	347.81	435.76
Langmuir Pressure	psia	219.22	208.14
Adsorbed Gas Sto	rage Capacity		·
Reservoir Pressure	psia	340.87	367.34
Storage Capacity, dry, ash-free	scf/ton	303.27	367.28
Storage Capacity, in-situ	scf/ton	211.68	278.15

Table 16.Coal Methane Adsorption Isotherm Parameters

For sample 41300-1, the dry, ash-free Langmuir storage capacity was 498.3 scf/ton, the in-situ Langmuir storage capacity was 347.8 scf/ton, and the Langmuir pressure was 219.2 psia. At a reservoir pressure of 340.9 psia, the in-situ storage capacity was 211.7 scf/ton.


For sample 41300-COMP-1, the dry, ash-free Langmuir storage capacity was 575.4 scf/ton, the in-situ Langmuir storage capacity was 435.8 scf/ton, and the Langmuir pressure was 208.1 psia. At a reservoir pressure of 367.3 psia, the in-situ storage capacity was 278.2 scf/ton.

If the reservoir pressure gradient of 0.433 psi/ft is correct, then the average dry, ash-free gas content of 359.5 scf/ton is slightly greater than the average dry, ash-free gas storage capacity of 333.9 scf/ton, which indicated the reservoir was saturated. The conclusion may not be accurate if the estimated reservoir conditions were incorrect, e.g. reservoir pressure was underestimated, or reservoir temperature was overestimated.


Figure 11.

Dry, Ash-Free Methane Isotherm

In-Situ Methane Isotherms

Adsorbed Gas-in-Place Estimate

Adsorbed gas-in-place (GIP) volume was determined for a unit coal thickness based upon the gas content and density data. Gas-in-place per unit thickness volumes were computed with Equation 8.⁴

$$\frac{G}{Ah} = 1.3597 \rho G_c \tag{8}$$

where:

- G gas-in-place volume, Mscf
- A reservoir area, acres
- h reservoir thickness, ft
- ρ average in-situ density, g/cm³
- G_c average in-situ gas content, scf/ton

The in-situ density and gas content values from the three desorbed core the samples were used for these estimates. Estimated GIP values per unit volume were reported in thousands of cubic feet at standard conditions per unit reservoir volume in acre-feet. These estimates are summarized in Table 17. This table can be used with coal thickness estimates from log data and assumed drainage areas to compute the volume of gas-in-place in an area of interest.

Table 17.	Gas-in-Place per Unit Volume Summary

Formation	Formation Top Depth		In-Situ Density	In-Situ Gas Content	Gas-In-Place per Volume	
	ft	ft	g/cm ³	scf/ton	Mscf/acre-ft	
Fruitland Coals	753.5	816.0	1.418	262.5	506.1	

Final Summary

Weatherford Laboratories measured properties of three core samples recovered from Fruitland Coals penetrated by the Souder, Miller & Associates' MW-34-5-4 well between October 11 and October 12, 2008. Core was collected between 749 and 826 ft. The goals of this project were to evaluate the sorbed gas content, gas storage capacity, coal properties, and gas-in-place of the Fruitland Coals at the well location.

Three core samples were desorbed to determine total gas content (lost plus measured plus crushed gas content) estimates. All three desorption samples were dedicated to collection of multiple gas composition and two desorption samples were dedicated to collection of isotopic samples throughout the desorption history. Density, moisture, and sulfur analyses were performed on all core samples. Coal characterization was determined for one desorption sample and one composite sample, which included chemical (proximate analysis, ultimate analysis, sulfur content, sulfur-in-ash content, and heating value) and petrological analyses (vitrinite reflectance and maceral composition). One desorption sample and one composite sample were characterized and used for two methane adsorption isotherm measurements to determine methane storage capacity versus pressure at constant temperature.

<u>References</u>

- 1. Furlong J. 2008. Summary of Field Operations, Souder, Miller & Associates, MW-34-5-4 Well. Field Report, Weatherford Laboratories, Arvada, CO (16 October 2008).
- 2. 2001 Annual Book of ASTM Standards, Volume 05.05 Gaseous Fuels; Coal and Coke, **05.05**. American Society for Testing and Materials (ASTM), Philadelphia, PA.
- 3. McLennan, J.D. Schafer, P.S., and Pratt, T.J. 1995. *A Guide to Determining Coalbed Gas Content.* Gas Research Institute Report GRI-94/0396, 182. Chicago, IL.
- 4. Mavor, M.J. and Nelson, C.R. 1997. *Coalbed Reservoir Gas-In-Place Analysis*. Gas Research Institute Report GRI-97/0263, 144. Chicago, IL.
- 5. Kissel, F.N., McCulloch, C.M., and Elder, C.H. 1973. Direct Method Determination of the Gas Content of Coal: Procedures and Results. Report of Investigations 8515, United States Department of the Interior, Bureau of Mines (1973).
- 6. Mavor, M.J. 1996. Coalbed Methane Reservoir Properties. In *A Guide to Coalbed Methane Reservoir Engineering*, ed. J.L. Saulsberry, P.S. Schafer, and R.A. Schraufnagel. Gas Research Institute Report GRI-94/0397, Chicago, IL.
- 7 Hoefs, J. 2004. *Stable Isotope Geochemistry*, fifth edition. Berlin, Springer.
- 8. Zhang, T. and Krooss, B.M. 2001. Experimental Investigation on the Carbon Isotope Fractionization of Methane During Gas Migration by Diffusion Through Sedimentary Rocks at Elevated Temperature and Pressure. *Geochimica et Cosmochimica Acta* **65** (16): 2,723-2,742.
- 9. Whitcar, M.J. 1999. Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane. *Chemical Geology* **161** (1-3): 291-314.
- 10. Mavor, M.J., Hartman, C., and Pratt, T.J. 2004. Uncertainty in Sorption Isotherm Measurements. *Proc.*, International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama, 411.
- 11. Langmuir, I. 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum. *Journal of the American Chemical Society* **40** (9), 1,361.
- 12. Yang, R.T. 1987. *Gas Separation by Adsorption Processes*. Boston: Butterworths.
- 13. Anonymous. 1997. Designation D 399-95 Standard Classification of Coals By Rank. In *1997 Annual Book of ASTM Standards Volume 05.05 Gaseous Fuels; Coal and Coke*, **05.05**: 169-171. American Society of Testing and Materials (ASTM), West Conshohocken, PA.

Appendix I

Souder, Miller & Associates MW-34-5-4 Fruitland Coals

Core Lithology and Photography

Core Lithology

Client	Name:	Souder, Miller & As	ssociates	i	Well Name:	MW-34-5-4	Job Number: 41300
		SAMPLE INTERVAL				D	DESCRIPTION
SAMPLE ID.	CANISTER ID.	Depth Drilled (feet)	Length (inches)	Core Diameter (inches)	Core Surface Texture		Comments
41300-1	GT-83	753.5-754.5	12.0?	3.50	(coaly) rough	5 (35%) and coaly shale to dull coal, mostly rubble, no fractures, nearly vertical cleats in the bright coal layers with 1-10mm spacing, eralization
41300-2	GT-184	813.0-814.0	12.0?	3.5?	(coaly) rough	,	bal in layers, mostly rubble, no fractures, cleats with 3-12mm ation in bright layers, picture is representative of rubblized sampe
41300-3	GT-210	815.0-816.0	11.0?	3.50	(coaly) rough	,	bal lenses, partial rubble, possibly poorly developed cleats in ess and shearing, well mixed sediment, no mineralization observed

Lithologist(s): D. Rogers

Core Photography Souder, Miller & Associates MW-34-5-4

Core Photography Souder, Miller & Associates

MW-34-5-4

Core Photography

Souder, Miller & Associates MW-34-5-4

Appendix II

Souder, Miller & Associates MW-34-5-4 Fruitland Coals

Desorption Data and Graphs

Sample 41300-1 Desorption Parameters

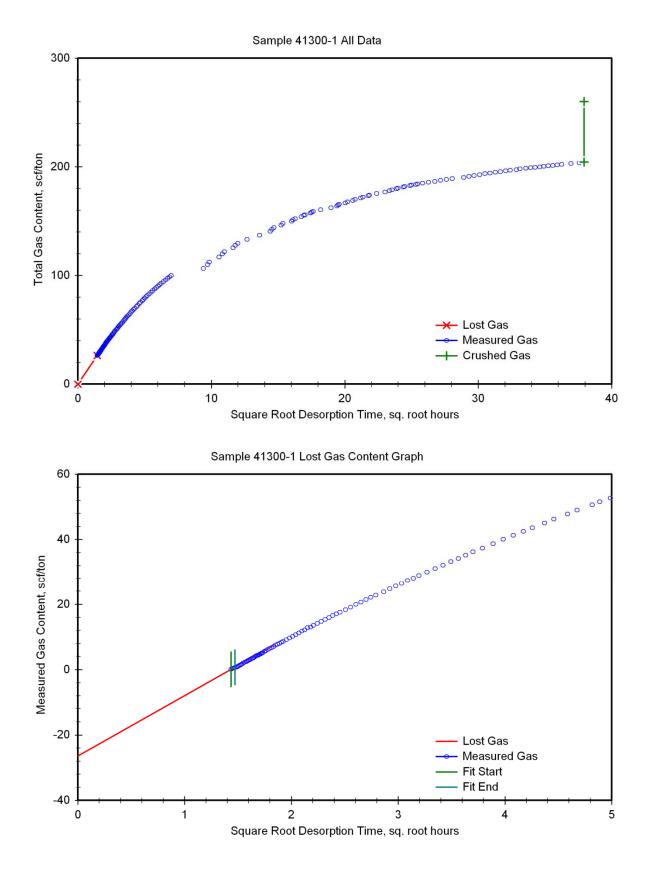
Parameter	Unit	Value
Sample Top Depth	feet	753.5
Sample Bottom Depth	feet	754.5
Reservoir Pressure	psia	341.18
Reservoir Pressure Gradient	psi/ft	0.4330
Mud Hydrostatic Pressure	psia	347.63
Mud Density	lbm/gal	8.50
Sample Mass	g	2,200.0
Sample Headspace Volume	cm ³	220.0
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/11/2008 15:22:45
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/11/2008 16:04:12
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/11/2008 16:05:35
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/11/2008 17:16:14
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/11/2008 18:09:10
Lost Gas Time	hours	2.060
Desorption Time Correction	hours	0.047
Fit Start Time	hours	2.059
Fit End Time	hours	2.165
Fit Start Time	hours ^{0.5}	1.435
Fit End Time	hours ^{0.5}	1.471
Lost Gas Content	scf/ton	26.4
Measured Gas Content	scf/ton	178.1
Crushed Gas Content	scf/ton	55.7
Total Gas Content	scf/ton	260.2
Lost Gas Fraction	vol frac	0.1015
Measured Gas Fraction	vol frac	0.6845
Crushed Gas Fraction	vol frac	0.2140
Diffusivity	1/us	0.1
Sorption Time	hours	151.7

Sample 41300-1 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hours ^{0.5}	cm ³	cm ³	°F	°F	psia	scf/ton
10/11/2008 18:09:10	2.0597	1.4352	0.0	0.0	74.1	65.3	11.09	0.00
10/11/2008 18:12:00	2.0595	1.4351	12.0	9.0	74.1	65.3	11.09	0.13
10/11/2008 18:14:00	2.0928	1.4467	25.0	18.6	74.5	65.3	11.09	0.40
10/11/2008 18:16:00	2.1262	1.4581	10.0	7.5	74.5	65.3	11.09	0.51
10/11/2008 18:17:59	2.1592	1.4694	18.0	13.3	74.7	65.3	11.09	0.70
10/11/2008 18:20:00	2.1928	1.4808	8.0	6.0	74.8	64.9	11.09	0.79
10/11/2008 18:22:00	2.2262	1.4920	15.0	11.2	74.8	64.8	11.09	0.95
10/11/2008 18:24:00	2.2595	1.5032	17.0	12.7	74.8	64.6	11.09	1.14
10/11/2008 18:26:00	2.2928	1.5142	20.0	15.0	74.8	64.2	11.09	1.36
10/11/2008 18:27:59	2.3259	1.5251	17.0	12.7	74.8	63.9	11.09	1.54
10/11/2008 18:30:00	2.3595	1.5361	18.0	13.5	74.8	63.5	11.09	1.74
10/11/2008 18:32:00	2.3928	1.5469	26.0	19.5	75.0	62.8	11.09	2.02
10/11/2008 18:34:59	2.4426	1.5629	29.0	21.8	75.0	62.6	11.10	2.34
10/11/2008 18:38:00	2.4928	1.5789	16.0	12.0	74.8	62.6	11.10	2.51
10/11/2008 18:40:00	2.5262	1.5894	17.0	12.7	74.8	62.4	11.10	2.70
10/11/2008 18:42:00	2.5595	1.5998	20.0	15.0	75.0	62.1	11.10	2.92
10/11/2008 18:44:00	2.5928	1.6102	13.0	9.8	74.8	62.1	11.10	3.06
10/11/2008 18:46:00	2.6262	1.6205	16.0	12.0	74.8	61.9	11.09	3.23
10/11/2008 18:48:00	2.6595	1.6308	21.0	15.8	74.8	61.7	11.09	3.46
10/11/2008 18:49:59	2.6926	1.6409	15.0	11.3	74.8	61.5	11.09	3.63
10/11/2008 18:52:00	2.7262	1.6511	17.0	12.8	74.8	61.5	11.09	3.81
10/11/2008 18:53:59	2.7592	1.6611	24.0	18.1	74.7	61.3	11.09	4.08
10/11/2008 18:56:00	2.7928	1.6712	16.0	12.1	74.8	61.2	11.10	4.25
10/11/2008 18:58:00	2.8262	1.6811	14.0	10.5	74.8	61.2	11.09	4.41
10/11/2008 19:00:00	2.8595	1.6910	13.0	9.8	74.8	61.2	11.09	4.55
10/11/2008 19:02:00	2.8928	1.7008	17.0	12.8	74.7	61.0	11.09	4.73
10/11/2008 19:04:00	2.9262	1.7106	14.0	10.5	74.7	61.0	11.10	4.89
10/11/2008 19:05:59	2.9592	1.7202	17.0	12.7	74.7	60.8	11.09	5.07
10/11/2008 19:08:00	2.9928	1.7300	16.0	12.1	74.7	60.8	11.09	5.25
10/11/2008 19:12:00	3.0595	1.7491	34.0	25.6	74.5	60.8	11.09	5.62
10/11/2008 19:14:00	3.0928	1.7586	18.0	13.6	74.5	60.8	11.09	5.82
10/11/2008 19:18:00	3.1595	1.7775	28.0	21.1	74.5	60.6	11.09	6.13
10/11/2008 19:21:59	3.2259	1.7961	32.0	24.1	74.5	60.3	11.09	6.48
10/11/2008 19:26:00	3.2928	1.8146	28.0	21.1	74.5	60.3	11.09	6.79
10/11/2008 19:30:00	3.3595	1.8329	32.0	24.1	74.3	60.3	11.09	7.14
10/11/2008 19:34:00	3.4262	1.8510	33.0	24.9	74.1	60.3	11.09	7.50

	0.4000	1 0000	05.0	40.0	74.4	00.0	44.40	
10/11/2008 19:38:00	3.4928	1.8689	25.0	18.9	74.1	60.3	11.10	7.77
10/11/2008 19:42:00	3.5595	1.8867	29.0	21.8	74.1	60.3	11.09	8.09
10/11/2008 19:46:00	3.6262	1.9043	25.0	18.9	73.9	60.3	11.09	8.37
10/11/2008 19:50:00	3.6928	1.9217	27.0	20.4	73.9	60.4	11.09	8.66
10/11/2008 19:57:00	3.8095	1.9518	48.0	36.2	73.9	60.4	11.09	9.19
10/11/2008 20:04:00	3.9262	1.9815	45.0	33.9	73.9	60.6	11.10	9.68
10/11/2008 20:11:00	4.0428	2.0107	49.0	36.9	73.8	60.8	11.10	10.22
10/11/2008 20:18:00	4.1595	2.0395	45.0	33.9	73.6	60.8	11.09	10.72
10/11/2008 20:25:00	4.2762	2.0679	47.0	35.4	73.4	61.0	11.09	11.23
10/11/2008 20:32:00	4.3928	2.0959	52.0	39.1	73.6	61.2	11.09	11.80
10/11/2008 20:39:00	4.5095	2.1236	36.0	27.1	73.6	61.3	11.10	12.20
10/11/2008 20:46:00	4.6262	2.1509	60.0	45.2	73.8	61.3	11.10	12.85
10/11/2008 20:53:00	4.7428	2.1778	22.0	16.6	73.6	61.5	11.10	13.10
10/11/2008 21:00:00	4.8595	2.2044	42.0	31.7	73.4	61.5	11.11	13.56
10/11/2008 21:10:00	5.0262	2.2419	55.0	41.5	73.6	61.5	11.13	14.16
10/11/2008 21:20:00	5.1928	2.2788	56.0	42.2	73.2	61.3	11.12	14.78
10/11/2008 21:30:00	5.3595	2.3151	53.0	40.0	73.4	61.3	11.12	15.36
10/11/2008 21:40:00	5.5262	2.3508	55.0	41.4	73.6	61.2	11.12	15.96
10/11/2008 21:49:59	5.6926	2.3859	54.0	40.8	73.4	61.0	11.12	16.56
10/11/2008 22:00:00	5.8595	2.4206	49.0	37.0	73.4	60.8	11.12	17.10
10/11/2008 22:10:00	6.0262	2.4548	46.0	34.7	73.4	60.8	11.12	17.60
10/11/2008 22:25:00	6.2762	2.5052	72.0	54.5	73.4	60.1	11.13	18.39
10/11/2008 22:40:00	6.5262	2.5546	72.0	54.6	73.4	59.9	11.13	19.19
10/11/2008 22:55:00	6.7762	2.6031	70.0	52.9	73.4	59.5	11.12	19.96
10/11/2008 23:10:00	7.0262	2.6507	66.0	50.1	73.4	59.0	11.13	20.69
10/11/2008 23:25:00	7.2762	2.6974	69.0	52.4	73.4	58.5	11.13	21.45
10/11/2008 23:40:00	7.5262	2.7434	61.0	46.4	73.4	58.1	11.14	22.13
10/11/2008 23:55:00	7.7762	2.7886	65.0	49.5	73.4	57.7	11.14	22.85
10/12/2008 00:20:00	8.1928	2.8623	95.0	72.4	73.2	57.2	11.14	23.90
10/12/2008 00:40:00	8.5262	2.9200	80.0	61.1	73.4	56.5	11.15	24.79
10/12/2008 01:00:00	8.8595	2.9765	75.0	57.4	73.2	55.9	11.15	25.63
10/12/2008 01:19:59	9.1926	3.0319	77.0	58.9	73.0	55.4	11.15	26.49
10/12/2008 01:40:00	9.5262	3.0865	80.0	61.1	74.1	54.9	11.15	27.37
10/12/2008 02:00:00	9.8595	3.1400	66.0	50.7	73.9	54.3	11.16	28.11
10/12/2008 02:19:59	10.1926	3.1926	70.0	53.8	73.8	53.8	11.16	28.90
10/12/2008 02:49:59	10.6926	3.2699	96.0	73.9	73.8	53.1	11.16	29.97
10/12/2008 03:20:00	11.1928	3.3456	98.0	75.6	73.8	52.3	11.17	31.07
10/12/2008 03:49:59	11.6926	3.4194	95.0	73.2	73.8	52.0	11.16	32.14
10/12/2008 04:19:59	12.1926	3.4918	98.0	75.6	73.8	52.0	11.16	33.24
10/12/2008 04:50:00	12.6928	3.5627	88.0	68.0	73.8	51.3	11.16	34.23
10/12/2008 05:19:59	13.1926	3.6322	90.0	69.3	74.1	53.2	11.17	35.24

10/12/2008 05:49:59	13.6926	3.7003	88.0	67.5	74.1	55.4	11.17	36.22
10/12/2008 06:30:00	14.3595	3.7894	103.0	78.7	74.1	57.4	11.17	37.37
10/12/2008 07:15:00	15.1095	3.8871	120.0	92.4	74.3	53.8	11.18	38.71
10/12/2008 08:00:00	15.8595	3.9824	121.0	93.0	74.1	54.7	11.18	40.07
10/12/2008 08:45:00	16.6095	4.0755	108.0	82.7	73.9	57.2	11.19	41.27
10/12/2008 09:32:00	17.3928	4.1705	107.0	82.2	74.3	55.4	11.19	42.47
10/12/2008 10:15:00	18.1095	4.2555	106.0	81.0	74.3	58.3	11.19	43.65
10/12/2008 11:15:00	19.1095	4.3714	130.0	98.8	74.5	60.6	11.19	45.09
10/12/2008 12:00:00	19.8595	4.4564	106.0	80.4	74.3	62.1	11.20	46.26
10/12/2008 13:10:00	21.0262	4.5854	141.0	106.3	74.3	65.5	11.20	47.81
10/12/2008 14:00:00	21.8595	4.6754	110.0	83.0	74.1	65.1	11.19	49.02
10/12/2008 15:20:00	23.1928	4.8159	150.0	113.3	74.5	64.9	11.20	50.67
10/12/2008 16:01:00	23.8762	4.8863	85.0	64.6	74.7	62.1	11.21	51.61
10/12/2008 17:00:00	24.8595	4.9859	105.0	80.4	74.1	58.5	11.22	52.78
10/12/2008 18:01:59	25.8926	5.0885	108.0	82.8	73.8	58.5	11.23	53.98
10/12/2008 19:00:00	26.8595	5.1826	109.0	82.7	73.8	63.9	11.24	55.19
10/12/2008 20:30:00	28.3595	5.3254	135.0	103.1	74.1	61.7	11.26	56.69
10/12/2008 22:00:00	29.8595	5.4644	135.0	103.4	74.1	60.3	11.26	58.19
10/12/2008 23:30:00	31.3595	5.6000	137.0	105.4	73.9	58.3	11.27	59.73
10/13/2008 01:00:00	32.8595	5.7323	133.0	102.7	73.9	56.3	11.27	61.22
10/13/2008 02:30:00	34.3595	5.8617	131.0	101.6	73.9	54.7	11.28	62.70
10/13/2008 04:00:00	35.8595	5.9883	110.0	85.2	73.9	54.7	11.27	63.94
10/13/2008 05:30:00	37.3595	6.1122	121.0	93.9	73.9	54.0	11.28	65.31
10/13/2008 07:00:00	38.8595	6.2337	109.0	84.9	73.9	52.7	11.28	66.55
10/13/2008 09:00:00	40.8595	6.3921	135.0	105.1	73.8	53.2	11.30	68.08
10/13/2008 11:00:00	42.8595	6.5467	138.0	106.1	74.1	64.2	11.39	69.62
10/13/2008 13:00:00	44.8595	6.6977	136.0	101.9	74.1	65.7	11.29	71.11
10/13/2008 15:00:00	46.8595	6.8454	127.0	97.7	74.1	59.2	11.29	72.53
10/13/2008 16:45:00	48.6095	6.9721	115.0	88.8	73.9	56.3	11.28	73.82
10/15/2008 08:27:00	88.3095	9.3973	549.0	437.8	75.0	69.8	11.94	80.20
10/15/2008 14:14:00	94.0928	9.7001	312.0	245.5	75.9	73.2	11.90	83.78
10/15/2008 16:45:00	96.6095	9.8290	199.0	156.8	76.1	73.4	11.89	86.06
10/16/2008 07:59:00	111.8428	10.5756	391.0	310.2	75.2	70.3	11.89	90.58
10/16/2008 13:02:59	116.9092	10.8125	270.0	210.9	76.5	75.5	11.87	93.65
10/16/2008 16:15:00	120.1095	10.9594	171.0	133.8	76.8	75.7	11.86	95.60
10/17/2008 06:48:00	134.6595	11.6043	325.0	257.6	76.3	72.8	11.94	99.35
10/17/2008 11:10:00	139.0262	11.7909	192.0	152.0	76.3	73.7	11.94	101.56
10/17/2008 15:17:59	143.1592	11.9649	161.0	125.5	77.5	78.4	11.92	103.39
10/18/2008 08:16:00	160.1262	12.6541	309.0	244.6	76.1	71.2	11.89	106.95
10/19/2008 09:20:00	185.1928	13.6086	329.0	258.9	75.6	72.6	11.86	110.72
10/20/2008 07:44:00	207.5928	14.4081	321.0	254.1	74.8	73.5	11.94	114.42



/ /								
10/20/2008 11:29:00	211.3428	14.5376	170.0	134.0	75.2	74.4	11.93	116.37
10/20/2008 15:31:00	215.3762	14.6757	125.0	97.6	74.7	74.1	11.87	117.79
10/21/2008 07:59:00	231.8428	15.2264	212.0	166.3	73.8	70.3	11.80	120.21
10/21/2008 11:42:59	235.5759	15.3485	117.0	91.5	73.8	72.3	11.79	121.54
10/22/2008 08:04:59	255.9426	15.9982	196.0	157.2	72.9	67.4	11.95	123.83
10/22/2008 11:46:00	259.6262	16.1129	105.0	83.0	73.6	72.5	11.94	125.04
10/22/2008 16:38:59	264.5092	16.2637	96.0	75.4	73.8	74.4	11.93	126.14
10/23/2008 08:18:00	280.1595	16.7380	137.0	108.0	72.9	67.4	11.85	127.71
10/23/2008 14:42:00	286.5595	16.9281	112.0	86.7	73.9	73.7	11.80	128.98
10/23/2008 17:08:00	288.9928	16.9998	62.0	48.1	74.7	74.3	11.80	129.68
10/24/2008 06:59:00	302.8428	17.4024	127.0	100.4	73.2	68.3	11.81	131.14
10/24/2008 10:50:00	306.6928	17.5126	73.0	57.6	73.2	70.8	11.83	131.98
10/24/2008 14:12:00	310.0595	17.6085	58.0	44.5	74.5	74.8	11.81	132.63
10/25/2008 10:50:00	330.6928	18.1850	143.0	112.2	73.9	72.6	11.81	134.26
10/26/2008 15:12:00	359.0595	18.9489	164.0	130.3	74.1	74.3	11.99	136.16
10/27/2008 08:23:00	376.2428	19.3970	139.0	111.9	73.6	68.1	12.02	137.79
10/27/2008 11:54:00	379.7595	19.4874	73.0	58.7	73.0	68.1	12.01	138.64
10/27/2008 15:08:00	382.9928	19.5702	54.0	41.8	74.1	74.3	11.96	139.25
10/28/2008 09:00:00	400.8595	20.0215	105.0	83.9	73.8	70.1	11.97	140.47
10/28/2008 16:04:00	407.9262	20.1972	88.0	66.9	76.3	86.1	11.94	141.45
10/29/2008 08:26:00	424.2928	20.5984	115.0	91.0	75.2	71.7	11.91	142.77
10/29/2008 15:40:00	431.5262	20.7732	85.0	64.9	76.1	78.8	11.85	143.72
10/30/2008 08:51:59	448.7259	21.1832	113.0	88.8	75.7	75.0	11.88	145.01
10/30/2008 16:05:00	455.9428	21.3528	80.0	62.7	76.6	76.3	11.90	145.92
10/31/2008 09:27:59	473.3259	21.7561	105.0	83.2	76.6	75.1	11.98	147.14
10/31/2008 13:24:00	477.2595	21.8463	58.0	45.4	76.8	76.5	11.96	147.80
11/01/2008 13:02:00	500.8928	22.3806	114.0	89.1	76.6	76.1	11.92	149.09
11/02/2008 17:45:00	529.6095	23.0132	139.0	105.0	76.6	76.5	11.74	150.62
11/03/2008 09:13:00	545.0762	23.3469	104.0	81.2	74.1	74.3	11.78	151.80
11/03/2008 17:30:00	553.3595	23.5236	73.0	55.2	76.1	79.1	11.75	152.61
11/04/2008 09:39:00	569.5095	23.8644	89.0	68.8	73.4	70.7	11.66	153.61
11/04/2008 15:01:59	574.8926	23.9769	49.0	36.6	74.5	74.7	11.62	154.14
11/05/2008 10:43:00	594.5762	24.3839	85.0	65.8	74.8	73.3	11.66	155.10
11/05/2008 15:38:00	599.4928	24.4845	48.0	37.3	73.8	73.1	11.69	155.64
11/06/2008 10:34:59	618.4426	24.8685	68.0	53.2	73.6	72.9	11.77	156.42
11/06/2008 15:27:00	623.3095	24.9662	39.0	30.4	74.5	73.4	11.79	156.86
11/07/2008 09:13:00	641.0762	25.3195	62.0	48.6	74.1	72.9	11.80	157.57
11/07/2008 15:31:00	647.3762	25.4436	45.0	34.8	75.4	72.9	11.80	158.08
11/08/2008 10:31:59	666.3926	25.8146	52.0	40.7	73.4	73.0	11.80	158.67
11/09/2008 09:33:00	689.4095	26.2566	73.0	55.3	73.6	73.5	11.71	159.48
11/10/2008 10:50:59	714.7092	26.7340	81.0	61.5	74.1	76.8	11.66	160.37

11/11/2008 09:52:00	737.7262	27.1611	76.0	58.7	73.8	78.2	11.75	161.23
11/12/2008 10:02:59	761.9092	27.6027	77.0	59.3	75.0	78.2	11.76	162.09
11/13/2008 09:49:59	785.6926	28.0302	78.0	58.0	75.0	79.8	11.66	162.93
11/15/2008 11:35:59	835.4592	28.9043	97.0	76.4	74.3	74.3	11.90	164.05
11/16/2008 10:40:00	858.5262	29.3006	80.0	62.4	74.5	76.7	11.88	164.96
11/17/2008 09:13:00	881.0762	29.6829	70.0	55.3	75.2	74.2	11.94	165.76
11/18/2008 10:29:00	906.3428	30.1055	73.0	57.0	75.7	75.8	11.92	166.59
11/19/2008 10:07:00	929.9762	30.4955	78.0	60.6	75.4	75.4	11.87	167.47
11/20/2008 09:46:00	953.6262	30.8808	51.0	40.7	72.5	72.9	12.01	168.07
11/21/2008 09:42:00	977.5595	31.2659	59.0	42.2	73.8	73.3	11.78	168.68
11/22/2008 10:07:00	1001.9762	31.6540	58.0	45.4	73.6	74.1	11.82	169.34
11/23/2008 11:10:00	1027.0262	32.0472	58.0	44.8	74.1	75.0	11.80	169.99
11/24/2008 09:23:00	1049.2428	32.3920	49.0	38.7	73.8	73.1	11.90	170.56
11/25/2008 14:35:00	1078.4428	32.8397	60.0	45.3	75.2	74.7	11.82	171.22
11/26/2008 07:59:00	1095.8428	33.1035	47.0	36.9	73.2	72.6	11.82	171.75
11/27/2008 14:53:00	1126.7428	33.5670	53.0	40.9	74.1	74.0	11.80	172.35
11/28/2008 14:21:00	1150.2095	33.9147	46.0	34.2	74.3	74.3	11.70	172.85
11/29/2008 12:26:00	1172.2928	34.2388	39.0	30.3	73.6	72.9	11.72	173.29
11/30/2008 13:43:00	1197.5762	34.6060	35.0	27.4	73.8	72.9	11.77	173.69
12/01/2008 10:46:00	1218.6262	34.9088	42.0	32.6	73.8	73.3	11.76	174.16
12/02/2008 09:45:00	1241.6095	35.2365	42.0	32.3	72.3	68.9	11.69	174.63
12/03/2008 09:43:00	1265.5762	35.5749	41.0	32.0	73.8	75.8	11.82	175.10
12/04/2008 08:58:00	1288.8262	35.9002	40.0	31.5	72.7	74.2	11.88	175.56
12/05/2008 09:40:00	1313.5262	36.2426	38.0	27.5	73.2	74.9	11.75	175.96
12/07/2008 12:11:00	1364.0428	36.9330	68.0	51.6	75.7	74.6	11.73	176.71
12/09/2008 10:31:59	1410.3926	37.5552	49.0	38.4	73.8	75.8	11.85	177.27
12/10/2008 09:01:59	1432.8926	37.8536	52.0	39.9	76.6	72.1	11.84	177.85
12/10/2008 13:52:00	1437.7262	37.9174	21.0	16.6	76.5	70.5	11.85	178.09

Sample 41300-2 Desorption Parameters

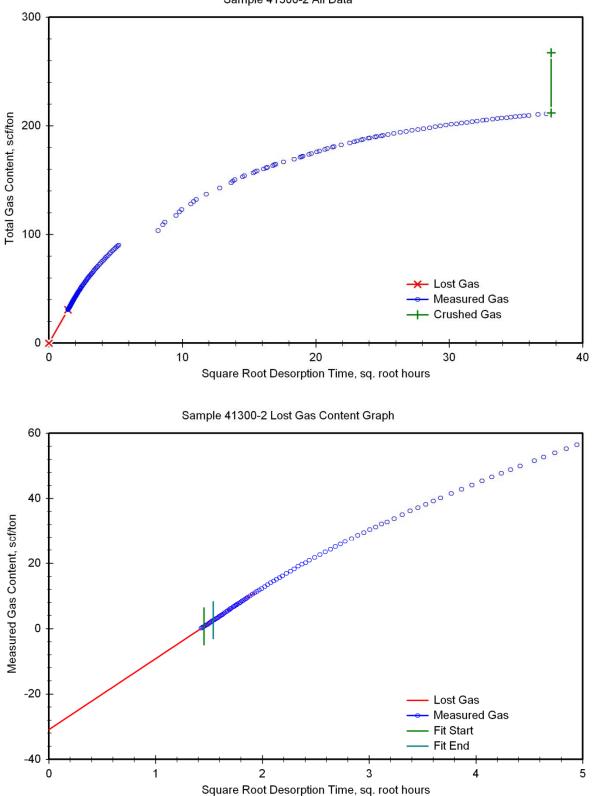
Parameter	Unit	Value
Sample Top Depth	feet	813.0
Sample Bottom Depth	feet	814.0
Reservoir Pressure	psia	366.94
Reservoir Pressure Gradient	psi/ft	0.4330
Mud Hydrostatic Pressure	psia	373.90
Mud Density	lbm/gal	8.50
Sample Mass	g	1,733.0
Sample Headspace Volume	cm ³	825.0
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/12/2008 13:00:13
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/12/2008 13:31:10
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/12/2008 13:32:19
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/12/2008 14:31:10
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/12/2008 15:34:10
Lost Gas Time	hours	2.031
Desorption Time Correction	hours	0.014
Fit Start Time	hours	2.111
Fit End Time	hours	2.368
Fit Start Time	hours ^{0.5}	1.453
Fit End Time	hours ^{0.5}	1.539
Lost Gas Content	scf/ton	30.9
Measured Gas Content	scf/ton	181.1
Crushed Gas Content	scf/ton	55.3
Total Gas Content	scf/ton	267.3
Lost Gas Fraction	vol frac	0.1156
Measured Gas Fraction	vol frac	0.6776
Crushed Gas Fraction	vol frac	0.2069
Diffusivity	1/us	0.2
Sorption Time	hours	115.6

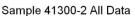
Sample 41300-2 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hours ^{0.5}	cm ³	cm ³	°F	°F	psia	scf/ton
10/12/2008 15:34:10	2.0308	1.4251	0.0	0.0	72.1	64.4	11.20	0.00
10/12/2008 15:34:59	2.0306	1.4250	11.0	8.3	72.1	64.4	11.20	0.15
10/12/2008 15:36:59	2.0640	1.4366	23.0	16.4	73.2	64.2	11.21	0.46
10/12/2008 15:39:00	2.0976	1.4483	11.0	8.1	73.4	64.2	11.21	0.61
10/12/2008 15:41:00	2.1309	1.4598	20.0	14.9	73.6	64.0	11.21	0.88
10/12/2008 15:43:00	2.1642	1.4711	17.0	12.9	73.6	63.9	11.21	1.12
10/12/2008 15:45:00	2.1976	1.4824	10.0	7.2	73.9	63.7	11.21	1.25
10/12/2008 15:46:59	2.2306	1.4935	20.0	15.2	73.8	63.5	11.21	1.53
10/12/2008 15:49:00	2.2642	1.5047	18.0	13.6	73.6	63.3	11.21	1.79
10/12/2008 15:51:00	2.2976	1.5158	17.0	12.9	73.6	63.1	11.21	2.02
10/12/2008 15:53:00	2.3309	1.5267	20.0	14.9	73.8	63.0	11.21	2.30
10/12/2008 15:55:00	2.3642	1.5376	20.0	14.8	74.1	62.8	11.21	2.57
10/12/2008 15:57:00	2.3976	1.5484	11.0	8.3	74.1	62.6	11.21	2.73
10/12/2008 15:59:00	2.4309	1.5591	17.0	12.9	74.1	62.4	11.21	2.97
10/12/2008 16:01:00	2.4642	1.5698	17.0	12.9	74.1	62.2	11.21	3.21
10/12/2008 16:02:59	2.4973	1.5803	12.0	8.4	74.7	62.1	11.21	3.36
10/12/2008 16:05:00	2.5309	1.5909	21.0	16.0	74.3	61.9	11.21	3.66
10/12/2008 16:07:00	2.5642	1.6013	15.0	11.4	74.1	61.7	11.21	3.87
10/12/2008 16:09:00	2.5976	1.6117	16.0	12.2	74.1	61.5	11.21	4.09
10/12/2008 16:11:00	2.6309	1.6220	17.0	12.9	74.1	61.2	11.22	4.33
10/12/2008 16:12:59	2.6640	1.6322	16.0	12.1	73.9	61.2	11.21	4.56
10/12/2008 16:16:00	2.7142	1.6475	25.0	19.0	73.9	60.8	11.21	4.91
10/12/2008 16:19:00	2.7642	1.6626	25.0	18.6	74.3	60.6	11.21	5.25
10/12/2008 16:21:00	2.7976	1.6726	17.0	13.0	74.1	60.6	11.21	5.49
10/12/2008 16:24:00	2.8476	1.6875	20.0	15.3	74.3	60.3	11.22	5.77
10/12/2008 16:26:00	2.8809	1.6973	20.0	15.3	74.3	60.1	11.22	6.06
10/12/2008 16:28:00	2.9142	1.7071	12.0	9.2	74.1	60.1	11.22	6.23
10/12/2008 16:31:59	2.9806	1.7264	32.0	24.2	74.3	59.5	11.22	6.67
10/12/2008 16:34:00	3.0142	1.7362	15.0	11.5	74.3	59.4	11.22	6.89
10/12/2008 16:36:00	3.0476	1.7457	14.0	10.4	74.3	59.2	11.21	7.08
10/12/2008 16:38:00	3.0809	1.7552	15.0	11.5	74.3	59.0	11.22	7.29
10/12/2008 16:40:00	3.1142	1.7647	15.0	11.5	74.1	58.8	11.22	7.50
10/12/2008 16:43:00	3.1642	1.7788	21.0	15.8	74.3	58.8	11.22	7.80
10/12/2008 16:46:00	3.2142	1.7928	21.0	16.1	73.9	58.6	11.22	8.09
10/12/2008 16:49:00	3.2642	1.8067	22.0	16.8	73.9	58.6	11.22	8.40
10/12/2008 16:52:00	3.3142	1.8205	19.0	14.5	73.9	58.5	11.22	8.67

10/12/2008 16:55:00	3.3642	1.8342	23.0	17.6	73.9	58.5	11.22	9.00
10/12/2008 16:57:59	3.4140	1.8477	20.0	15.3	74.1	58.5	11.22	9.28
10/12/2008 17:01:00	3.4642	1.8612	22.0	16.6	74.1	58.5	11.22	9.59
10/12/2008 17:06:00	3.5476	1.8835	33.0	25.3	74.1	58.6	11.22	10.05
10/12/2008 17:11:00	3.6309	1.9055	33.0	25.3	74.1	58.6	11.22	10.52
10/12/2008 17:16:00	3.7142	1.9272	32.0	24.2	74.1	58.6	11.22	10.97
10/12/2008 17:21:00	3.7976	1.9487	31.0	23.7	74.1	58.6	11.22	11.41
10/12/2008 17:26:00	3.8809	1.9700	31.0	23.7	74.1	58.6	11.22	11.85
10/12/2008 17:31:00	3.9642	1.9910	30.0	23.0	73.9	58.6	11.22	12.27
10/12/2008 17:38:00	4.0809	2.0201	43.0	32.5	74.3	58.5	11.22	12.87
10/12/2008 17:45:00	4.1976	2.0488	41.0	31.4	74.3	58.3	11.22	13.45
10/12/2008 17:51:59	4.3140	2.0770	42.0	32.2	74.3	58.3	11.22	14.05
10/12/2008 17:59:00	4.4309	2.1050	36.0	27.6	74.1	58.3	11.22	14.56
10/12/2008 18:06:00	4.5476	2.1325	36.0	27.6	74.1	58.8	11.22	15.07
10/12/2008 18:13:00	4.6642	2.1597	37.0	28.3	73.8	59.2	11.23	15.59
10/12/2008 18:20:00	4.7809	2.1865	40.0	30.2	74.1	59.7	11.23	16.15
10/12/2008 18:30:00	4.9476	2.2243	55.0	41.5	74.5	60.8	11.23	16.92
10/12/2008 18:40:00	5.1142	2.2615	47.0	35.8	74.3	61.7	11.23	17.58
10/12/2008 18:49:59	5.2806	2.2980	49.0	37.3	74.3	62.6	11.23	18.27
10/12/2008 19:00:00	5.4476	2.3340	62.0	47.1	74.3	63.9	11.24	19.14
10/12/2008 19:10:00	5.6142	2.3694	45.0	34.1	74.1	64.0	11.24	19.77
10/12/2008 19:19:59	5.7806	2.4043	30.0	22.8	74.1	64.4	11.24	20.19
10/12/2008 19:30:00	5.9476	2.4388	57.0	43.3	74.1	64.2	11.24	20.99
10/12/2008 19:45:00	6.1976	2.4895	60.0	45.6	73.9	63.3	11.24	21.83
10/12/2008 20:00:00	6.4476	2.5392	60.0	45.7	74.1	62.8	11.25	22.68
10/12/2008 20:15:00	6.6976	2.5880	59.0	45.0	74.1	62.2	11.25	23.51
10/12/2008 20:30:00	6.9476	2.6358	56.0	42.7	74.1	61.7	11.25	24.30
10/12/2008 20:45:00	7.1976	2.6828	63.0	48.1	73.8	61.5	11.26	25.19
10/12/2008 21:00:00	7.4476	2.7290	54.0	40.9	74.1	61.3	11.26	25.94
10/12/2008 21:15:00	7.6976	2.7744	59.0	45.1	74.1	61.2	11.26	26.78
10/12/2008 21:34:59	8.0306	2.8338	62.0	47.4	74.1	60.8	11.26	27.65
10/12/2008 21:55:00	8.3642	2.8921	70.0	53.6	74.1	60.3	11.26	28.65
10/12/2008 22:15:00	8.6976	2.9492	63.0	48.3	74.1	59.9	11.27	29.54
10/12/2008 22:34:59	9.0306	3.0051	64.0	49.1	74.1	59.4	11.27	30.45
10/12/2008 22:55:00	9.3642	3.0601	56.0	43.0	74.1	58.8	11.27	31.24
10/12/2008 23:15:00	9.6976	3.1141	70.0	53.8	74.1	58.5	11.27	32.24
10/12/2008 23:35:00	10.0309	3.1672	43.0	33.1	74.1	58.3	11.27	32.85
10/13/2008 00:00:00	10.4476	3.2323	68.0	52.3	73.9	57.9	11.27	33.82
10/13/2008 00:30:00	10.9476	3.3087	87.0	67.1	73.9	57.0	11.27	35.06
10/13/2008 01:00:00	11.4476	3.3834	80.0	61.8	73.9	56.3	11.27	36.20
10/13/2008 01:30:00	11.9476	3.4565	70.0	54.1	73.9	55.9	11.27	37.20

			1					
10/13/2008 02:00:00	12.4476	3.5281	71.0	54.9	73.9	55.4	11.27	38.22
10/13/2008 02:30:00	12.9476	3.5983	70.0	54.3	73.9	54.7	11.28	39.22
10/13/2008 03:00:00	13.4476	3.6671	67.0	51.9	73.9	54.7	11.28	40.18
10/13/2008 03:45:00	14.1976	3.7680	97.0	75.2	73.9	54.7	11.28	41.57
10/13/2008 04:30:00	14.9476	3.8662	90.0	69.8	73.9	54.7	11.28	42.86
10/13/2008 05:15:00	15.6976	3.9620	92.0	71.1	73.9	54.1	11.27	44.17
10/13/2008 06:00:00	16.4476	4.0556	88.0	68.4	73.9	53.4	11.28	45.44
10/13/2008 06:45:00	17.1976	4.1470	85.0	66.2	73.9	52.7	11.28	46.66
10/13/2008 07:30:00	17.9476	4.2365	76.0	59.2	73.8	52.5	11.29	47.76
10/13/2008 08:15:00	18.6976	4.3241	77.0	60.1	73.8	52.0	11.29	48.87
10/13/2008 09:01:00	19.4642	4.4118	78.0	60.8	73.8	53.2	11.30	49.99
10/13/2008 10:12:59	20.6640	4.5458	116.0	89.3	73.8	59.7	11.30	51.64
10/13/2008 11:01:00	21.4642	4.6330	78.0	59.4	74.1	64.4	11.31	52.74
10/13/2008 12:00:00	22.4476	4.7379	92.0	70.1	73.9	64.8	11.31	54.04
10/13/2008 13:01:00	23.4642	4.8440	90.0	67.4	74.1	65.7	11.29	55.28
10/13/2008 14:00:00	24.4476	4.9444	85.0	64.5	74.3	64.4	11.29	56.47
10/13/2008 15:01:00	25.4642	5.0462	81.0	61.8	74.5	59.2	11.29	57.62
10/13/2008 16:00:00	26.4476	5.1427	78.0	60.1	73.8	58.5	11.29	58.73
10/13/2008 16:46:00	27.2142	5.2167	60.0	46.1	74.1	56.3	11.29	59.58
10/15/2008 08:31:00	66.9642	8.1832	890.0	709.7	75.2	69.8	11.94	72.70
10/15/2008 14:16:59	72.7306	8.5282	376.0	293.9	75.9	73.2	11.90	78.13
10/15/2008 16:46:00	75.2142	8.6726	163.0	128.1	76.1	73.4	11.90	80.50
10/16/2008 08:02:00	90.4809	9.5121	419.0	333.3	75.0	68.9	11.89	86.66
10/16/2008 13:05:59	95.5473	9.7748	243.0	186.8	76.5	76.1	11.86	90.12
10/16/2008 16:18:00	98.7476	9.9372	133.0	103.9	77.0	75.7	11.87	92.04
10/17/2008 06:51:00	113.2976	10.6441	355.0	281.1	76.5	73.4	11.94	97.23
10/17/2008 11:13:00	117.6642	10.8473	159.0	125.7	76.5	74.1	11.94	99.56
10/17/2008 15:20:00	121.7809	11.0354	125.0	96.0	77.5	78.2	11.92	101.33
10/18/2008 08:18:00	138.7476	11.7791	344.0	271.3	76.6	71.7	11.89	106.35
10/19/2008 09:24:00	163.8476	12.8003	390.0	307.2	74.5	72.6	11.86	112.03
10/20/2008 07:46:00	186.2142	13.6460	340.0	269.1	75.0	73.5	11.94	117.00
10/20/2008 11:32:59	189.9973	13.7840	107.0	83.8	75.2	74.1	11.93	118.55
10/20/2008 15:34:00	194.0142	13.9289	77.0	58.1	74.8	74.3	11.87	119.62
10/21/2008 08:00:00	210.4476	14.5068	195.0	150.8	73.9	70.7	11.80	122.41
10/21/2008 11:44:00	214.1809	14.6349	75.0	58.1	73.8	72.5	11.79	123.48
10/22/2008 08:08:00	234.5809	15.3160	171.0	137.0	73.0	68.1	11.95	126.01
10/22/2008 11:48:00	238.2476	15.4353	66.0	51.1	73.6	72.5	11.94	126.96
10/22/2008 16:41:00	243.1309	15.5927	64.0	49.2	73.8	74.4	11.93	127.87
10/23/2008 08:22:00	258.8142	16.0877	114.0	87.2	73.0	68.0	11.85	129.48
10/23/2008 14:37:00	265.0642	16.2808	82.0	60.4	74.1	74.0	11.80	130.60
10/23/2008 17:11:00	267.6309	16.3594	36.0	27.1	74.7	74.3	11.80	131.10




10/24/2008 07:02:00	281.4809	16.7774	112.0	88.5	73.6	68.7	11.81	132.74
10/24/2008 10:56:00	285.3809	16.8932	44.0	34.7	73.2	70.8	11.83	133.38
10/24/2008 14:15:00	288.6976	16.9911	40.0	28.1	74.7	75.0	11.81	133.90
10/25/2008 10:50:59	309.2973	17.5868	148.0	116.1	74.3	72.6	11.81	136.04
10/26/2008 15:13:00	337.6642	18.3756	173.0	137.4	74.3	74.4	11.99	138.58
10/27/2008 08:25:00	354.8642	18.8378	121.0	97.3	73.2	68.9	12.02	140.38
10/27/2008 11:57:00	358.3976	18.9314	40.0	31.4	73.4	68.3	12.01	140.96
10/27/2008 15:11:00	361.6309	19.0166	32.0	22.1	74.1	74.4	11.96	141.37
10/28/2008 09:01:59	379.4806	19.4803	99.0	79.1	73.8	70.3	11.97	142.83
10/28/2008 16:05:00	386.5309	19.6604	66.0	47.0	76.1	85.4	11.94	143.70
10/29/2008 08:27:00	402.8976	20.0723	106.0	83.2	75.2	71.9	11.91	145.24
10/29/2008 15:41:00	410.1309	20.2517	63.0	44.4	76.1	78.8	11.85	146.06
10/30/2008 08:53:00	427.3309	20.6720	99.0	77.8	75.9	75.0	11.88	147.50
10/30/2008 16:05:59	434.5473	20.8458	57.0	44.7	76.6	76.5	11.90	148.32
10/31/2008 09:29:00	451.9309	21.2587	87.0	68.9	76.5	75.2	11.98	149.60
10/31/2008 13:25:00	455.8642	21.3510	36.0	27.3	76.5	76.5	11.96	150.10
11/01/2008 13:02:59	479.4973	21.8974	107.0	81.8	76.5	76.1	11.92	151.61
11/02/2008 17:46:00	508.2142	22.5436	144.0	101.8	76.3	76.5	11.74	153.50
11/03/2008 09:19:00	523.7642	22.8859	80.0	62.4	74.7	74.3	11.78	154.65
11/03/2008 17:31:00	531.9642	23.0643	51.0	36.3	75.9	79.5	11.75	155.32
11/04/2008 09:41:00	548.1309	23.4122	75.0	56.5	73.4	70.7	11.66	156.37
11/04/2008 15:03:00	553.4976	23.5265	35.0	23.4	74.1	75.1	11.62	156.80
11/05/2008 10:44:00	573.1809	23.9412	74.0	57.2	74.5	73.3	11.66	157.86
11/05/2008 15:39:00	578.0976	24.0437	29.0	22.5	73.8	73.3	11.69	158.27
11/06/2008 10:36:00	597.0476	24.4346	50.0	39.1	73.4	72.9	11.77	158.99
11/06/2008 15:27:59	601.9140	24.5339	22.0	16.9	74.3	73.6	11.79	159.31
11/07/2008 09:14:00	619.6809	24.8934	51.0	40.0	73.9	72.9	11.80	160.05
11/07/2008 15:32:00	625.9809	25.0196	30.0	22.2	75.0	72.9	11.80	160.46
11/08/2008 10:33:00	644.9976	25.3968	53.0	41.5	73.5	73.2	11.80	161.22
11/09/2008 09:34:59	668.0306	25.8463	72.0	51.2	73.4	74.1	11.71	162.17
11/10/2008 10:53:00	693.3309	26.3312	77.0	56.5	73.6	76.8	11.66	163.21
11/11/2008 09:53:00	716.3309	26.7644	61.0	47.1	73.8	78.2	11.75	164.09
11/12/2008 10:04:00	740.5142	27.2124	68.0	51.7	75.0	78.2	11.76	165.04
11/13/2008 09:51:00	764.2976	27.6459	73.0	49.9	75.0	79.8	11.66	165.96
11/14/2008 09:29:00	787.9309	28.0701	51.0	40.0	73.9	73.3	11.82	166.70
11/15/2008 11:37:00	814.0642	28.5318	58.0	45.7	74.1	74.3	11.90	167.55
11/16/2008 10:41:00	837.1309	28.9332	59.0	44.9	74.5	76.4	11.88	168.38
11/17/2008 09:17:00	859.7309	29.3212	53.0	41.9	74.8	74.3	11.94	169.15
11/18/2008 10:30:00	884.9476	29.7481	60.0	45.4	75.4	75.8	11.92	169.99
11/19/2008 10:08:00	908.5809	30.1427	62.0	45.9	75.4	75.4	11.87	170.84
11/20/2008 09:46:59	932.2306	30.5325	23.0	18.3	72.1	72.9	12.01	171.18

11/21/2008 09:43:00	956.1642	30.9219	58.0	30.6	73.6	73.3	11.78	171.75
11/22/2008 10:08:00	980.5809	31.3142	47.0	36.8	73.6	74.6	11.82	172.43
11/23/2008 11:11:00	1005.6309	31.7117	48.0	36.0	73.9	75.0	11.80	173.09
11/24/2008 09:24:00	1027.8476	32.0601	34.0	26.8	73.8	73.1	11.90	173.59
11/25/2008 14:35:59	1057.0473	32.5123	55.0	37.5	74.8	74.7	11.82	174.28
11/26/2008 08:00:00	1074.4476	32.7788	33.0	25.9	73.2	72.6	11.82	174.76
11/27/2008 14:54:00	1105.3476	33.2468	48.0	35.7	73.8	74.2	11.80	175.42
11/28/2008 14:23:00	1128.8309	33.5981	40.0	25.5	74.1	74.3	11.70	175.89
11/29/2008 12:27:59	1150.9140	33.9251	30.0	23.3	73.4	72.9	11.71	176.32
11/30/2008 13:45:00	1176.1976	34.2957	27.0	21.1	73.6	73.1	11.77	176.71
12/01/2008 10:47:00	1197.2309	34.6010	33.0	25.2	73.6	73.3	11.76	177.18
12/02/2008 09:46:00	1220.2142	34.9316	38.0	26.2	73.0	72.9	11.69	177.66
12/03/2008 09:45:00	1244.1976	35.2732	27.0	21.1	73.6	75.8	11.82	178.05
12/04/2008 09:00:00	1267.4476	35.6012	29.0	22.8	72.4	74.0	11.88	178.48
12/05/2008 09:41:00	1292.1309	35.9462	31.0	16.4	73.0	75.1	11.75	178.78
12/07/2008 12:12:00	1342.6476	36.6422	77.0	55.3	75.6	74.6	11.73	179.80
12/09/2008 10:33:00	1388.9976	37.2693	35.0	27.4	73.6	75.8	11.85	180.31
12/10/2008 09:03:00	1411.4976	37.5699	50.0	34.9	76.6	76.7	11.84	180.95
12/10/2008 13:56:00	1416.3809	37.6348	12.0	9.5	76.8	70.7	11.85	181.13

Sample 41300-3 Desorption Parameters

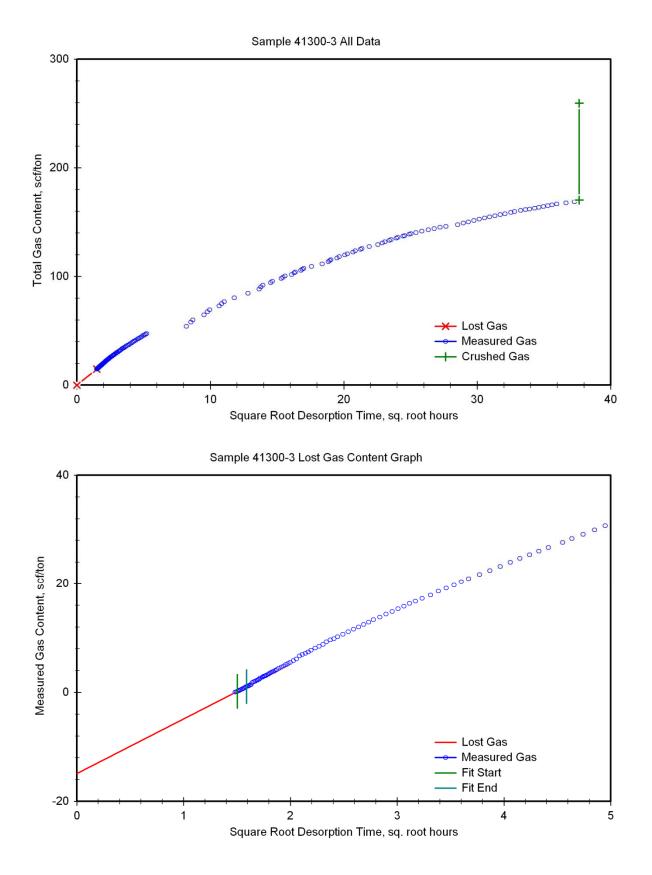
Parameter	Unit	Value
Sample Top Depth	feet	815.0
Sample Bottom Depth	feet	816.0
Reservoir Pressure	psia	367.81
Reservoir Pressure Gradient	psi/ft	0.4330
Mud Hydrostatic Pressure	psia	374.79
Mud Density	lbm/gal	8.50
Sample Mass	g	2,186.0
Sample Headspace Volume	cm ³	204.6
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/12/2008 13:01:34
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/12/2008 13:31:10
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/12/2008 13:32:19
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/12/2008 14:31:10
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/12/2008 15:43:53
Lost Gas Time	hours	2.193
Desorption Time Correction	hours	0.002
Fit Start Time	hours	2.254
Fit End Time	hours	2.521
Fit Start Time	hours ^{0.5}	1.501
Fit End Time	hours ^{0.5}	1.588
Lost Gas Content	scf/ton	14.9
Measured Gas Content	scf/ton	155.6
Crushed Gas Content	scf/ton	89.1
Total Gas Content	scf/ton	259.6
Lost Gas Fraction	vol frac	0.0572
Measured Gas Fraction	vol frac	0.5993
Crushed Gas Fraction	vol frac	0.3435
Diffusivity	1/us	0.0
Sorption Time	hours	511.8

Sample 41300-3 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hours ^{0.5}	cm ³	cm ³	°F	°F	psia	scf/ton
10/12/2008 15:43:53	2.1928	1.4808	0.0	0.0	71.4	63.9	11.21	0.00
10/12/2008 15:44:00	2.1926	1.4807	5.0	3.8	71.4	63.9	11.21	0.06
10/12/2008 15:46:00	2.2259	1.4919	7.0	5.3	72.5	63.7	11.21	0.13
10/12/2008 15:48:00	2.2592	1.5031	8.0	6.1	72.9	63.3	11.21	0.22
10/12/2008 15:49:59	2.2923	1.5140	10.0	7.6	73.0	63.3	11.21	0.33
10/12/2008 15:52:00	2.3259	1.5251	9.0	6.8	73.2	63.1	11.21	0.43
10/12/2008 15:53:59	2.3590	1.5359	10.0	7.6	73.8	63.0	11.21	0.54
10/12/2008 15:56:00	2.3926	1.5468	9.0	6.8	74.1	62.8	11.21	0.64
10/12/2008 15:58:00	2.4259	1.5575	9.0	6.8	74.3	62.6	11.21	0.74
10/12/2008 16:00:00	2.4592	1.5682	9.0	6.8	74.3	62.4	11.21	0.84
10/12/2008 16:02:00	2.4926	1.5788	15.0	11.4	74.3	61.9	11.21	1.01
10/12/2008 16:04:00	2.5259	1.5893	7.0	5.3	74.1	61.9	11.21	1.09
10/12/2008 16:05:59	2.5590	1.5997	7.0	5.3	74.5	61.7	11.21	1.17
10/12/2008 16:08:00	2.5926	1.6101	9.0	6.8	74.5	61.5	11.21	1.27
10/12/2008 16:10:00	2.6259	1.6205	10.0	7.6	74.5	61.3	11.21	1.38
10/12/2008 16:12:00	2.6592	1.6307	10.0	7.6	74.3	61.2	11.21	1.49
10/12/2008 16:14:00	2.6926	1.6409	30.0	22.8	74.3	61.0	11.21	1.83
10/12/2008 16:17:00	2.7426	1.6561	15.0	11.4	74.3	60.6	11.21	1.99
10/12/2008 16:19:59	2.7923	1.6710	7.0	5.3	74.3	60.6	11.21	2.07
10/12/2008 16:23:00	2.8426	1.6860	15.0	11.4	74.5	60.4	11.21	2.24
10/12/2008 16:25:00	2.8759	1.6958	8.0	6.1	74.7	60.3	11.22	2.33
10/12/2008 16:27:00	2.9092	1.7056	10.0	7.6	74.7	60.1	11.22	2.44
10/12/2008 16:29:00	2.9426	1.7154	18.0	13.7	74.7	59.7	11.22	2.64
10/12/2008 16:33:00	3.0092	1.7347	16.0	12.2	74.8	59.4	11.22	2.82
10/12/2008 16:34:59	3.0423	1.7442	7.0	5.4	74.7	59.2	11.22	2.90
10/12/2008 16:37:00	3.0759	1.7538	9.0	6.9	75.0	59.2	11.22	3.00
10/12/2008 16:38:59	3.1090	1.7632	7.0	5.4	74.8	58.8	11.22	3.08
10/12/2008 16:41:00	3.1426	1.7727	8.0	6.1	74.7	58.8	11.22	3.17
10/12/2008 16:44:00	3.1926	1.7868	13.0	9.9	74.7	58.8	11.22	3.31
10/12/2008 16:47:00	3.2426	1.8007	14.0	10.7	74.7	58.6	11.22	3.47
10/12/2008 16:50:00	3.2926	1.8145	13.0	10.0	74.3	58.5	11.22	3.62
10/12/2008 16:53:00	3.3426	1.8283	13.0	10.0	74.5	58.5	11.22	3.76
10/12/2008 16:56:00	3.3926	1.8419	13.0	10.0	74.7	58.5	11.22	3.91
10/12/2008 16:59:00	3.4426	1.8554	13.0	10.0	74.7	58.5	11.22	4.05
10/12/2008 17:02:00	3.4926	1.8688	13.0	10.0	74.5	58.5	11.22	4.20
10/12/2008 17:06:59	3.5756	1.8909	21.0	16.1	74.7	58.6	11.22	4.44

r							1	
10/12/2008 17:12:00	3.6592	1.9129	21.0	16.1	74.7	58.6	11.22	4.67
10/12/2008 17:16:59	3.7423	1.9345	20.0	15.3	74.7	58.6	11.22	4.90
10/12/2008 17:22:00	3.8259	1.9560	20.0	15.3	74.7	58.6	11.22	5.12
10/12/2008 17:27:00	3.9092	1.9772	20.0	15.3	74.7	58.6	11.22	5.35
10/12/2008 17:32:00	3.9926	1.9981	19.0	14.5	74.5	58.6	11.22	5.56
10/12/2008 17:39:00	4.1092	2.0271	27.0	20.7	74.8	58.5	11.22	5.86
10/12/2008 17:46:00	4.2259	2.0557	26.0	19.9	74.8	58.3	11.22	6.15
10/12/2008 17:53:00	4.3426	2.0839	53.0	40.6	74.7	58.3	11.22	6.75
10/12/2008 18:00:00	4.4592	2.1117	18.0	13.8	74.5	58.3	11.22	6.95
10/12/2008 18:07:00	4.5759	2.1391	22.0	16.8	74.3	58.8	11.22	7.20
10/12/2008 18:14:00	4.6926	2.1662	25.0	19.1	74.1	59.4	11.23	7.48
10/12/2008 18:20:59	4.8090	2.1929	25.0	19.1	74.7	59.9	11.23	7.76
10/12/2008 18:31:00	4.9759	2.2307	35.0	26.7	74.7	61.0	11.23	8.15
10/12/2008 18:41:00	5.1426	2.2677	31.0	23.6	74.7	61.7	11.23	8.49
10/12/2008 18:51:00	5.3092	2.3042	32.0	24.3	74.5	62.8	11.23	8.85
10/12/2008 19:00:00	5.4592	2.3365	40.0	30.4	74.5	63.9	11.24	9.30
10/12/2008 19:10:00	5.6259	2.3719	30.0	22.8	74.1	64.0	11.24	9.63
10/12/2008 19:19:59	5.7923	2.4067	20.0	15.2	74.1	64.4	11.24	9.85
10/12/2008 19:30:00	5.9592	2.4412	37.0	28.1	74.1	64.2	11.24	10.26
10/12/2008 19:45:00	6.2092	2.4918	39.0	29.6	73.9	63.3	11.24	10.70
10/12/2008 20:00:00	6.4592	2.5415	42.0	32.0	74.1	62.8	11.25	11.17
10/12/2008 20:15:00	6.7092	2.5902	40.0	30.5	74.1	62.2	11.25	11.61
10/12/2008 20:30:00	6.9592	2.6380	38.0	29.0	74.1	61.7	11.25	12.04
10/12/2008 20:45:00	7.2092	2.6850	43.0	32.8	73.8	61.5	11.26	12.52
10/12/2008 21:00:00	7.4592	2.7312	37.0	28.3	74.1	61.3	11.26	12.93
10/12/2008 21:15:00	7.7092	2.7765	40.0	30.6	74.1	61.2	11.26	13.38
10/12/2008 21:34:59	8.0423	2.8359	42.0	32.1	74.1	60.8	11.26	13.85
10/12/2008 21:55:00	8.3759	2.8941	47.0	36.0	74.1	60.3	11.26	14.38
10/12/2008 22:15:00	8.7092	2.9511	45.0	34.5	74.1	59.9	11.27	14.89
10/12/2008 22:34:59	9.0423	3.0070	44.0	33.8	74.1	59.4	11.27	15.38
10/12/2008 22:55:00	9.3759	3.0620	40.0	30.7	74.1	58.8	11.27	15.83
10/12/2008 23:15:00	9.7092	3.1160	48.0	36.9	74.1	58.5	11.27	16.37
10/12/2008 23:35:00	10.0426	3.1690	34.0	26.2	74.1	58.3	11.27	16.76
10/13/2008 00:00:00	10.4592	3.2341	48.0	36.9	73.9	57.9	11.27	17.30
10/13/2008 00:30:00	10.9592	3.3105	56.0	43.2	73.9	57.0	11.27	17.93
10/13/2008 01:00:00	11.4592	3.3851	62.0	47.9	73.9	56.3	11.27	18.63
10/13/2008 01:30:00	11.9592	3.4582	49.0	37.9	73.9	55.9	11.27	19.19
10/13/2008 02:00:00	12.4592	3.5298	53.0	41.0	73.9	55.4	11.27	19.79
10/13/2008 02:30:00	12.9592	3.5999	50.0	38.8	73.9	54.7	11.28	20.36
10/13/2008 03:00:00	13.4592	3.6687	52.0	40.3	73.9	54.7	11.28	20.95
10/13/2008 03:45:00	14.2092	3.7695	70.0	54.3	73.9	54.7	11.28	21.74

10/13/2008 04:30:00	14.9592	3.8677	62.0	48.1	73.9	54.7	11.28	22.45
10/13/2008 05:15:00	15.7092	3.9635	67.0	52.0	73.9	54.1	11.27	23.21
10/13/2008 06:00:00	16.4592	4.0570	67.0	52.1	73.9	53.4	11.28	23.97
10/13/2008 06:45:00	17.2092	4.1484	65.0	50.6	73.9	52.7	11.28	24.71
10/13/2008 07:31:00	17.9759	4.2398	60.0	46.8	74.3	52.5	11.29	25.40
10/13/2008 08:16:00	18.7259	4.3273	58.0	45.3	74.3	52.0	11.29	26.06
10/13/2008 09:01:59	19.4923	4.4150	57.0	44.4	73.9	53.4	11.30	26.71
10/13/2008 10:14:00	20.6926	4.5489	83.0	63.8	74.1	59.9	11.30	27.65
10/13/2008 11:02:00	21.4926	4.6360	65.0	49.6	74.3	64.4	11.31	28.38
10/13/2008 12:01:00	22.4759	4.7409	72.0	54.9	74.3	64.8	11.30	29.18
10/13/2008 13:02:00	23.4926	4.8469	72.0	54.7	74.3	65.7	11.29	29.98
10/13/2008 14:01:00	24.4759	4.9473	67.0	51.1	75.2	64.2	11.29	30.73
10/13/2008 15:01:59	25.4923	5.0490	67.0	51.5	74.5	59.2	11.29	31.49
10/13/2008 16:01:00	26.4759	5.1455	63.0	48.5	74.5	58.5	11.29	32.20
10/13/2008 16:47:00	27.2426	5.2194	52.0	40.2	74.7	56.2	11.29	32.79
10/15/2008 08:35:59	67.0590	8.1890	560.0	446.1	75.2	70.3	11.94	39.32
10/15/2008 14:19:59	72.7923	8.5318	334.0	263.7	76.1	73.4	11.90	43.19
10/15/2008 16:47:00	75.2426	8.6742	182.0	143.6	75.9	73.4	11.89	45.29
10/16/2008 08:04:59	90.5423	9.5154	393.0	312.9	75.4	68.4	11.89	49.88
10/16/2008 13:08:00	95.5926	9.7771	243.0	190.2	76.5	76.1	11.86	52.67
10/16/2008 16:19:59	98.7923	9.9394	162.0	127.0	76.8	75.7	11.87	54.53
10/17/2008 06:53:00	113.3426	10.6462	310.0	245.2	76.5	73.9	11.94	58.12
10/17/2008 11:14:00	117.6926	10.8486	188.0	148.6	76.5	74.3	11.94	60.30
10/17/2008 15:20:59	121.8090	11.0367	153.0	119.8	77.4	78.8	11.92	62.05
10/18/2008 08:21:00	138.8092	11.7817	309.0	244.4	76.6	71.7	11.89	65.64
10/19/2008 09:26:00	163.8926	12.8021	360.0	283.7	74.7	72.8	11.87	69.79
10/20/2008 07:47:59	186.2590	13.6477	340.0	269.1	75.0	73.5	11.94	73.74
10/20/2008 11:35:00	190.0426	13.7856	175.0	138.4	75.2	73.7	11.93	75.77
10/20/2008 15:34:59	194.0423	13.9299	123.0	96.6	74.7	74.8	11.87	77.18
10/21/2008 08:03:00	210.5092	14.5089	197.0	155.0	73.9	70.8	11.80	79.45
10/21/2008 11:45:00	214.2092	14.6359	124.0	97.1	73.8	72.6	11.79	80.88
10/22/2008 08:09:00	234.6092	15.3170	205.0	164.1	73.0	68.3	11.95	83.28
10/22/2008 11:49:00	238.2759	15.4362	109.0	86.5	73.6	72.5	11.94	84.55
10/22/2008 16:42:00	243.1592	15.5936	100.0	79.0	73.6	74.3	11.93	85.71
10/23/2008 08:23:59	258.8590	16.0891	125.0	99.2	73.2	68.1	11.85	87.16
10/23/2008 14:38:00	265.0926	16.2817	121.0	94.6	74.1	74.3	11.80	88.55
10/23/2008 17:12:00	267.6592	16.3603	70.0	54.7	74.7	74.4	11.80	89.35
10/24/2008 07:02:59	281.5090	16.7782	138.0	109.0	73.6	68.7	11.81	90.95
10/24/2008 10:57:59	285.4256	16.8945	86.0	67.8	73.4	71.0	11.83	91.94
10/24/2008 14:16:00	288.7259	16.9919	63.0	49.2	74.5	75.2	11.81	92.66
10/25/2008 10:53:00	309.3426	17.5881	164.0	128.7	74.1	72.8	11.81	94.55



	1							
10/26/2008 15:14:00	337.6926	18.3764	207.0	164.4	74.3	74.4	11.99	96.96
10/27/2008 08:26:00	354.8926	18.8386	167.0	134.3	73.6	68.9	12.02	98.92
10/27/2008 11:58:00	358.4259	18.9321	90.0	72.4	73.4	68.5	12.01	99.98
10/27/2008 15:12:00	361.6592	19.0173	63.0	49.9	74.1	74.4	11.96	100.72
10/28/2008 09:03:00	379.5092	19.4810	129.0	103.0	73.8	70.5	11.97	102.22
10/28/2008 16:05:59	386.5590	19.6611	105.0	81.4	76.1	85.4	11.94	103.42
10/29/2008 08:28:00	402.9259	20.0730	136.0	107.7	75.0	72.1	11.91	105.00
10/29/2008 15:43:00	410.1759	20.2528	103.0	80.1	75.9	78.8	11.85	106.17
10/30/2008 08:54:00	427.3592	20.6727	132.0	103.7	75.7	75.2	11.88	107.69
10/30/2008 16:07:00	434.5759	20.8465	99.0	77.6	76.5	76.9	11.90	108.83
10/31/2008 09:30:00	451.9592	21.2593	127.0	100.6	76.1	75.2	11.98	110.30
10/31/2008 13:26:00	455.8926	21.3516	73.0	57.6	76.1	76.5	11.96	111.15
11/01/2008 13:04:00	479.5259	21.8981	140.0	110.1	76.1	76.1	11.92	112.76
11/02/2008 17:47:00	508.2426	22.5442	176.0	131.6	75.9	76.5	11.34	114.69
11/03/2008 09:15:00	523.7092	22.8847	131.0	102.2	74.8	74.3	11.78	116.19
11/03/2008 17:32:00	531.9926	23.0650	95.0	73.2	75.9	79.5	11.75	117.26
11/04/2008 09:42:00	548.1592	23.4128	113.0	87.9	73.4	70.7	11.66	118.55
11/04/2008 15:03:00	553.5092	23.5268	72.0	55.4	73.8	74.1	11.62	119.36
11/05/2008 10:45:00	573.2092	23.9418	109.0	84.3	74.3	73.3	11.66	120.60
11/05/2008 15:40:00	578.1259	24.0442	66.0	51.2	73.6	73.3	11.69	121.35
11/06/2008 10:38:00	597.0926	24.4355	94.0	73.5	73.2	72.9	11.77	122.42
11/06/2008 15:29:00	601.9426	24.5345	56.0	43.8	73.9	73.6	11.79	123.07
11/07/2008 09:15:00	619.7092	24.8940	88.0	69.0	73.9	72.9	11.80	124.08
11/07/2008 15:33:00	626.0092	25.0202	61.0	47.8	74.8	72.9	11.80	124.78
11/08/2008 10:34:00	645.0259	25.3974	87.0	68.1	73.2	73.2	11.80	125.77
11/09/2008 09:36:59	668.0756	25.8472	104.0	80.7	73.2	74.1	11.71	126.96
11/10/2008 10:54:00	693.3592	26.3317	110.0	84.6	73.8	76.4	11.66	128.20
11/11/2008 09:53:59	716.3590	26.7649	105.0	81.2	73.8	77.9	11.75	129.39
11/12/2008 10:04:00	740.5259	27.2126	108.0	83.6	75.0	78.0	11.76	130.61
11/13/2008 09:52:00	764.3259	27.6464	67.0	51.2	75.0	79.8	11.66	131.36
11/15/2008 11:38:00	814.0926	28.5323	142.0	111.9	73.8	74.3	11.90	133.00
11/16/2008 10:43:00	837.1759	28.9340	118.0	92.5	74.3	76.4	11.88	134.36
11/17/2008 09:17:59	859.7590	29.3216	106.0	83.8	74.7	74.3	11.94	135.58
11/18/2008 10:31:00	884.9759	29.7485	107.0	84.2	75.2	75.8	11.92	136.82
11/19/2008 10:09:00	908.6092	30.1431	108.0	84.7	75.4	75.4	11.87	138.06
11/20/2008 09:48:00	932.2592	30.5329	83.0	66.2	72.0	72.9	12.01	139.03
11/21/2008 09:44:00	956.1926	30.9224	90.0	70.3	73.7	73.3	11.78	140.06
11/22/2008 10:10:00	980.6259	31.3149	91.0	71.2	73.4	74.6	11.82	141.10
11/23/2008 11:12:00	1005.6592	31.7121	91.0	71.0	73.8	75.3	11.80	142.14
11/24/2008 09:25:00	1027.8759	32.0605	80.0	63.1	73.6	73.3	11.90	143.07
11/25/2008 14:37:00	1057.0759	32.5127	94.0	73.5	74.5	74.7	11.82	144.15

11/26/2008 08:02:00	1074.4926	32.7795	74.0	58.1	73.0	72.8	11.82	145.00
11/27/2008 14:55:00	1105.3759	33.2472	85.0	66.4	73.6	74.2	11.80	145.97
11/28/2008 14:23:59	1128.8590	33.5985	71.0	55.0	73.8	74.5	11.70	146.78
11/29/2008 12:29:00	1150.9426	33.9255	62.0	48.2	73.0	73.3	11.71	147.48
11/30/2008 13:46:00	1176.2259	34.2961	54.0	42.2	73.2	73.3	11.78	148.10
12/01/2008 10:47:59	1197.2590	34.6014	69.0	53.9	73.4	73.3	11.76	148.89
12/02/2008 09:46:59	1220.2423	34.9320	70.0	54.7	72.7	69.2	11.69	149.69
12/03/2008 09:46:00	1244.2259	35.2736	68.0	53.1	73.4	75.8	11.82	150.47
12/04/2008 09:01:00	1267.4759	35.6016	67.0	52.7	73.8	74.0	11.88	151.24
12/05/2008 09:42:00	1292.1592	35.9466	63.0	49.0	72.7	75.1	11.75	151.96
12/07/2008 12:14:00	1342.6926	36.6428	102.0	79.2	75.4	74.8	11.73	153.12
12/09/2008 10:34:00	1389.0259	37.2696	87.0	68.1	73.2	75.8	11.85	154.12
12/10/2008 09:04:00	1411.5259	37.5703	84.0	66.1	76.3	72.5	11.84	155.09
12/10/2008 14:00:00	1416.4592	37.6359	40.0	31.6	76.6	71.2	11.85	155.55

Appendix III

Souder, Miller & Associates MW-34-5-4 Fruitland Coals

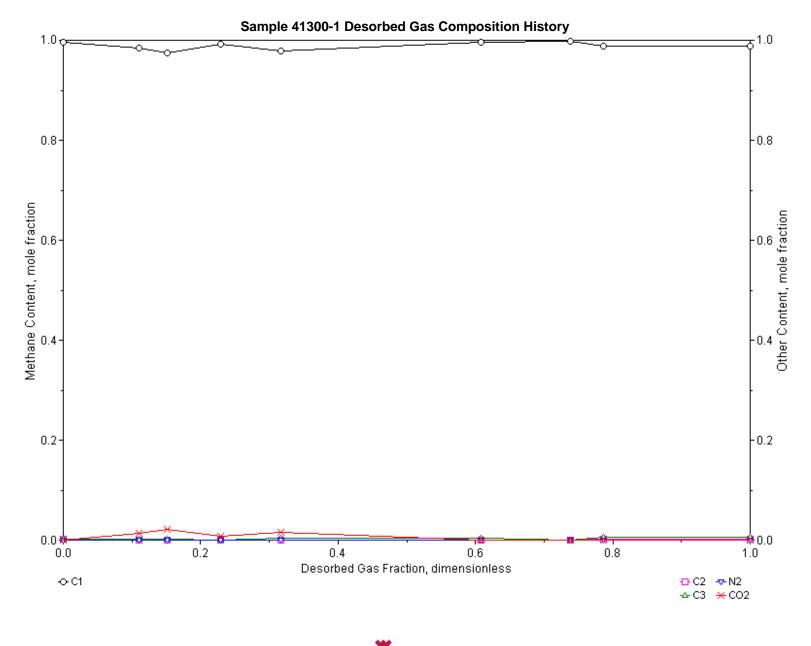
Desorption Gas Composition Results

Date Time	C ₁	C ₂	C ₃	iC ₄	nC₄	iC₅	nC ₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
10/11/2008 18:34:59	0.9455	0.0007	0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010	0.0377	0.0124	0.0002	1.0000
10/11/2008 20:46:00	0.9689	0.0006	0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	0.0045	0.0212	0.0000	1.0000
10/12/2008 04:19:59	0.8539	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0296	0.1097	0.0063	0.0001	1.0000
10/12/2008 20:00:00	0.9776	0.0005	0.0037	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0017	0.0163	0.0001	1.0000
10/24/2008 10:50:00	0.9929	0.0006	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010	0.0015	0.0009	0.0001	1.0000
11/17/2008 09:13:00	0.8631	0.0005	0.0004	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0303	0.1052	0.0000	0.0000	1.0000
12/10/2008 13:52:00	0.0605	0.0001	0.0003	0.0000	0.0001	0.0001	0.0001	0.0000	0.0000	0.2047	0.7340	0.0000	0.0000	1.0000
			Con	Itaminatio	n Correcte	d Desorpt	tion Gas C	ompositio	n History					
					O ₂ , N	I_2 , and H_2	Removed							
10/11/2008 18:34:59	0.9838	0.0007	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0129	0.0000	1.0000
10/11/2008 20:46:00	0.9756	0.0006	0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0213	0.0000	1.0000
10/12/2008 04:19:59	0.9922	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0074	0.0000	1.0000
10/12/2008 20:00:00	0.9794	0.0005	0.0037	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0164	0.0000	1.0000
10/24/2008 10:50:00	0.9955	0.0006	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0000	1.0000
11/17/2008 09:13:00	0.9982	0.0005	0.0004	0.0003	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
12/10/2008 13:52:00	0.9875	0.0018	0.0054	0.0000	0.0018	0.0018	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

Sample 41300-1 Desorbed Gas Composition History

Sample 41300-1 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC4	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9961	0.0011	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
0.1105	0.9838	0.0007	0.0026	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0129	0.0000	1.0000
0.1509	0.9756	0.0006	0.0025	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0213	0.0000	1.0000
0.2292	0.9922	0.0004	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0074	0.0000	1.0000
0.3174	0.9794	0.0005	0.0037	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0164	0.0000	1.0000
0.6087	0.9955	0.0006	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0000	1.0000
0.7386	0.9982	0.0005	0.0004	0.0003	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
0.7860	0.9875	0.0018	0.0054	0.0000	0.0018	0.0018	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
1.0000	0.9875	0.0018	0.0054	0.0000	0.0018	0.0018	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
					Int	egrated G	as Compo	sition						
-	0.9885	0.0009	0.0032	0.0000	0.0004	0.0004	0.0004	0.0000	0.0000	0.0000	0.0000	0.0061	0.0000	1.0000


Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
10/11/2008 18:34:59	0.9455	0.0007	0.0025	0.0010	0.0377	0.0124	0.0002	1.0000
10/11/2008 20:46:00	0.9689	0.0006	0.0025	0.0024	0.0045	0.0212	0.0000	1.0000
10/12/2008 04:19:59	0.8539	0.0003	0.0001	0.0296	0.1097	0.0063	0.0001	1.0000
10/12/2008 20:00:00	0.9776	0.0005	0.0037	0.0000	0.0017	0.0163	0.0001	1.0000
10/24/2008 10:50:00	0.9929	0.0006	0.0031	0.0010	0.0015	0.0009	0.0001	1.0000
11/17/2008 09:13:00	0.8631	0.0005	0.0011	0.0303	0.1052	0.0000	0.0000	1.0000
12/10/2008 13:52:00	0.0605	0.0001	0.0007	0.2047	0.7340	0.0000	0.0000	1.0000
	Con	tamination Corr	ected Desorption	on Gas Compos	ition History			
		($D_2,N_2,andH_2F$	Removed				
10/11/2008 18:34:59	0.9838	0.0007	0.0026	0.0000	0.0000	0.0129	0.0000	1.0000
10/11/2008 20:46:00	0.9756	0.0006	0.0025	0.0000	0.0000	0.0213	0.0000	1.0000
10/12/2008 04:19:59	0.9922	0.0004	0.0001	0.0000	0.0000	0.0074	0.0000	1.0000
10/12/2008 20:00:00	0.9794	0.0005	0.0037	0.0000	0.0000	0.0164	0.0000	1.0000
10/24/2008 10:50:00	0.9955	0.0006	0.0031	0.0000	0.0000	0.0009	0.0000	1.0000
11/17/2008 09:13:00	0.9982	0.0005	0.0012	0.0000	0.0000	0.0000	0.0000	1.0000
12/10/2008 13:52:00	0.9875	0.0018	0.0107	0.0000	0.0000	0.0000	0.0000	1.0000

Sample 41300-1 Desorbed Gas Composition History (Lumped)

Sample 41300-1 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

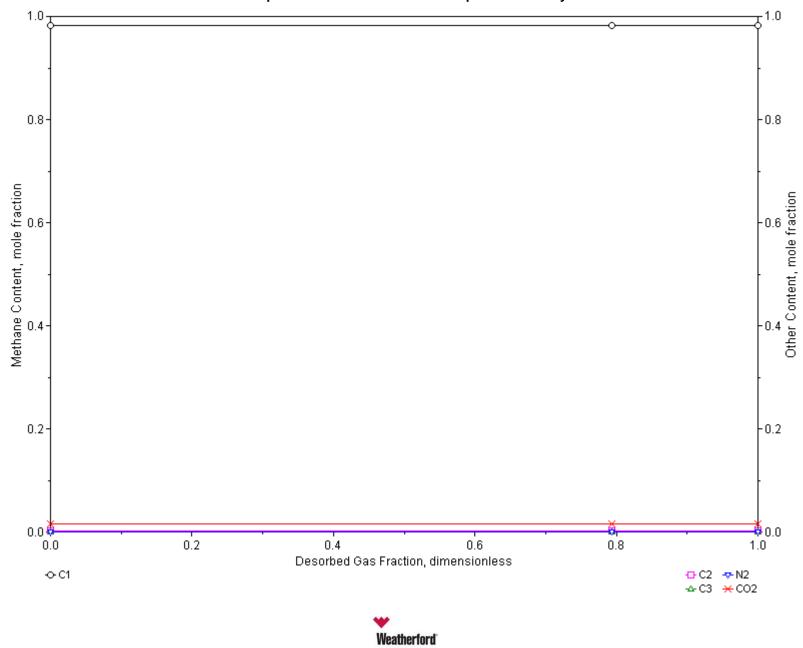
Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9961	0.0011	0.0028	0.0000	0.0000	0.0000	0.0000	1.0000
0.1105	0.9838	0.0007	0.0026	0.0000	0.0000	0.0129	0.0000	1.0000
0.1509	0.9756	0.0006	0.0025	0.0000	0.0000	0.0213	0.0000	1.0000
0.2292	0.9922	0.0004	0.0001	0.0000	0.0000	0.0074	0.0000	1.0000
0.3174	0.9794	0.0005	0.0037	0.0000	0.0000	0.0164	0.0000	1.0000
0.6087	0.9955	0.0006	0.0031	0.0000	0.0000	0.0009	0.0000	1.0000
0.7386	0.9982	0.0005	0.0012	0.0000	0.0000	0.0000	0.0000	1.0000
0.7860	0.9875	0.0018	0.0107	0.0000	0.0000	0.0000	0.0000	1.0000
1.0000	0.9875	0.0018	0.0107	0.0000	0.0000	0.0000	0.0000	1.0000
		Int	tegrated Gas Co	omposition				
-	0.9885	0.0009	0.0045	0.0000	0.0000	0.0061	0.0000	1.0000

Sample 41300-2 Desorbed Gas Composition History

Date Time	C ₁	C ₂	C₃	iC4	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
12/10/2008 13:56:00	0.6992	0.0010	0.0004	0.0001	0.0000	0.0001	0.0001	0.0000	0.0000	0.0627	0.2251	0.0112	0.0000	1.0000
			Con	taminatior	n Correcte	d Desorpt	ion Gas C	Compositio	n History					
					O ₂ , N	I_2 , and H_2	Removed							
12/10/2008 13:56:00	0.9817	0.0014	0.0006	0.0002	0.0000	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0157	0.0000	1.0000

Sample 41300-2 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC₄	nC₄	iC ₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9817	0.0014	0.0006	0.0002	0.0000	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0157	0.0000	1.0000
0.7931	0.9817	0.0014	0.0006	0.0002	0.0000	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0157	0.0000	1.0000
1.0000	0.9817	0.0014	0.0006	0.0002	0.0000	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0157	0.0000	1.0000
					Int	egrated G	as Compo	sition						
-	0.9817	0.0014	0.0006	0.0002	0.0000	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0157	0.0000	1.0000


Sample 41300-2 Desorbed Gas Composition History (Lumped)

Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total				
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac				
12/10/2008 13:56:00	0.6992	0.0010	0.0008	0.0627	0.2251	0.0112	0.0000	1.0000				
Contamination Corrected Desorption Gas Composition History												
O ₂ , N ₂ , and H ₂ Removed												
12/10/2008 13:56:00	0.9817	0.0014	0.0012	0.0000	0.0000	0.0157	0.0000	1.0000				

Sample 41300-2 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9817	0.0014	0.0012	0.0000	0.0000	0.0157	0.0000	1.0000
0.7931	0.9817	0.0014	0.0012	0.0000	0.0000	0.0157	0.0000	1.0000
1.0000	0.9817	0.0014	0.0012	0.0000	0.0000	0.0157	0.0000	1.0000
		Int	egrated Gas Co	omposition				
-	0.9817	0.0014	0.0012	0.0000	0.0000	0.0157	0.0000	1.0000

LABORATORIES

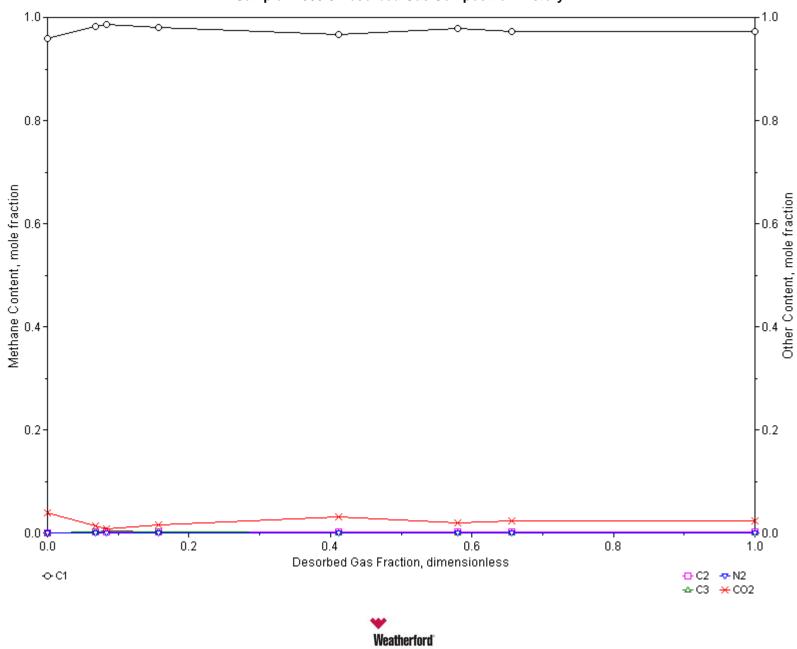
Sample 41300-2 Desorbed Gas Composition History

Date Time	C ₁	C ₂	C₃	iC4	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
10/12/2008 16:29:00	0.7998	0.0016	0.0015	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0426	0.1428	0.0117	0.0001	1.0000
10/12/2008 17:53:00	0.9553	0.0021	0.0029	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0073	0.0240	0.0081	0.0003	1.0000
10/13/2008 08:16:00	0.9717	0.0025	0.0023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0029	0.0058	0.0145	0.0002	1.0000
10/24/2008 10:57:59	0.9660	0.0024	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0009	0.0302	0.0000	1.0000
11/17/2008 09:17:59	0.9693	0.0021	0.0004	0.0002	0.0002	0.0001	0.0001	0.0000	0.0000	0.0018	0.0071	0.0187	0.0000	1.0000
12/10/2008 14:00:00	0.6954	0.0018	0.0004	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0621	0.2227	0.0171	0.0000	1.0000
			Con	taminatior	n Correcte	d Desorpt	ion Gas C	ompositio	n History					
					O ₂ , N	I_2 , and H_2	Removed							
10/12/2008 16:29:00	0.9819	0.0019	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0143	0.0000	1.0000
10/12/2008 17:53:00	0.9865	0.0022	0.0030	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0084	0.0000	1.0000
10/13/2008 08:16:00	0.9805	0.0025	0.0024	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0147	0.0000	1.0000
10/24/2008 10:57:59	0.9674	0.0024	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0302	0.0000	1.0000
11/17/2008 09:17:59	0.9780	0.0021	0.0004	0.0002	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0188	0.0000	1.0000
12/10/2008 14:00:00	0.9724	0.0025	0.0005	0.0002	0.0002	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0239	0.0000	1.0000

Sample 41300-3 Desorbed Gas Composition History

Sample 41300-3 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC₄	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9594	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0397	0.0000	1.0000
0.0674	0.9819	0.0019	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0143	0.0000	1.0000
0.0832	0.9865	0.0022	0.0030	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0084	0.0000	1.0000
0.1577	0.9805	0.0025	0.0024	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0147	0.0000	1.0000
0.4115	0.9674	0.0024	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0302	0.0000	1.0000
0.5796	0.9780	0.0021	0.0004	0.0002	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0188	0.0000	1.0000
0.6565	0.9724	0.0025	0.0005	0.0002	0.0002	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0239	0.0000	1.0000
1.0000	0.9724	0.0025	0.0005	0.0002	0.0002	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0239	0.0000	1.0000
					Int	egrated G	as Compo	sition						
-	0.9739	0.0023	0.0008	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0225	0.0000	1.0000


Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
10/12/2008 16:29:00	0.7998	0.0016	0.0015	0.0426	0.1428	0.0117	0.0001	1.0000
10/12/2008 17:53:00	0.9553	0.0021	0.0029	0.0073	0.0240	0.0081	0.0003	1.0000
10/13/2008 08:16:00	0.9717	0.0025	0.0023	0.0029	0.0058	0.0145	0.0002	1.0000
10/24/2008 10:57:59	0.9660	0.0024	0.0000	0.0004	0.0009	0.0302	0.0000	1.0000
11/17/2008 09:17:59	0.9693	0.0021	0.0011	0.0018	0.0071	0.0187	0.0000	1.0000
12/10/2008 14:00:00	0.6954	0.0018	0.0008	0.0621	0.2227	0.0171	0.0000	1.0000
	Con	tamination Corr	ected Desorption	on Gas Compos	ition History			
		($D_2,N_2,andH_2F$	Removed				
10/12/2008 16:29:00	0.9819	0.0019	0.0018	0.0000	0.0000	0.0143	0.0000	1.0000
10/12/2008 17:53:00	0.9865	0.0022	0.0030	0.0000	0.0000	0.0084	0.0000	1.0000
10/13/2008 08:16:00	0.9805	0.0025	0.0024	0.0000	0.0000	0.0147	0.0000	1.0000
10/24/2008 10:57:59	0.9674	0.0024	0.0000	0.0000	0.0000	0.0302	0.0000	1.0000
11/17/2008 09:17:59	0.9780	0.0021	0.0011	0.0000	0.0000	0.0188	0.0000	1.0000
12/10/2008 14:00:00	0.9724	0.0025	0.0012	0.0000	0.0000	0.0239	0.0000	1.0000

Sample 41300-3 Desorbed Gas Composition History (Lumped)

Sample 41300-3 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9594	0.0009	0.0000	0.0000	0.0000	0.0397	0.0000	1.0000
0.0674	0.9819	0.0019	0.0018	0.0000	0.0000	0.0143	0.0000	1.0000
0.0832	0.9865	0.0022	0.0030	0.0000	0.0000	0.0084	0.0000	1.0000
0.1577	0.9805	0.0025	0.0024	0.0000	0.0000	0.0147	0.0000	1.0000
0.4115	0.9674	0.0024	0.0000	0.0000	0.0000	0.0302	0.0000	1.0000
0.5796	0.9780	0.0021	0.0011	0.0000	0.0000	0.0188	0.0000	1.0000
0.6565	0.9724	0.0025	0.0012	0.0000	0.0000	0.0239	0.0000	1.0000
1.0000	0.9724	0.0025	0.0012	0.0000	0.0000	0.0239	0.0000	1.0000
		Int	egrated Gas Co	omposition				
-	0.9739	0.0023	0.0012	0.0000	0.0000	0.0225	0.0000	1.0000

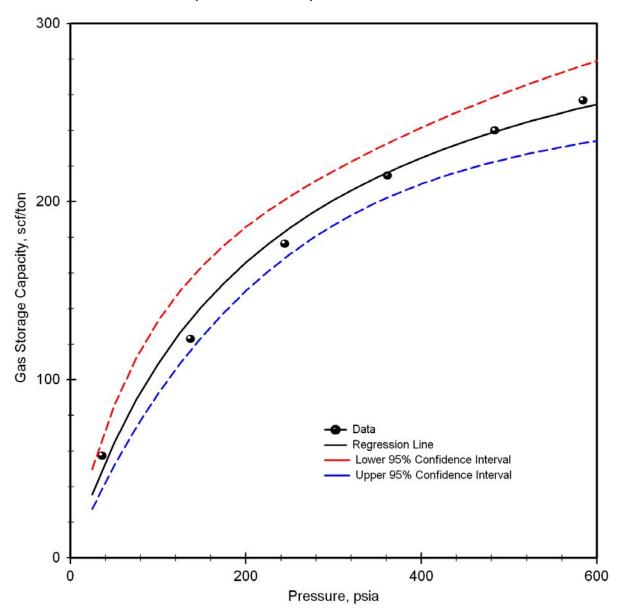
LABORATORIES

Sample 41300-3 Desorbed Gas Composition History

Appendix IV

Souder, Miller & Associates MW-34-5-4 Fruitland Coals

Adsorption Isotherm Results

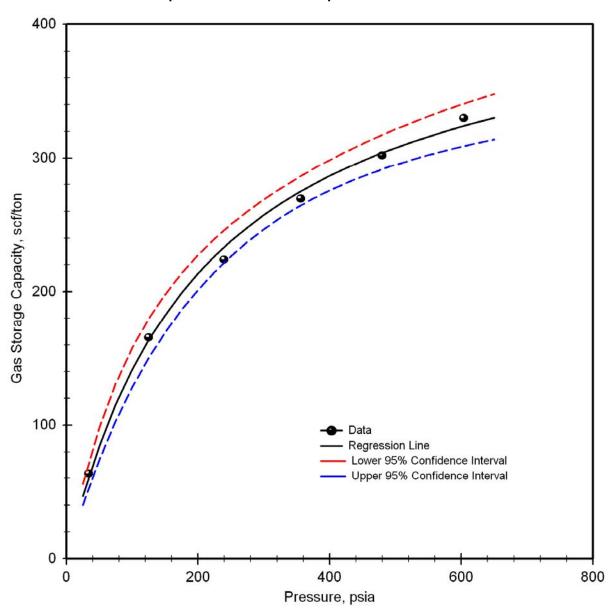

Parameter	Unit	Value
Top Depth	ft	753.5
Bottom Depth	ft	754.5
Isotherm Parar	neters	
Measurement Gas	-	methane
Measurement Temperature	°F	75.02
In-Situ Sample Char	acterization	
Crushed Density	g/cm ³	1.468
Moisture Holding Capacity	wt frac	0.0175
Ash Content	wt frac	0.2786
Volatile Matter Content	wt frac	0.2825
Fixed Carbon Content	wt frac	0.4213
Organic Content	wt frac	0.6980
Sulfur Content	wt frac	0.0059
Carbon Content	wt frac	0.6072
Nitrogen Content	wt frac	0.0129
Hydrogen Content	wt frac	0.0451
Oxygen Content	wt frac	0.0328
Sulfur-in Ash Content	wt frac	0.0089
Vitrinite Content	vol frac	0.870
Inertinite Content	vol frac	0.115
Liptinite Content	vol frac	0.015
Rank Parame	eters	
Parr Corrected Volatile Matter Content, daf	wt frac	0.5097
Parr Corrected Fixed Carbon Content	wt frac	0.4903
Calorific Value, mmf	BTU/lbm	14,914
Parr Corrected Calorific Value, mmf	BTU/lbm	15,162
Langmuir Parar	neters	
Number of Points	-	6
Regression Coefficient	-	0.99361
Langmuir Storage Capacity, daf	scf/ton	494.13
Langmuir Storage Capacity, In-Situ	scf/ton	347.81
Langmuir Storage Capacity Range, In-Situ	scf/ton	3.58
Langmuir Pressure	psia	219.22
Langmuir Pressure Range	psia	47.72

Sample 41300-1 Adsorption Isotherm Parameters

Sample 41300-1 Adsorption Isotherm Data

Pressure	Storage Capacity, in-situ
psia	scf/ton
36.053	57.470
136.671	123.050
244.151	176.528
360.974	214.847
483.415	240.088
583.901	256.997

Sample 41300-1 Adsorption Isotherm Curve


Parameter	Unit	Value
Top Depth	ft	813.0
Bottom Depth	ft	816.0
Isotherm Para	meters	
Measurement Gas	-	methane
Measurement Temperature	°F	75.02
In-Situ Sample Cha	racterization	
Crushed Density	g/cm ³	1.406
Moisture Holding Capacity	wt frac	0.0147
Ash Content	wt frac	0.2209
Volatile Matter Content	wt frac	0.2906
Fixed Carbon Content	wt frac	0.4738
Organic Content	wt frac	0.7573
Sulfur Content	wt frac	0.0070
Carbon Content	wt frac	0.6661
Nitrogen Content	wt frac	0.0139
Hydrogen Content	wt frac	0.0466
Oxygen Content	wt frac	0.0307
Sulfur-in Ash Content	wt frac	0.0038
Vitrinite Content	vol frac	0.917
Inertinite Content	vol frac	0.062
Liptinite Content	vol frac	0.021
Rank Param	eters	
Parr Corrected Volatile Matter Content, daf	wt frac	0.5039
Parr Corrected Fixed Carbon Content	wt frac	0.4961
Calorific Value, mmf	BTU/lbm	15,189
Parr Corrected Calorific Value, mmf	BTU/lbm	15,368
Langmuir Para	imeters	
Number of Points	-	6
Regression Coefficient	-	0.99811
Langmuir Storage Capacity, daf	scf/ton	570.10
Langmuir Storage Capacity, In-Situ	scf/ton	435.76
Langmuir Storage Capacity Range, In-Situ	scf/ton	4.25
Langmuir Pressure	psia	208.14
Langmuir Pressure Range	psia	24.68

Sample 41300-COMP-1 Adsorption Isotherm Parameters

Sample 41300-COMP-1 Adsorption Isotherm Data

Pressure	Storage Capacity, in-situ
psia	scf/ton
33.554	64.040
125.038	165.751
239.622	224.143
355.741	269.661
479.332	302.216
603.497	330.069

Sample 41300-COMP-1 Adsorption Isotherm Curve

Final Report Reservoir Property Assessment

Souder, Miller & Associates Fosset Gulch MW 34-5-14U Fruitland Coals San Juan Basin Archuleta County, Colorado

Submitted to: Mr. Denny Foust Souder, Miller & Associates 612 East Murray Drive Farmington, New Mexico 87499-2606

Mr. Steven Lindblom Colorado Oil and Gas Conservation Commission 1120 Lincoln Street, Suite 801 Denver, CO 80203

> Prepared by: Yi Wang and Liz Roberts Weatherford Laboratories Project 41547

> > July 30, 2009

Weatherford Laboratories Disclaimer

LEGAL NOTICE: This report was prepared by Weatherford Laboratories as an account of work performed for the client and is intended for informational purposes only. Any use of this information in relation to any specific application should be based on an independent examination and verification of its applicability for such use by professionally qualified personnel. Neither Weatherford Laboratories, nor any persons or organizations acting on its behalf:

- a. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report; or
- b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Table of Contents

Table of Contents	. i
List of Tables	. i
List of Figures	
List of Appendices	.ii
Summary	1
Introduction	4
Field Activities	
Laboratory Procedures	
Gas Content Measurement Protocol	
Apparent Diffusivity and Sorption Time	8
Gas Composition and Isotope Analysis	9
Sample Bulk Composition and Property Analysis1	2
Crushed Density Analysis1	
Moisture Holding Capacity Analysis1	
Chemical Characterization1	3
Maceral and Mineral Composition1	4
Coal Vitrinite Reflectance1	
Adsorbed Gas Storage Capacity1	
Analysis Results1	6
Core Photography and Lithology1	6
Gas Content, Diffusivity, and Sorption Time1	
Gas Composition and Isotope Summary1	
Sample Bulk Composition and Property Analysis Results2	
Crushed Density Results2	
Chemical Characterization Results2	
Petrographic Characterization Results2	
Adsorbed Gas Storage Capacity2	
Adsorbed Gas-in-Place Estimate	
Final Summary	33
References	34

List of Tables

Table 1.	Analysis Program Summary	
Table 2.	Core Run Summary	
Table 3.	Sample Bulk Composition and Property Analysis Methodologies	
Table 4.	Relative Effect of Various Parameters on Gas Storage Capacity	
Table 5.	Gas Content Data	
Table 6.	Diffusivity and Sorption Time Estimates	
Table 7.	Apparent Adsorbed Gas Composition Results	
Table 8.	Isotope Results	
Table 9.	Crushed Density Data	
Table 10.	Air-Dry Proximate Analysis Data	24
Table 11.	In-Situ Proximate Analysis Data	
Table 12.	Dry, Ash-Free Ultimate Analysis Data	
Table 13.	In-Situ Ultimate Analysis Data	
Table 14.	Chemical Characterization Data	
Table 15.	Petrographic Data	
Table 16.	Coal Methane Adsorption Isotherm Parameters	
Table 17.	Gas-in-Place per Unit Volume Summary	

List of Figures

Figure 1.	Sample Processing and Analysis Flow Chart	. 7
Figure 2.	Relative Sorption Affinity of Gases	
Figure 3.	Carbon and Hydrogen Isotope Signatures of Methane Sources	
Figure 4.	Gas Content Data Summary	17
Figure 5.	Total Gas Content vs. Inorganic Content	19
Figure 6.	Adsorbed Gas Composition	
Figure 7.	Natural Gas Classification (Carbon-Deuterium Stable Isotope Plot)	21
Figure 8.	Carbon-13 Concentration vs. Time	22
Figure 9.	Reciprocal Modified Density vs. Dry Ash Content	23
Figure 10.	Mineral Matter-Free Basis Maceral Composition Summary	27
Figure 11.	Dry, Ash-Free Methane Isotherm	30
Figure 12.	In-Situ Methane Isotherms	30
Figure 13.	Methane Storage Capacity vs. Inorganic Content	31

List of Appendices

Core Lithology and Photography	Appendix I
Desorption Data and Graphs	Appendix II
Desorption Gas Composition Results	Appendix III
Adsorption Isotherm Results	Appendix IV

<u>Summary</u>

Weatherford Laboratories (WFT Labs) measured properties of five core samples recovered from Fruitland Coals penetrated by Souder, Miller & Associates' Fosset Gulch MW 34-5-14U well between October 29 and October 30, 2008. Core was collected between 479.0 and 532.1 ft. The goals of this project were to evaluate the sorbed gas content, coal properties, gas storage capacity, and gas-in-place of the Fruitland Coals at the well location.

Five core samples were desorbed to determine total gas content (lost plus measured plus crushed gas content) estimates. Two desorption samples were dedicated to collection of multiple gas composition and isotopic samples throughout the desorption history. Density, moisture, and sulfur analyses were performed on all five core samples. Coal characterization was determined for samples taken from desorption samples 41547-2 and 41547-5, which included chemical (proximate analysis, ultimate analysis, sulfur content, sulfur-in-ash content, and heating value) and petrological analyses (vitrinite reflectance and maceral composition). Samples used for coal characterization were also used for two methane adsorption isotherm measurements to determine methane storage capacity versus pressure at constant temperature.

A variety of factors can influence data quality. Confidence in the analytical results depends on the reliability of reservoir temperature and pressure information available for the cored intervals as well as adherence to sample collection and processing protocols. Relative confidence levels were assigned to describe the reliability of the data discussed in this report. These confidence levels are defined below.

- Low confidence Data should not be considered representative of reservoir conditions.
- Moderate confidence Data are suspect but may be useful in conjunction with other information to describe reservoir conditions.
- High confidence Data are believed to represent reservoir conditions (assuming experimental temperature and pressure data accurately describe initial reservoir conditions).

The conclusions and the confidence in these conclusions are summarized in the remainder of this section.

- 1. Confidence in the desorption data was high. The lost gas fraction of the five desorption samples ranged from 6.6 to 25.4% of the total gas content. At the conclusion of desorption experiments, all five desorption samples were crushed to determine the remaining gas content as required for accurate total gas content estimates. The percentage of the total gas released by crushing ranged from 17.4 to 72.6% of the total gas content. The average dry, ash-free and in-situ gas contents were 271.7 scf/ton (standard cubic feet per ton) and 129.3 scf/ton, respectively.
- 2. Estimates of the diffusivity at 69 or 72°F, the desorption temperatures, ranged from 0.089 to 0.973 ns⁻¹. This range corresponded to sorption times (time to desorb 63% of the gas at the desorption temperature and atmospheric pressure) ranging from 19.0 to 207.8 hours. Confidence in this data was high as there was high confidence in the desorption data.
- 3. Multiple desorption gas samples were collected from two dedicated desorption canisters. These data were integrated as a function of the desorbed gas fraction to estimate the original adsorbed gas composition. Estimates of the adsorbed gas composition included 96.3 mol% methane, with minor concentrations of ethane (2.1 mol%), propane and heavier hydrocarbons (0.9 mol%), and carbon dioxide (0.7 mol%). The confidence in these data was moderate as there was substantial air contamination in some of the gas composition samples.

- **4.** Results of isotopic analysis for sample 41547-2 indicated that the released gas was thermogenic in origin. Results for sample 41547-5 indicated that the released gas was biogenic in origin. Confidence in this data was high.
- 5. The density of the five desorption samples was determined after crushing with a helium pycnometer. The density ranged from 1.524 to 2.666 g/cm³ on an in-situ basis. Confidence in these data was high.
- 6. Estimates of the organic fraction density and inorganic fraction density were of moderate accuracy due to minor variation in the sample moist density. The organic fraction density estimate of 1.214 g/cm³ was consistent with the maceral composition. The inorganic fraction density of 3.365 g/cm³ was greater than the density of moist montmorillonite (2.12 g/cm³) and moist kaolinite (2.42 g/cm³).
- 7. Ash contents from the five desorption samples were moderate to high, ranging from 0.3223 to 0.8672 weight fraction on an in-situ basis. The moisture holding capacity (in-situ or inherent moisture content) was moderate, ranging from 0.0125 to 0.0229 weight fraction. The sulfur content was low to moderate, ranging from 0.0061 to 0.0448 weight fraction on an in-situ basis. The confidence in these data was high.
- 8. Coal rank is best determined using calorific value data on a moist, mineral-matter-free basis when the dry, mineral-matter-free fixed carbon values are less than 0.69 weight fraction and the moist, mineral-matter-free calorific value is less than 14,000 BTU/lbm, which was not the case for the two isotherm samples. The moist, mineral-matter-free calorific value for sample 41547-2 was 15,039 BTU/lbm and for sample 41547-5 was 15,566 BTU/lbm. For coal ranks of medium volatile bituminous or greater, coal rank is best determined using vitrinite reflectance data. The meanmaximum vitrinite reflectance for sample 41547-2 was 0.88% in oil placing the ranks in the high volatile A bituminous range. There was high confidence in these data.
- 9. The maceral compositions were determined for the two adsorption isotherm samples. For sample 41547-2, the composition included 93.7% vitrinite, 5.8% inertinite, and 0.5% liptinite. For sample 41547-5, the composition included 93.0% vitrinite, 7.0% inertinite, and 0.0% liptinite. The confidence in these estimates was high.
- 10. Confidence in the measured adsorbed methane storage capacity data at the measurement temperature was high as all measurements were performed with state-of-the-art equipment adhering to strict protocols. Two isotherms were determined from two desorption samples. Based upon the reservoir temperature gradient data, the in-situ temperature was 70.5°F. The isotherm data were measured on samples 41547-2 and 41547-5, which had ash contents of 0.3319 and 0.5404 weight fraction, respectively, and moisture contents of 0.0159 and 0.0181 weight fraction, respectively. The dry, ash-free Langmuir methane storage capacity for sample 41547-2 was 665.9 scf/ton. At the in-situ ash content and moisture content, the Langmuir methane storage capacity was 430.3 scf/ton. The Langmuir pressure was 174.7 psia. The dry, ash-free Langmuir methane storage capacity for sample 41547-5 was 647.4 scf/ton. At the in-situ ash content and moisture content, the langmuir methane storage capacity was 276.6 scf/ton. The Langmuir pressure was 166.8 psia.
- 11. At 222.5 psia, the estimated dry, ash-free methane storage capacity was 375.1 scf/ton. This was slightly greater than the dry, ash-free gas content of 336.9 scf/ton. Therefore, the degree of gas saturation (gas content divided by methane storage capacity) was 89.8%.
- 12. The density and gas content of the coal samples were used to estimate the adsorbed gas-inplace (GIP) volume per unit coal volume. The gas-in-place volume per unit thickness was 291.7 Mscf/acre-ft (thousand standard cubic feet per acre-foot of coal). Confidence in this estimate was high as there was high confidence in the gas content and density data.

Page 2

The data and the basis of these conclusions are discussed throughout the remainder of this report.

Introduction

This report summarizes the procedures and results of the gas desorption and coal characterization program conducted on five core samples recovered from the Souder, Miller & Associates' Fosset Gulch MW 34-5-14U well between October 29 and October 30, 2008, from depths between 479.0 and 532.1 ft. The well is located in the San Juan Basin, specifically SE/SE Section 34, Township 35N, Range 5W, Archuleta County, Colorado. At the request of Mr. Denny Foust of Souder, Miller & Associates, WFT Labs conducted analyses on the core samples. The goals of this project were to evaluate the sorbed gas content, coal properties, gas storage capacity, and gas-in-place of the Fruitland Coals at the well location.

Many of the values presented in this report are time specific. For instance, references to gas content and gas composition are valid on the date the reservoir was sampled. These properties may have been affected by fluid production from the study well, offset wells, or drainage by mining activities since the samples were collected.

Table 1 summarizes the detailed analysis program conducted on the samples after they arrived at WFT Labs' laboratory. Samples 41547-2 and 41547-5 were selected for coal characterization and isotherm analysis after initial ash content screening was complete. Information concerning the details of the measurements and the resulting data are discussed throughout this report.

Table 1.

Analysis Program Summary

Sample ID	Can ID	Drill Depth (ft)	Reservoir System	Premium Sample	Sample Handling	Core Photography	Core Lithology	Gas Composition	Long-term Residual Gas	Density	Moisture/Ash/Sulfur	Moisture Holding Capacity	Proximate/Ultimate/BTU/SO ₃ in Ash	Comprehensive Petrography	Isotherm Preparation	Isotherm
41547-1	GT-193	480.3-481.3	Fruitland Coals	Х	Х	Х	Х		Х	Х	Х	Х				
41547-2	GT-270	484.7-485.7	Fruitland Coals	Х	Х	Х	Х	Х	Х	Х	Х	Х				
41547-2 Isotherm	-	484.7-485.7	Fruitland Coals								Х	Х	Х	Х	Х	CH_4
41547-3	GT-230	487.5-488.5	Fruitland Coals	Х	Х	Х	Х		Х	Х	Х	Х				
41547-4	GT-398	524.0-525.0	Fruitland Coals	Х	Х	Х	Х		Х	Х	Х	Х				
41547-5	GT-247	531.1-532.1	Fruitland Coals	Х	Х	Х	Х	Х	Х	Х	Х	Х				
41547-5 Isotherm	-	531.1-532.1	Fruitland Coals								Х	Х	Х	Х	Х	CH_4

Field Activities

WFT Labs field personnel were on location at the well site between October 28 and October 31, 2008. WFT Labs collected drilling and coring operations data, five core samples for desorption measurements, desorbed gas content data, samples for gas composition determination from two canisters, samples for isotopic determination from two canisters, and core that was retained for additional analyses. This section summarizes the field activities.

References to core depths throughout this report are based on driller's depths and may require a depth correction to agree with log depths.

On October 28, 2008, Mr. Denny Foust provided reservoir temperatures of 69 and 72°F.

Reservoir Pressure data was provided on October 28, 2008, by Mr. Denny Foust. A pressure gradient of 0.42 psi/ft was used in all calculations in this report.

Scorpion Drilling Company (Rig #2) from Farmington, New Mexico, conducted the drilling operations for the well. Core point depth (479.0 ft) was reached on October 28, 2008. Coring operations commenced on October 29, 2008, and were completed on October 30, 2008, with a total of three intermittent core runs from 479.0 to 532.1 ft. A summary of all core runs is presented in Table 2. A field report was issued previously containing details of these operations.¹

Reed Hycalog from Casper, Wyoming, conducted the coring operations. Tools used for coring operations included a CD-93 6.25-inch by 3.5-inch core bit for the first two core runs, a CMR-27 6.25-inch by 3.5-inch core bit for the last run, and a 30-foot long conventional plastic inner-core barrel. Coring fluid was composed of freshwater-based bentonite mud.

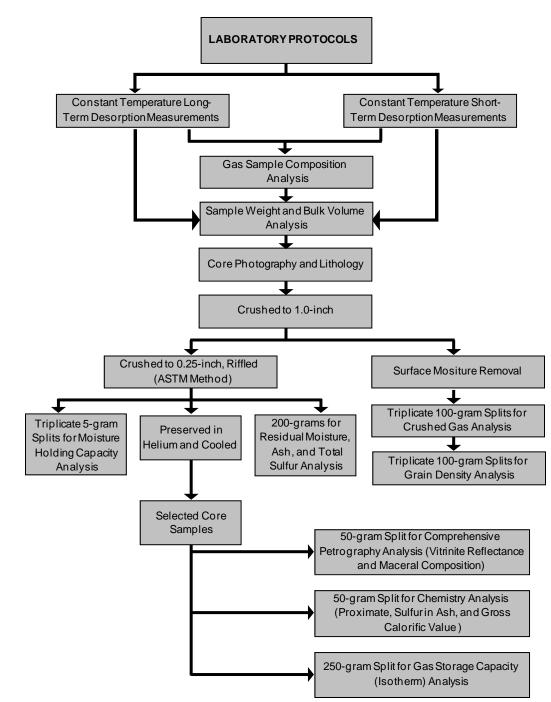
Core Run	Cored Interval	Length Cored	Length Recovered	Core Recovery Success	Core Recovery Time	Circulating Fluid Temp.	Fluid Density	Number of Samples
#	ft	ft	ft	%	hh:mm:ss	۴	ppg	#
1	479.0-480.0	1.0	0.0	0.0	1:14:07	62.0	8.6	0
2	480.0-506.0	26.0	8.7	33.5	1:03:25	48.0	8.6	3
3	524.0-532.1	8.1	8.1	100.0	1:02:55	55.9	8.6	2
Total	-	35.1	16.8	47.9	-	-	-	5

Table 2.

Core Run Summary

Five desorption samples were collected from Fruitland Coals. The core samples were sealed in individual desorption canisters equilibrated to approximate in-situ temperature (69 or 72°F) for gas content analysis. All canisters were filled with potable water to minimize headspace volume within the canister, excluding sample 41547-4, which was filled with inert silica beads to avoid clay expansion in the carbonaceous shale sample. Reduced head space increased the accuracy of the gas content measurements, maximized the quality of gas samples collected for compositional analysis, and reduced oxidation and desiccation of the core. Desorption readings were taken every few minutes for the first few hours, which was important for accurate lost gas content estimates. Gas content measurements continued for at least 24 hours at the well site. Two canisters (samples 41547-2 and 41547-5) were selected for gas composition analysis.

Samples not involved in desorption analysis were sealed in plastic wrap and placed in core boxes. These samples and the desorption samples were delivered to WFT Labs' Arvada, Colorado, laboratory on November 1, 2008. Desorption measurements continued at 69 or 72°F until the samples were crushed to determine the remaining gas content.



Laboratory Procedures

WFT Labs performed long-term desorption tests, gas composition analysis, sample bulk composition and property analysis including moisture, density, proximate analysis, ultimate analysis, sulfur-in-ash, gross calorific value, and adsorption isotherm measurements on selected samples. WFT Labs sub-contracted petrography and isotopic analyses on selected samples. The following details typical laboratory procedures and analyses conducted for a coal reservoir property assessment; although, these analyses may or may not have been performed on the samples collected at this well.

Samples were processed using systematic procedures that minimized sample aerial oxidation, aerial desiccation (moisture loss), and gas loss. WFT Labs used an in-house improved procedure to air-dry processed samples that differs from the air-drying procedure described in the ASTM Method D 3302. WFT Labs' air-drying procedure attempts not to over-dry samples by only removing surface moisture. Figure 1 summarizes the general sample processing and analysis steps in the form of a flow chart. Some of the analyses summarized in this figure may not have been performed on samples from this project. Sample methodologies rigorously followed best practice analysis protocols developed by ASTM, the Gas Technology Institute (GTI), and WFT Labs.^{2,3,4,5,6}

Figure 1. Sample Processing and Analysis Flow Chart

Gas Content Measurement Protocol

Desorbed gas volumes were measured as a function of time to the nearest 1 milliliter by head-pressure equalized fluid displacement. The frequency of the measurements was greatest during the early time of desorption tests to ensure sufficient data were available for lost gas content determination. The gas desorption data collected during the gas desorption tests were used to calculate the lost gas content. Lost gas content estimates were obtained from the early time gas content data using WFT Labs' modified version of the U.S. Bureau of Mines' Direct Method.^{5,6}

Samples were removed from the canister and the particle size was reduced to a one-inch diameter top size. Triplicate representative splits, approximately 100 grams each, were quickly removed from the gross sample for crushed gas analysis. The splits were individually pulverized to -200 mesh in specialized sealed crushing vessels under an inert gas (helium) atmosphere at approximate reservoir temperature. The released (crushed) gas volume was measured periodically until no measurable gas was released from the crushing vessel. The crushed gas content of the samples was calculated by dividing the released gas volume by the sample weight. An average of gas content from the triplicate splits was used as the final estimate of the crushed gas content.

RapidGas[™] is WFT Lab's methodology when samples are removed from desorption samples within three weeks of the start of desorption and pulverized to determine the released gas volume with the crushed gas method. WFT Labs uses the term accelerated gas to describe crushed gas analysis when the desorption time is greater than for *RapidGas* samples but less than the time for long-term desorption samples.

Crushed gas content (also referred to as residual gas content) is used to describe the released gas content when samples are crushed after long-term desorption at approximate reservoir temperature. WFT Labs terminates the long-term desorption measurements when the released gas volume is less than or equal to 0.05 scf/ton-D (standard cubic feet per ton-day) over a several day period.

The total air-dry gas contents were calculated by the sum of the lost gas, measured gas, and crushed gas contents. Residual moisture, ash, moisture holding capacity, and total sulfur content data were then used to convert air-dry basis gas content data to other bases (e.g., dry; dry, ash-free; and in-situ bases). All gas content volumes were converted to and reported in standard cubic feet per ton (2,000 lbm) of rock (scf/ton).

Apparent Diffusivity and Sorption Time

Gas storage and flow through coal seams are generally modeled with dual porosity reservoir models.⁶ Gas is stored by adsorption within the primary porosity system within the organic component of the coal matrix. The primary porosity consists of micro- (<2 nanometer diameter) and meso-porosity (2 to 50 nanometer diameter) pores. Gas flows to wells through the secondary porosity system, which consists of macro-pores (>50 nanometers diameter) and natural fractures. Gas flow through the primary porosity is dominated by diffusion and quantified with Fick's Law while gas flow through the secondary porosity is driven by pressure gradients and quantified with Darcy's Law.

Diffusivity is the diffusion coefficient divided by the square of an average diffusion distance. Diffusivity can be estimated from the method used for determining lost gas volume using the relationship listed in Equation 1.

$$\frac{D}{r^2} = \mathop{\mathbf{\mathfrak{C}}}_{\mathbf{\dot{e}}} \frac{m}{203.1G_{ad}} \stackrel{\mathbf{\ddot{O}}^2}{\dot{\mathbf{\phi}}}$$
(1)

where:

 D/r^2 diffusivity, sec⁻¹ m slope of gas content versus square-root time graph, scf/ton-hr^{0.5}

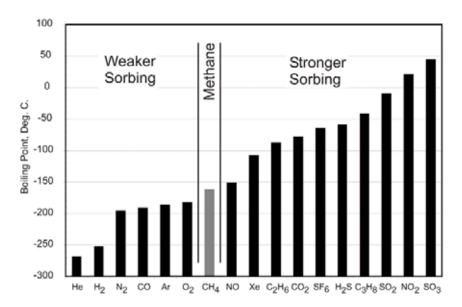
Although diffusivity values are used in reservoir models, an easier concept to understand is the sorption time. Sorption time is defined as the time required to desorb 63.2% of the original gas content if a sample is maintained at constant temperature. The relationship used to relate sorption time to diffusivity is listed in Equation 2.

$$t = \mathop{\mathbf{c}}\limits_{\mathbf{c}} \overset{3}{} 600a \frac{D \ddot{\mathbf{o}}^{1}}{r^{2} \dot{\mathbf{o}}}$$
(2)

where:

t sorption time, hr

a geometrical shale factor, cm²


The geometrical shape factor for a sphere, the most common assumed geometry, is 15. The accuracy of the diffusivity value depends weakly upon the competency of the core sample and strongly upon the determination of the lost gas content.

Gas Composition and Isotope Analysis

It is important to determine the composition of the adsorbed gas as the gas composition directly affects the gas storage capacity and critical desorption pressure. The adsorption affinity of gases is related to their atmospheric pressure boiling point as illustrated by Figure 2. Nitrogen tends to decrease in-situ multi-component gas storage capacity while carbon dioxide, ethane, and heavier hydrocarbon gases tend to increase storage capacity. The composition of the gas desorbed from the core samples changes with time, and concentrations of heavier hydrocarbon species tend to increase relative to methane.

The gas composition as a function of desorbed gas fraction data (cumulative desorbed gas content divided by the total gas content) was integrated to determine the adsorbed gas composition for coal samples or for an average of the free and adsorbed gas compositions for shale samples. Gas composition samples were collected from dedicated canisters. These canisters are usually purged with helium at the time of sealing to reduce air contamination. Gas samples were collected periodically before measuring the released gas volume. The gas composition of the initial released gas was determined by extrapolation to zero desorbed gas content. The accuracy of the extrapolation is strongly dependent upon the lost gas content and the number of desorption gas samples taken early in the desorption measurements. If lost gas content is large, i.e., greater than 25%, the estimates of the lost gas composition of the gas released by crushing the samples at the end of the desorption measurements must also be corrected for contamination by air.

Relative Sorption Affinity of Gases

Figure 2.

Gas sample composition was analyzed at WFT Labs by gas chromatography in accordance with ASTM Method D 1945 (modified). The gas composition was calculated by integrating the gas composition as a function of cumulative desorbed gas content.

Determining the origin of the gas is important in understanding the characteristics of natural gas in a reservoir system or basin. Natural gas derived from two distinct sources listed below can be distinguished based on isotopic composition.⁷ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. Gas isotope ratios were determined by isotope ratio mass spectroscopy.

- 1. Biogenic Gas: Gas generated by anaerobic decomposition of organic matter in a shallow, low temperature sedimentary environment.
- 2. Thermogenic Gas: Gas formed in deeply buried sediments by thermal cracking of sedimentary organic matter into hydrocarbon liquids and gas (primary thermogenic gas), or by thermal cracking of oil at high temperatures into gas (secondary thermogenic gas).

Biogenic gas consists primarily of methane and is often referred to as a "dry" gas. Thermogenic gas can be dry or contain concentrations of heavier hydrocarbons (C_{2+}).

The following information is derived from Reference 7. In isotope geochemistry, it is common practice to express isotopic composition in terms of a delta (δ) value, which is a difference from a standard sample. For example, the delta value for substance A is defined by Equation 3.

$$\boldsymbol{d}_{A}^{\prime} = 10^{3} \frac{\boldsymbol{\partial} \boldsymbol{R}_{A}}{\boldsymbol{c} \boldsymbol{R}_{st}} - 1 \frac{\boldsymbol{\ddot{o}}}{\boldsymbol{\dot{e}}}$$
(3)

where:

*d*_A *delta value of element A, parts per thousands, ‰*

- R_A isotopic ratio of A, dimensionless
- R_{st} isotopic ratio of a standard, dimensionless

Carbon has two stable isotopes: ¹²C and ¹³C. ¹²C accounts for 98.89% of all carbon and ¹³C accounts for 1.11% of the remaining carbon. When the delta value is greater, it is common to consider substance A enriched in the rare, heavier isotope.

Hydrogen has two stable isotopes: H and ²D (deuterium). H accounts for 99.9844% of all hydrogen and ²D accounts for 0.0156% of the remaining hydrogen. Hydrogen exhibits the largest variations in stable isotope ratios of all elements.

Biogenic methane commonly occurs in recent anoxic (low oxygen concentration) sediments in both fresh water, such as lakes and swamps, and marine environments, such as estuaries and shelf regions. There are two primary pathways for methanogenesis, fermentation of acetate and reduction of CO_2 . Acetate fermentation is dominant in freshwater environments while CO_2 reduction is dominate in marine environments.

During methanogenic bacterial decomposition of organic material, methane is highly depleted in $d^{13}C$ and results in $d^{13}C$ values between -110 and -50‰. In marine sediments, methane formed by CO₂ reduction is often more depleted in ¹³C than when formed by acetate fermentation. Typical values for $d^{13}C$ in methane from marine environments range from -110 to -60‰ while those in methane from freshwater environments range from -50‰.

The difference in methane composition from both environments is even greater for the hydrogen isotopes. Marine bacterial methane has dD values between -250 and -170‰ while biogenic methane in freshwater environments is strongly depleted in deuterium with dD values between -400 to -250‰. This difference is due to the source of the hydrogen. Hydrogen comes from formation water during CO_2 reduction. Seventy-five percent of the hydrogen created by fermentation comes from the methyl group, which is extremely depleted in deuterium.

Thermogenic gas is produced in deeply buried sediments due to modification of the organic matter by various chemical reactions, such as cracking of kerogen. The ${}^{12}C - {}^{13}C$ bonds are preferentially broken during the first stages of maturation resulting in ${}^{13}C$ enrichment, which continues as temperature increases. In general, as thermal maturity of methane increases, the d ${}^{13}C$ values increase. Thermogenic methane commonly has d ${}^{13}C$ values between -50 and -20‰. Methane from non-marine (humic) sources are isotopically enriched relative to those generated from marine (sapropelic sources) and similar levels of thermal maturity. In contrast, dD values are independent on the source of organic material but are highly dependent on the thermal maturity.

As a side note, migration can enrich methane in d¹²C or d¹³C depending upon the properties of the rock through which the gas is migrating. Recent experiments have demonstrated that d¹³C can be depleted during migration through shale to different degrees depending upon the organic content of the shale.⁸

The process of diffusion can cause significant isotope fractionization. In general, light isotopes are more mobile and diffuse about 1% faster than the heavier isotopes. As a result, light isotopes escape more readily leaving the remaining methane enriched in ¹³C causing greater d¹³C values.

A gas mixture subjected to a temperature gradient will tend to separate by thermal diffusion; the greater mass species will migrate to the colder temperatures. Gravitational settling in porous media can also cause the heavier isotope to migrate downward.

Whiticar⁹ developed a chart for identification of methane sources based upon isotopic ratios. This chart, extracted from Reference 7, is illustrated in Figure 3. The term SMOW in the horizontal axis refers to the standard for hydrogen isotopes, which comes from a sample of mean ocean water distributed in Vienna by the International Atomic Energy Agency. The term PDB in the vertical axis refers to the standard for carbon isotopes, which is a based on Cretaceous PeeDee Belemnites found in South Carolina.

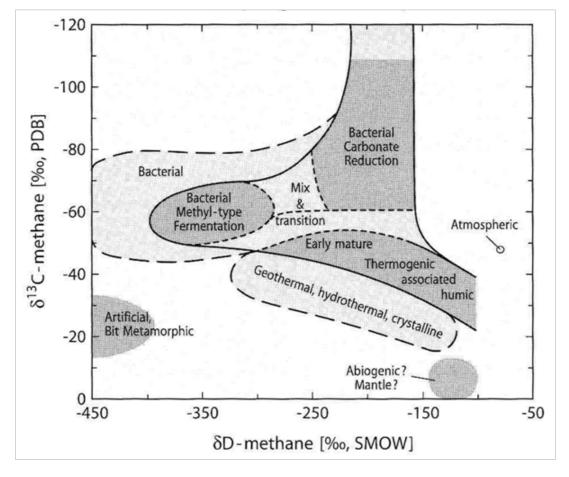


Figure 3. Carbon and Hydrogen Isotope Signatures of Methane Sources

When a helium purged canistered sample is selected for isotope analysis, one or two samples of released gas are collected from the core sample during the desorption measurements after sufficient volume of gas is measured in order to clear the canister head space of residual air. If two gas samples were collected, one sample was taken within the first few hours of the desorption measurements and the second was collected when the rate of desorption decreased significantly but still had enough volume to fill the collection tube (100 ml). If only one gas sample was collected for isotopic analysis, the sample was taken within the first few hours of the desorption analysis, the sample was taken within the first few hours of the desorption measurements. The gas samples collected should be representative of the reservoir gas and are analyzed by isotope-ratio mass spectrometry (IRMS) at Isotech Laboratories, Inc.

Sample Bulk Composition and Property Analysis

Sample bulk composition and property analyses were performed according to ASTM or other standardized methodologies listed in Table 3. Chemical analysis (proximate, total sulfur, sulfur in ash, and heating value) and comprehensive petrography analysis (maceral matter composition, mineral matter composition, and vitrinite reflectance analyses) are typically conducted on selected samples to determine coal composition and thermal maturity (rank). The Center for Applied Energy Research (University of Kentucky) conducts the petrographic analysis. All other listed bulk composition and property analyses were conducted in-house by WFT Labs. Density, moisture holding capacity, chemical analysis, and petrographic analysis procedures are discussed in the following sections.

Table 3.	Sample Bulk Composition and Property Analysis Methodologies
----------	---

Analysis	Methodology
Air-dry moisture loss	WFT Labs' improved methodology
Sample bulk volume	Standard water displacement technique
Density	Helium multi-pycnometry
Moisture holding capacity	WFT Labs' improved methodology
Residual moisture	ASTM D 5142
Ash content	ASTM D 5142
Proximate	ASTM D 5142
Total sulfur	ASTM D 4239C
Sulfur in Ash	ASTM D 5016
Gross calorific value	ASTM D 5865
Maceral and mineral composition	ASTM D 2799
Vitrinite reflectance	ASTM D 2798

Crushed Density Analysis

Density by helium pycnometry determines crushed density values (i.e., density excluding large-scale gas filled pore volume). For coal, the crushed density is almost identical to the bulk density. Crushed density analysis requires the measurement of sample volume and mass. Sample volumes were measured at room temperature conditions on triplicate air-dried samples (representative of each desorption sample) of approximately 100 grams using a helium multi-pycnometer. Helium can penetrate the coal micro-pore structure without adsorption and does not add moisture to the sample. Sample weights were determined to the nearest 0.001 gram using an electronic balance. Sample densities were calculated by dividing the measured sample mass by the sample volume.

Moisture Holding Capacity Analysis

The in-situ (or inherent) moisture of coal is the amount of moisture the coal can hold at 100 percent relative humidity without any moisture present on the surface of the coal particles. The moisture holding capacity approximates the in-situ moisture content of the coal seam.²

The moisture holding capacity analysis procedure used by WFT Labs is in accordance with the ASTM Method D 1412 (Equilibrium Moisture). The equilibrium moisture value is defined as the average percentage weight loss upon drying triplicate 5-gram water saturated coal samples [particle size -16 US mesh (1.18 mm)], following equilibration at 96 to 97% relative humidity and 86°F (30°C) for 48 to 72 hours.

Chemical Characterization

Proximate and ultimate analysis provides chemical composition data. Proximate analysis results in estimates of the weight fraction of residual moisture, ash, and volatile matter and the calculation of fixed carbon by difference. Data from proximate analyses are used to classify coal rank and to determine the ratio of combustible to incombustible constituents. Ultimate analysis results in the weight fraction of sulfur, carbon, hydrogen, nitrogen, and oxygen by difference.²

The total sulfur content represents the sulfur occurring in both the organic and inorganic components of the coal sample. The total sulfur content is determined in accordance with ASTM D 4239C.

Residual moisture is neither a standard state nor a characteristic property of coal.² Residual moisture is dependent on the sample handling, desorption methodology, and the method used to remove excess moisture before analysis. For coal samples, it is important to maintain the residual moisture content at levels slightly greater than the inherent, or in-situ, moisture content. When the total moisture is reduced to the residual moisture value following careful methods, subsequent analyses can be reported on the ASTM as-determined mass basis.

Maceral and Mineral Composition

Maceral and mineral analysis provides organic and mineral composition data. Petrographic characterization of coal reservoir systems is performed by microscopic examination of polished surfaces of crushed particle pellets under reflected white light and ultraviolet light. The volume fraction of organic (maceral) and inorganic (mineral) components is quantified by manual point counting. The volume fraction of clay, quartz, carbonate, and sulfide minerals is also quantified by point counting. The point counting technique is a subjective process and requires a knowledgeable and highly experienced petrographer to obtain consistent data. A third-party commercial laboratory, Center for Applied Energy Research (University of Kentucky), conducted the maceral and mineral testing.

Coal Vitrinite Reflectance

The thermal maturity of coal can be quantified petrographically by vitrinite reflectance. The measurement is typically conducted on the polished surface of the crushed particle pellets used for the maceral analysis. Incident white light is reflected off the surface of vitrinite macerals immersed in oil of a specific refractive index. The reflected light is captured by a photo multiplier and converted to analog and digital output. The reflected light is typically reported as the mean-maximum reflectance since vitrinite is anisotropic under incident. Vitrinite reflectance may be the most sensitive indicator of thermal maturity for macerals that have attained a coal rank of medium volatile bituminous and greater. A third-party commercial laboratory, Center for Applied Energy Research (University of Kentucky), conducted the vitrinite reflectance testing.

Adsorbed Gas Storage Capacity

Adsorption isotherm data are important because isotherm behavior indicates the maximum gas volume that can be stored at a specific temperature and pressure. The adsorption isotherm determines the gas storage capacity of crushed samples as a function of pressure at constant temperature, which is usually the reservoir temperature. A known weight of crushed rock sample is placed in a volumetric isotherm apparatus and subjected to increasing pressure steps.¹⁰ Gas storage capacity is estimated by material balance analysis of the pressure behavior. For coal, the measurement is performed on samples equilibrated to the inherent, or in-situ, moisture content.

The gas storage capacity of coal typically increases non-linearly as pressure increases. Gas storage capacity also varies as a function of the type of gas species, coal maceral composition, and organic material thermal maturity.

The Langmuir equation listed in Equation 4 is used to model the variation of gas storage capacity as a function of pressure.¹¹

$$G_s = G_{sL} \frac{p}{p + p_L} \tag{4}$$

where:

- G_s gas storage capacity, scf/ton
- G_{sL} Langmuir storage capacity, sct/ton
- p pressure, psia
- p_L Langmuir pressure, psia

The Langmuir storage capacity is the gas storage capacity of the sample at infinite pressure and the Langmuir pressure is the pressure at which the gas storage capacity of the sample equals one-half the Langmuir storage capacity value.

Gas storage capacity is dependent upon pressure, temperature, and organic composition. Table 4 summarizes the effect that each of these parameters has on the gas storage capacity when all other parameters are held constant.

Parameters	As the Parameter:	Gas Storage Capacity:
Pressure	Increases	Increases
Temperature	Increases	Decreases
Moisture Content	Increases	Decreases
Vitrinite/Kerogen III Concentration	Increases	Increases
Thermal Maturity	Increases	Increases

Table 4. Relative Effect of Various Parameters on Gas Storage Capacity

Gas adsorbed in reservoirs typically contains gases other than methane, each gas having different adsorptive affinity, which is related to its atmospheric pressure boiling point. The extended Langmuir equation is used to model multi-component gas storage capacity when gas mixtures are present in coal reservoirs. Adsorption isotherm measurements are conducted independently for each gas component present and then combined mathematically with the extended Langmuir model to produce isotherm data that are representative of the reservoir's gas composition.

Multi-component isotherm relationships can be computed from single component data by use of extended Langmuir theory.¹² Equation 5 lists the extended Langmuir relationship.

$$G_{si} = G_{sLi} \frac{\frac{p_{Y_i}}{p_{Li}}}{1 + p \overset{nc}{\overset{nc}{a}} \frac{y_i}{p_{Li}}}$$
(5)

where:

G_{si}	multi-component storage capacity of component i, scf/ton
G_{sLi}	single component Langmuir storage capacity of component i, scf/ton
p_{Li}, p_{Lj}	single component Langmuir pressure of component i or j, psia
$y_i or y_j$	mole fraction of component i or j in the free gas (vapor) phase, dimensionless
пс	number of components
p	pressure of the free gas phase, psia

One limitation in the current application of Equations 4 and 5 is that gas storage capacity is a function of temperature. No simple method accounts for temperature variations unless the isotherms are measured at multiple temperatures. Consequently, the laboratory isotherm data should be measured at an average reservoir temperature or at multiple temperatures to allow for proper correction.

Initial reservoir gas saturation (gas content divided by gas storage capacity) and critical desorption pressure (pressure at which adsorbed gas is released from the adsorbed state) are estimated from the adsorption isotherm analysis and desorption data.⁴ The critical desorption pressure is determined by calculating the pressure at which the in-situ gas content equals the in-situ gas storage capacity.

Analysis Results

This section provides summaries and discussions of the analytical results. Laboratory reports (raw data) are provided in the appendices where indicated.

Core Photography and Lithology

At the conclusion of the desorption tests, the samples were removed from desorption canisters. Digital photographs were taken and lithologic descriptions of the desorption samples immediately followed. Photographs and lithologies are included in Appendix I.

Gas Content, Diffusivity, and Sorption Time

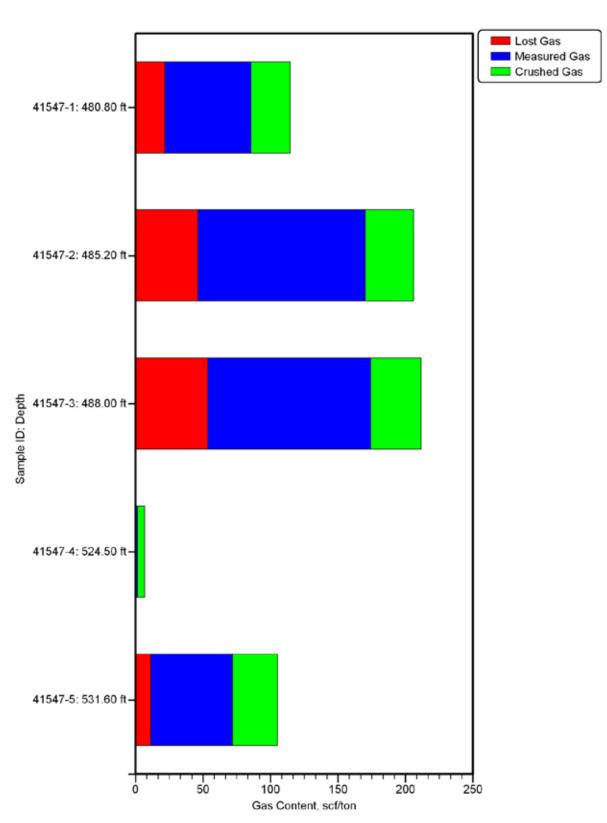
The total gas content was determined by summing the lost gas content, measured gas content (desorbed gas content), and the gas content liberated from the crushed sample at the end of desorbed gas analysis. The gas volume measurements were corrected for canister and ambient temperature and ambient pressure variations. Gas contents were reported at standard conditions of 14.7 psia and 60°F. The total gas content estimate was based upon the air-dried sample mass. Residual moisture, moisture holding capacity, ash, and total sulfur content data were used to convert air-dry basis gas content data to other bases (i.e., dry; dry, ash-free; and in-situ bases). Figure 4 illustrates the lost, measured, and crushed gas content estimates for core samples are summarized in Table 5. Desorption data including total gas content, measured gas content, and crushed gas content are illustrated in Appendix II.

For the core samples, lost gas contents were obtained from the early time gas content data using WFT Lab's modified version of the Direct Method.^{5,6} Extrapolations were made of the early time desorption data measured at reservoir temperature to determine the lost gas content. The lost gas time (time interval used for lost gas extrapolations) ranged from 1.35 to 1.64 hours and all lost gas content values were less than 26% of the total gas content.

Measured gas contents determined from desorption tests for all desorption samples are presented in Table 5. Desorption graphs and data are included in Appendix II.

Residual (crushed) gas content was determined for the five desorption samples. Crushed gas content data are presented in Table 5.

Diffusivity and sorption time estimates for the core samples are listed in Table 6. The diffusion values were obtained from the gradient of the lost gas slope. Sorption time was computed from the diffusivity values.


In many cases, there is a relationship between the total gas content and the inorganic content of each sample. Figure 5 illustrates this relationship listed in Equation 6. The relationship had a squared correlation coefficient of 0.9487, which was statistically significant. The extrapolation to zero inorganic content suggested the organic fraction gas content was 336.9 scf/ton, which was greater than the average dry, ash-free gas content of 271.7 scf/ton.

$$G_c = 336.9 - 357.5(w_a + w_w + w_s) \tag{6}$$

where:

- G_c total gas content, scf/ton
- w_a ash content, weight fraction
- w_w moisture content, weight fraction
- *w_s* sulfur content, weight fraction

Figure 4.

Gas Content Data Summary

Gas Content Data

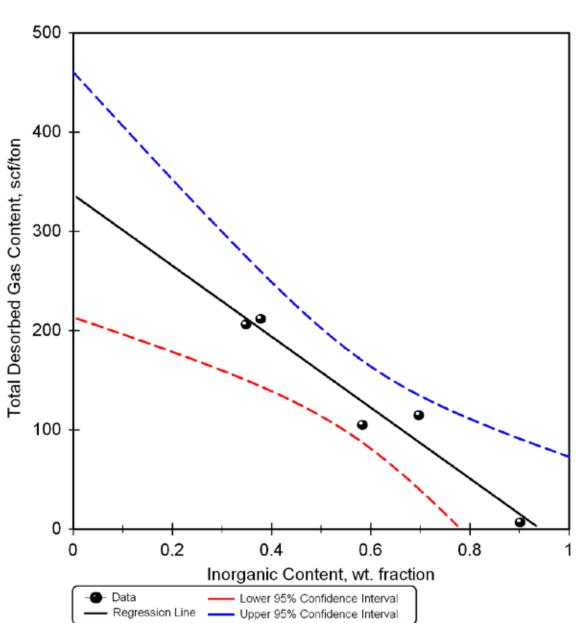

Sample ID	Midpoint Depth	Mass	Lost Gas Time	Lost Gas Fraction	Measured Gas Fraction	Crushed Gas Fraction	Lost Gas Content	Measured Gas Content	Crushed Gas Content	Total Air-Dry Gas Content	Total Dry, Ash- Free Gas Content	Total In- Situ Gas Content
	ft	g	hours	%	%	%	scf/ton	scf/ton	scf/ton	scf/ton	scf/ton	scf/ton
41547-1	480.80	2,019	1.35	19.24	55.65	25.11	22.1	63.9	28.8	114.9	378.9	114.7
41547-2	485.20	1,573	1.48	22.49	60.14	17.37	46.4	124.1	35.8	206.4	316.6	207.1
41547-3	488.00	1,724	1.64	25.42	57.01	17.58	53.8	120.8	37.2	211.9	340.4	213.0
41547-4	524.50	4,532	1.45	6.60	20.78	72.62	0.5	1.4	5.0	6.9	70.2	6.9
41547-5	531.60	2,430	1.57	11.15	57.50	31.34	11.7	60.5	33.0	105.2	252.6	105.0
Average	-	2,456	1.50	16.98	50.22	32.80	26.9	74.2	28.0	129.1	271.7	129.3

Table 6.

Diffusivity and Sorption Time Estimates

Sample ID	Top Depth	Bottom Depth	Sorption Time	Diffusivity	
	ft	ft	hr	1/µs	
41547-1	480.30	481.30	26.0	0.712	
41547-2	484.70	485.70	21.2	0.874	
41547-3	487.50	488.50	19.0	0.973	
41547-4	524.00	525.00	207.8	0.089	
41547-5	531.10	532.10	95.3	0.194	
Average	-	-	73.9	0.569	

Figure 5.

Total Gas Content vs. Inorganic Content

Gas Composition and Isotope Summary

Natural gas produced from coal reservoirs may contain significant volumes of carbon dioxide, nitrogen, and other hydrocarbons in addition to methane. Knowledge of the desorbed gas composition is required to properly evaluate the gas storage capacity. Two canisters were dedicated to collection of multiple desorption gas samples. The gas compositions were corrected for air and hydrogen contamination. The degree of contamination was such that it was necessary to remove all of the nitrogen as well.

Table 7 summarizes the apparent adsorbed gas composition for two samples. The sorbed gas consisted primarily of methane (96.3 mol%). Ethane (2.1 mol%), propane and heavier hydrocarbons (0.9 mol%), and carbon dioxide (0.7 mol%) were also present in smaller concentrations. While nitrogen may be

present in the adsorbed gas, contamination precluded an estimate for the adsorbed nitrogen content. Figure 6 graphically illustrates the apparent adsorbed gas composition of the samples. The original gas compositions, contamination corrected gas compositions, gas compositions as a function of desorption fractions, and integrated (adsorbed) gas compositions are all reported in Appendix III.

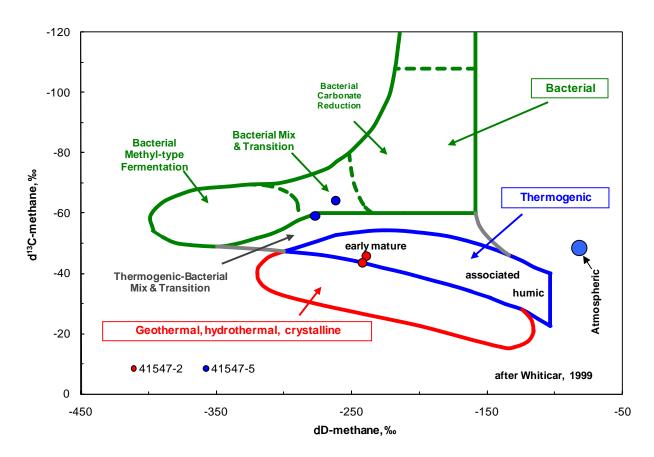
Table 7.	Apparent Adsorbed Gas Composition Results

Sample ID	Midpoint Depth	C ₁	C ₂	C ₃₊	CO2	Total
	ft	mol frac	mol frac	mol frac	mol frac	mol frac
41547-2	485.20	0.9377	0.0404	0.0111	0.0108	1.0000
41547-5	531.60	0.9882	0.0013	0.0078	0.0028	1.0000
Average	-	0.9629	0.0208	0.0094	0.0068	1.0000

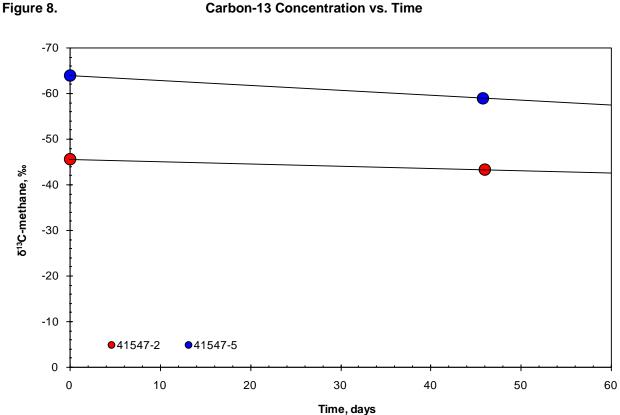
Data obtained from stable isotope analysis from sample 41547-2 indicated the gas was thermogenic in origin. Data obtained from sample 41547-5 indicated the gas was biogenic in origin. Results of isotopic analysis for the selected samples are listed in Table 8 and are illustrated by the red and blue dots in Figure 7 and Figure 8.

¹²C is lighter than ¹³C; therefore, it releases from the core samples sooner. This phenomenon was observed when multiple samples of released gas from the same core sample were compared over a period of time. Figure 8 illustrates the increase in ¹³C concentration with time.

Figure 6.



Parameter	Unit	41547-2-ISO1	41547-2-ISO2	41547-5-ISO1	41547-5-ISO2
Midpoint Depth	ft	485.20	485.20	531.60	531.60
Date/Time Sampled	mm/dd/yyyy hh:mm:ss	10/30/2008 13:19:00	12/15/2008 11:33:00	10/30/2008 19:20:00	12/15/2008 13:17:00
CO ₂ Conc.	mol frac	0.0051	0.0101	0.0031	0.0198
C1 Conc.	mol frac	0.9942	0.9883	0.9963	0.9632
C ₂ Conc.	mol frac	0.0006	0.0016	0.0004	0.0016
C ₃ Conc.	mol frac	0.0000	0.0000	0.0000	0.0000
iC ₄ Conc.	mol frac	0.0000	0.0000	0.0001	0.0023
nC4 Conc.	mol frac	0.0000	0.0000	0.0000	0.0007
iC5 Conc.	mol frac	0.0000	0.0000	0.0000	0.0036
nC_5 Conc.	mol frac	0.0000	0.0000	0.0000	0.0016
C ₆₊ Conc.	mol frac	0.0000	0.0000	0.0000	0.0072
Total	mol frac	1.0000	1.0000	1.0000	1.0000
d ¹³ C ₁	‰	-45.6	-43.3	-64.0	-59.0
dDC ₁	‰	-239	-242	-262	-277

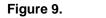

Table 8.

Isotope Results

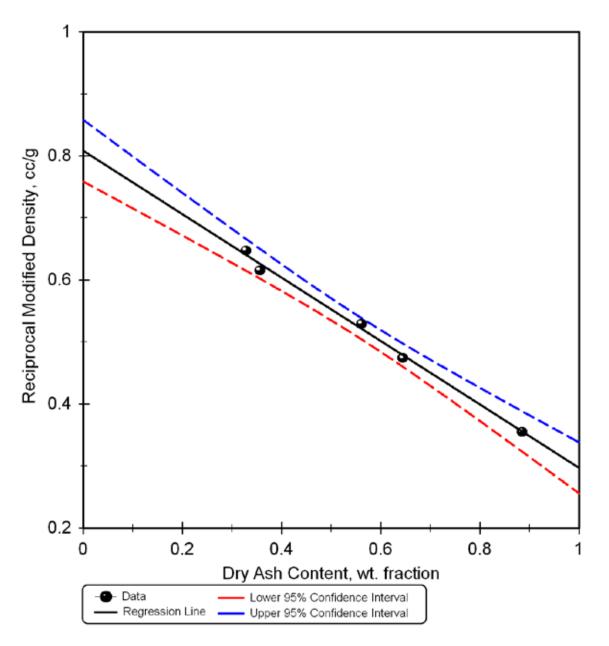
Figure 7. Natural Gas Classification (Carbon-Deuterium Stable Isotope Plot)

Carbon-13 Concentration vs. Time

Sample Bulk Composition and Property Analysis Results


The crushed density, proximate analysis, ultimate analysis, total sulfur, sulfur in ash, gross calorific value, and petrography results for the selected core samples are discussed in the following sub-sections.

Crushed Density Results


Crushed density results are listed in Table 9. The density of coal varies as a function of its composition. Since the mineral matter component of the coal has a significantly higher density than the organic matter component, the density of coal varies as a function of its mineral matter content. The ash content of coal represents the mineral matter component of the coal. When total sulfur content is significant, the total mineral matter present is a function of the ash and sulfur content.

The average organic and inorganic (mineral matter) densities can often be estimated by linear regression of reciprocal density and ash content data.⁴ Figure 9 illustrates the relationship between reciprocal modified density and dry ash content for the desorption samples. The relationship was statistically significant (squared correlation coefficient, 0.9954).

Reciprocal Modified Density vs. Dry Ash Content

The estimated organic density was 1.214 g/cm³ and the estimated inorganic density was 3.365 g/cm³.The organic density of coal in the sub-bituminous and bituminous rank range varies between 1.18 to 1.40 g/cm³ and depends upon the maceral composition.

The inorganic density is often between the densities of moist montmorillonite (2.12 g/cm³), moist kaolinite (2.42 g/cm³), and that of quartz (2.65 g/cm³). Occasionally, values are observed that approach 3 g/cm³ due to the presence of carbonates and heavy minerals. The average inorganic density value of 3.365 g/cm³ was much greater than results observed in the past for San Juan Basin coal.

Sample ID	Top Depth Bottom Depth ft ft		Air-Dry Helium Density g/cm ³	In-Situ Helium Density g/cm ³	
41547-1	480.30	481.30	1.970	1.966	
41547-2	484.70	485.70	1.519	1.524	
41547-3	487.50	488.50	1.593	1.602	
41547-4	524.00	525.00	2.672	2.666	
41547-5	531.10	532.10	1.833	1.830	
Average	-	-	1.917	1.918	

Table 9.

Crushed Density Data

Chemical Characterization Results

Residual moisture, ash, and total sulfur analyses are used to convert data reported on an as-received mass basis to other mass bases such as dry; dry, ash-free; mineral-matter-free (moist or dry); and in-situ bases. It is useful to report data on the dry mass basis to review data without the effect of moisture. It is also useful to report data on the dry, ash-free mass basis to review analyses normalized to 100% organic material. Dry, ash-free values are used to compare gas content and gas storage capacity between different zones or wells since the adsorbed gas is stored predominantly by organic material (i.e., the macerals in coal). Table 10 summarizes the proximate analysis results, which include residual moisture, moisture holding capacity, ash, volatile matter, and fixed carbon results for the desorption samples on an air-dry basis. Complete proximate analysis was performed only on samples selected for isotherm analysis. In-situ proximate analysis results have also been provided in Table 11.

Sample ID	Top Depth	Bottom Depth	Moisture Holding Capacity	Air-Dry Moisture Content	Air-Dry Ash Content	Air-Dry Volatile Matter Content	Air-Dry Fixed Carbon Content
	ft	ft	wt frac	wt frac	wt frac	wt frac	wt frac
41547-1	480.30	481.30	0.0229	0.0211	0.6309	-	-
41547-2	484.70	485.70	0.0172	0.0205	0.3212	-	-
41547-2 Isotherm	484.70	485.70	0.0159	0.0177	0.3313	0.2421	0.4089
41547-3	487.50	488.50	0.0125	0.0180	0.3496	-	-
41547-4	524.00	525.00	0.0204	0.0181	0.8692	-	-
41547-5	531.10	532.10	0.0198	0.0178	0.5511	-	-
41547-5 Isotherm	531.10	532.10	0.0181	0.0178	0.5405	0.1621	0.2795
Average	-	-	0.0181	0.0187	0.5134	0.2021	0.3442

Table 10.

Air-Dry Proximate Analysis Data

Sample ID	Top Depth	Bottom Depth	In-Situ Moisture Content	In-Situ Ash Content	In-Situ Volatile Matter Content	In-Situ Fixed Carbon Content
	ft	ft	wt frac	wt frac	wt frac	wt frac
41547-1	480.30	481.30	0.0229	0.6297	-	-
41547-2	484.70	485.70	0.0172	0.3223	-	-
41547-2 Isotherm	484.70	485.70	0.0159	0.3319	0.2426	0.4097
41547-3	487.50	488.50	0.0125	0.3516	-	-
41547-4	524.00	525.00	0.0204	0.8672	-	-
41547-5	531.10	532.10	0.0198	0.5500	-	-
41547-5 Isotherm	531.10	532.10	0.0181	0.5404	0.1621	0.2795
Average	-	-	0.0181	0.5133	0.2023	0.3446

Table 11.

In-Situ Proximate Analysis Data

Ultimate analysis data are summarized in Table 12 on a dry, ash-free basis. Complete ultimate analysis was performed only on samples selected for isotherm analysis. In-situ ultimate analysis results have also been provided in Table 13.

Table 12.

Dry, Ash-Free Ultimate Analysis Data

Sample ID	Top Depth	Bottom Depth	Sulfur Content	Carbon Content	Nitrogen Content	Hydrogen Content	Oxygen Content
•	ft	ft	wt frac	wt frac	wt frac	wt frac	wt frac
41547-1	480.30	481.30	0.1290	-	-	-	-
41547-2	484.70	485.70	0.0100	-	-	-	-
41547-2 Isotherm	484.70	485.70	0.0094	0.8445	0.0175	0.0590	0.0697
41547-3	487.50	488.50	0.0157	-	-	-	-
41547-4	524.00	525.00	0.1263	-	-	-	-
41547-5	531.10	532.10	0.0336	-	-	-	-
41547-5 Isotherm	531.10	532.10	0.0324	0.8208	0.0157	0.0629	0.0682
Average	-	-	0.0509	0.8326	0.0166	0.0610	0.0689

Sample ID	Top Depth	Bottom Depth	In-Situ Sulfur Content	In-Situ Carbon Content	In-Situ Hydrogen Content	In-Situ Nitrogen Content	In-Situ Oxygen Content
	ft	ft	wt frac	wt frac	wt frac	wt frac	wt frac
41547-1	480.30	481.30	0.0448	-	-	-	-
41547-2	484.70	485.70	0.0066	-	-	-	-
41547-2 Isotherm	484.70	485.70	0.0061	0.5508	0.0385	0.0114	0.0454
41547-3	487.50	488.50	0.0100	-	-	-	-
41547-4	524.00	525.00	0.0142	-	-	-	-
41547-5	531.10	532.10	0.0145	-	-	-	-
41547-5 Isotherm	531.10	532.10	0.0143	0.3624	0.0278	0.0069	0.0301
Average	-	-	0.0158	0.4566	0.0331	0.0092	0.0378

Table 13.

In-Situ Ultimate Analysis Data

Gross calorific value, fixed carbon content, and volatile matter content were determined to estimate the coal rank (thermal maturity) for the isotherm sample. The procedure documented in ASTM D 388 was used to correct ash content for sulfur in ash, to convert fixed carbon and volatile matter to a dry, mineral matter free basis, and to convert calorific value to a moist, mineral-matter-free basis.¹³ The moisture holding capacity data were used to convert dry basis data to a moist basis.

Table 14 summarizes the chemical characterization of the isotherm samples. Coal rank is best determined using calorific value data on a moist, mineral-matter-free basis when the dry, mineral-matter-free fixed carbon values are less than 0.69 weight fraction and the moist, mineral-matter-free calorific value is less than 14,000 BTU/lbm. This was not the case for samples 41547-2 and 41547-5, which had moist, mineral-matter free calorific values of 15,039 and 15,556 BTU/lbm, respectively. Coal rank classification using fixed carbon and calorific values were unreliable for these samples.

Table 14.

Chemical Characterization Data

Parameter	Unit	41547-2 Isotherm	41547-5 Isotherm					
Top Depth	ft	484.70	531.10					
Bottom Depth	ft	485.70	532.10					
Chemical Characterization Data								
Moisture Holding Capacity, in-situ basis	wt frac	0.0159	0.0181					
Residual Moisture, as-received basis	wt frac	0.0177	0.0178					
Sulfur-in-Ash Content, in-situ basis	wt frac	0.0098	0.0012					
Corrected Ash Content, in-situ basis	wt frac	0.3319	0.5404					
Sulfur Content, in-situ basis	wt frac	0.0061	0.0143					
Parr Corrected Volatile Matter Content, DMMF basis	wt frac	0.4932	0.8348					
Parr Corrected Fixed Carbon Content, DMMF basis	wt frac	0.5068	0.1652					
Parr Corrected Calorific Value, MMMF basis	BTU/lbm	15,039	15,566					

Notes:

Moisture holding capacity determined by moisture equilibration at 86°F for 72 hrs at 96-97% relative humidity. Ash content corrected for sulfur-in-ash content.

DMMF = Dry, mineral-matter-free basis determined with sulfur corrections in accordance with ASTM D 388.

MMMF = Moist, mineral-matter-free basis determined with sulfur corrections in accordance with ASTM D 388.

Petrographic Characterization Results

This section provides a summary of the petrographic analytical results. Figure 10 illustrates the maceral composition summarized in Table 15, which also includes mineral results. For coal ranks of medium volatile bituminous or greater, coal rank is best determined using vitrinite reflectance data. The mean-maximum vitrinite reflectance for sample 41547-2 was 0.99% in oil and the mean-maximum vitrinite reflectance for sample 41547-5 was 0.88% in oil placing the rank for both samples in the high volatile A bituminous range.

1.0 0.9372 0.9304 0.9 0.8 Maceral Composition, wt fraction 0.7 0.6 0.5 0.4 0.3 0.2 0.0696 0.1 0.0578 0.0050 0.0000 0.0 41547-2 41547-5

Figure 10. Mineral Matter-Free Basis Maceral Composition Summary

■Vitrinite ■Inertinite ■Liptinite

Table 15.

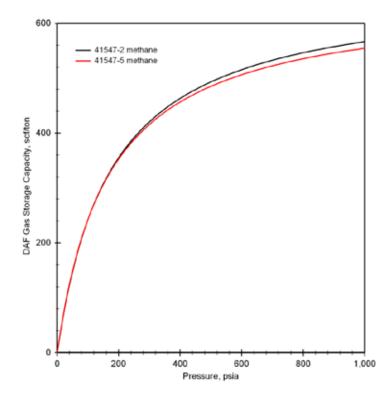
Petrographic Data

Parameter	Unit	41547-2	41547-5
Vitrinite Gro	oup Macerals,	Mineral-Matter Free Basis	
Telinite	vol frac	0.0678	0.0476
Collotelinite	vol frac	0.4925	0.4908
Vitrodetrinite	vol frac	0.3392	0.3626
Collodetrinite	vol frac	0.0000	0.0000
Corpogelinite	vol frac	0.0352	0.0256
Gelinite	vol frac	0.0025	0.0037
Total Vitrinite	vol frac	0.9372	0.9304
Inertinite Gr	oup Macerals,	Mineral-Matter Free Basis	
Fusinite	vol frac	0.0251	0.0220
Semifusinite	vol frac	0.0151	0.0403
Micrinite	vol frac	0.0000	0.0000
Macrinite	vol frac	0.0126	0.0000
Secretinite	vol frac	0.0000	0.0000
Funginite	vol frac	0.0050	0.0037
Inertodetrinite	vol frac	0.0000	0.0037
Total Inertinite	vol frac	0.0578	0.0696
Liptinite Gro	oup Macerals,	Mineral-Matter Free Basis	
Sporinite	vol frac	0.0000	0.0000
Cutinite	vol frac	0.0000	0.0000
Resinite	vol frac	0.0050	0.0000
Alginite	vol frac	0.0000	0.0000
Liptodetrinite	vol frac	0.0000	0.0000
Suberinite	vol frac	0.0000	0.0000
Exsudatinite	vol frac	0.0000	0.0000
Total Liptinite	vol frac	0.0050	0.0000
Minera	I Composition	n, Maceral-Fee Basis	
Clay	vol frac	0.8431	0.9824
Quartz	vol frac	0.0196	0.0088
Carbonate	vol frac	0.1275	0.0000
Sulfide	vol frac	0.0098	0.0088
Total	vol frac	1.0000	1.0000
	Vitrinite R	eflectance	
Mean-Maximum Reflectance	% in oil	0.99	0.88
Standard Deviation	% in oil	0.07	0.04
Coal Rank based on Vitrinite Reflectance	-	high volatile A	A bituminous

Adsorbed Gas Storage Capacity

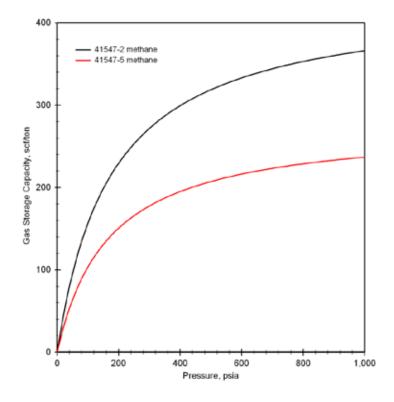
Two methane isotherm measurements were performed by WFT Labs. The isotherm parameters and gas storage capacity estimates are summarized in Table 16. Figures 11 and 12 illustrate the methane storage capacity as a function of pressure on a dry, ash-free and in-situ basis, respectively.

Parameter	Unit	41547-2	41547-5					
Sample Para	Sample Parameters							
Top Depth	ft	484.70	484.70					
Bottom Depth	ft	531.10	531.10					
Measurement Gas	-	methane	methane					
Measurement Temperature	°F	70.52	70.52					
Moisture Content, in-situ basis	wt frac	0.0159	0.0181					
Ash Content, in-situ basis	wt frac	0.3319	0.5404					
Sulfur Content, in-situ basis	wt frac	0.0061	0.0143					
Organic Content, in-situ basis	wt frac	0.6461	0.4272					
Vitrinite Content, mineral-matter-free basis	vol frac	0.937	0.930					
Inertinite Content, mineral-matter-free basis	vol frac	0.058	0.070					
Liptinite Content, mineral matter-free basis	vol frac	0.050	0.000					
Calorific Value, moist, mineral-matter-free basis	BTU/lbm	14,773	14,801					
Langmuir Par	rameters							
Langmuir Storage Capacity, dry, ash-free	scf/ton	665.91	647.35					
Langmuir Storage Capacity, in-situ	scf/ton	430.26	276.56					
Langmuir Pressure	psia	174.69	166.78					
Adsorbed Gas Sto	rage Capacity							
Reservoir Pressure	psia	215.40	234.89					
Storage Capacity, dry, ash-free	scf/ton	367.71	378.56					
Storage Capacity, in-situ	scf/ton	237.59	161.73					


Table 16.Coal Methane Adsorption Isotherm Parameters

For sample 41547-2, the dry, ash-free Langmuir storage capacity was 665.9 scf/ton, the in-situ Langmuir storage capacity was 430.3 scf/ton, and the Langmuir pressure was 174.7 psia. At a reservoir pressure of 215.4 psia, the in-situ storage capacity was 237.6 scf/ton.

For sample 41547-5, the dry, ash-free Langmuir storage capacity was 647.4 scf/ton, the in-situ Langmuir storage capacity was 276.6 scf/ton, and the Langmuir pressure was 166.8 psia. At a reservoir pressure of 234.9 psia, the in-situ storage capacity was 161.7 scf/ton.


Figure 11.

Dry, Ash-Free Methane Isotherm

In-Situ Methane Isotherms

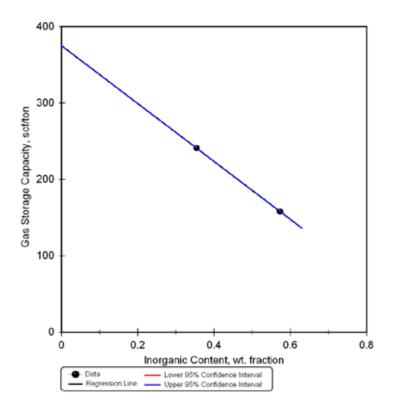
Often there is a relationship between methane storage capacity and inorganic content at reservoir pressure. Figure 13 illustrates this relationship listed in Equation 7 at a reservoir pressure of 222.5 psia.

Extrapolation to zero inorganic content suggested the dry, ash-free storage capacity was 375.1 scf/ton. This value was larger than the dry, ash-free gas content of 336.9 scf/ton determined from Equation 6 discussed earlier and indicated that the reservoir was slightly undersaturated. This difference may be due to underestimation of the reservoir temperature, an overestimation of reservoir pressure, differences in maceral composition and thermal maturities between the samples, or limited data available for regression.

$$G_s = 375.1 - 378.9(w_a + w_w + w_s) \tag{7}$$

where:

 G_s gas storage capacity, scf/ton


 w_a ash content, weight fraction

 w_w moisture content, weight fraction

w_s sulfur content, weight fraction

Figure 13.

Methane Storage Capacity vs. Inorganic Content

If the reservoir pressure gradient of 0.42 psi/ft is correct, then the dry, ash-free gas content of 336.9 scf/ton from Equation 6 is 89.8% of the dry, ash-free gas storage capacity from Equation 7.

Adsorbed Gas-in-Place Estimate

Adsorbed gas-in-place (GIP) volume was determined for a unit coal thickness based upon the gas content and density data. Gas-in-place per unit thickness volumes were computed with Equation 8.⁴

$$\frac{G}{Ah} = 1.3597 \, r \, G_c \tag{8}$$

where:

- G gas-in-place volume, Mscf
- A reservoir area, acres
- h reservoir thickness, ft
- *r* average in-situ density, g/cm^3
- G_c average in-situ gas content, scf/ton

The in-situ density and gas content values from the five desorbed core the samples were used for these estimates. Estimated GIP values per unit volume were reported in thousands of cubic feet at standard conditions per unit reservoir volume in acre-feet. These estimates are summarized in Table 17. This table can be used with coal thickness estimates from log data and assumed drainage areas to compute the volume of gas-in-place in an area of interest.

Table 17. Gas-in-Place per Unit Volume Summary

Coal Seam	Coal Seam Top Depth		In-Situ Density	In-Situ Gas Content	Gas-In-Place per Volume
	ft	ft	g/cm ³	scf/ton	Mscf/acre-ft
Fruitland Coals	480.3	532.1	1.491	143.9	291.7

Final Summary

Weatherford Laboratories measured properties of five core samples recovered from Fruitland Coals penetrated by Souder, Miller & Associates' Fosset Gulch MW 34-5-14U well between October 29 and October 30, 2008. Core was collected between 479.0 and 532.1 ft. The goals of this project were to evaluate the sorbed gas content, coal properties, gas storage capacity, and gas-in-place of the Fruitland Coals at the well location.

Five core samples were desorbed to determine total gas content (lost plus measured plus crushed gas content) estimates. Two desorption samples were dedicated to collection of multiple gas composition and isotopic samples throughout the desorption history. Density, moisture, and sulfur analyses were performed on all five core samples. Coal characterization was determined for samples taken from desorption samples 41547-2 and 41547-5, which included chemical (proximate analysis, ultimate analysis, sulfur content, sulfur-in-ash content, and heating value) and petrological analyses (vitrinite reflectance and maceral composition). Samples used for coal characterization were also used for two methane adsorption isotherm measurements to determine methane storage capacity versus pressure at constant temperature.

References

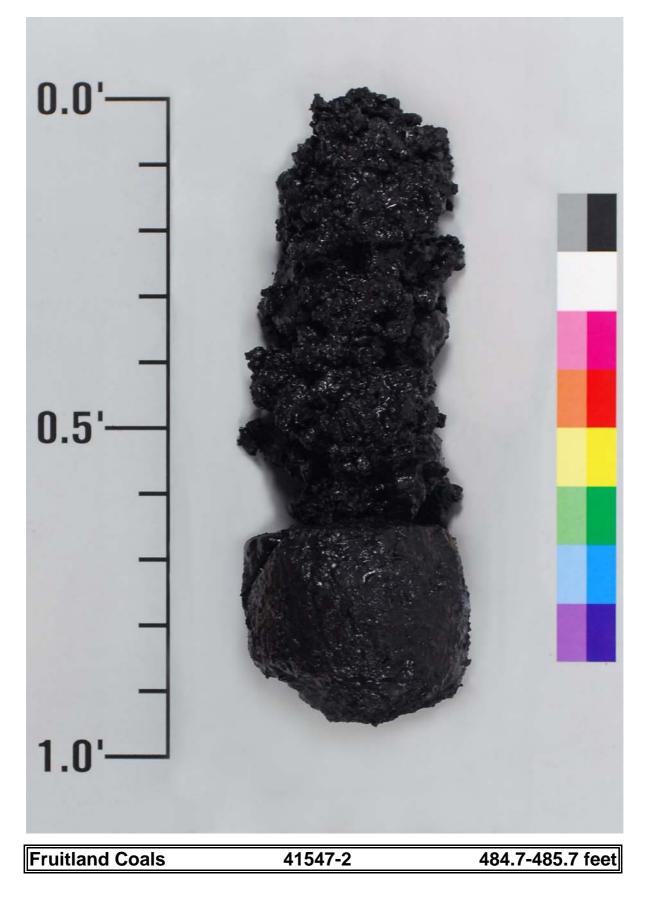
- 1. Denis, M.R. 2008. Summary of Field Operations, Souder, Miller & Associates, Fosset Gulch MW 34-5-14U Well. Field Report, Weatherford Laboratories, Arvada, CO (5 November 2008).
- 2. 2001 Annual Book of ASTM Standards, Volume 05.05 Gaseous Fuels; Coal and Coke, **05.05**. American Society for Testing and Materials (ASTM), Philadelphia, PA.
- 3. McLennan, J.D. Schafer, P.S., and Pratt, T.J. 1995. *A Guide to Determining Coalbed Gas Content*. Gas Research Institute Report GRI-94/0396, 182. Chicago, IL.
- 4. Mavor, M.J. and Nelson, C.R. 1997. *Coalbed Reservoir Gas-In-Place Analysis*. Gas Research Institute Report GRI-97/0263, 144. Chicago, IL.
- 5. Kissel, F.N., McCulloch, C.M., and Elder, C.H. 1973. Direct Method Determination of the Gas Content of Coal: Procedures and Results. Report of Investigations 8515, United States Department of the Interior, Bureau of Mines (1973).
- 6. Mavor, M.J. 1996. Coalbed Methane Reservoir Properties. In *A Guide to Coalbed Methane Reservoir Engineering*, ed. J.L. Saulsberry, P.S. Schafer, and R.A. Schraufnagel. Gas Research Institute Report GRI-94/0397, Chicago, IL.
- 7 Hoefs, J. 2004. *Stable Isotope Geochemistry*, fifth edition. Berlin, Springer.
- 8. Zhang, T. and Krooss, B.M. 2001. Experimental Investigation on the Carbon Isotope Fractionization of Methane During Gas Migration by Diffusion Through Sedimentary Rocks at Elevated Temperature and Pressure. *Geochimica et Cosmochimica Acta* **65** (16): 2,723-2,742.
- 9. Whitcar, M.J. 1999. Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane. *Chemical Geology* **161** (1-3): 291-314.
- 10. Mavor, M.J., Hartman, C., and Pratt, T.J. 2004. Uncertainty in Sorption Isotherm Measurements. *Proc.*, International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama, 411.
- 11. Langmuir, I. 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum. *Journal of the American Chemical Society* **40** (9), 1,361.
- 12. Yang, R.T. 1987. *Gas Separation by Adsorption Processes*. Boston: Butterworths.
- 13. Anonymous. 1997. Designation D 399-95 Standard Classification of Coals By Rank. In *1997 Annual Book of ASTM Standards Volume 05.05 Gaseous Fuels; Coal and Coke*, **05.05**: 169-171. American Society of Testing and Materials (ASTM), West Conshohocken, PA.

Appendix I

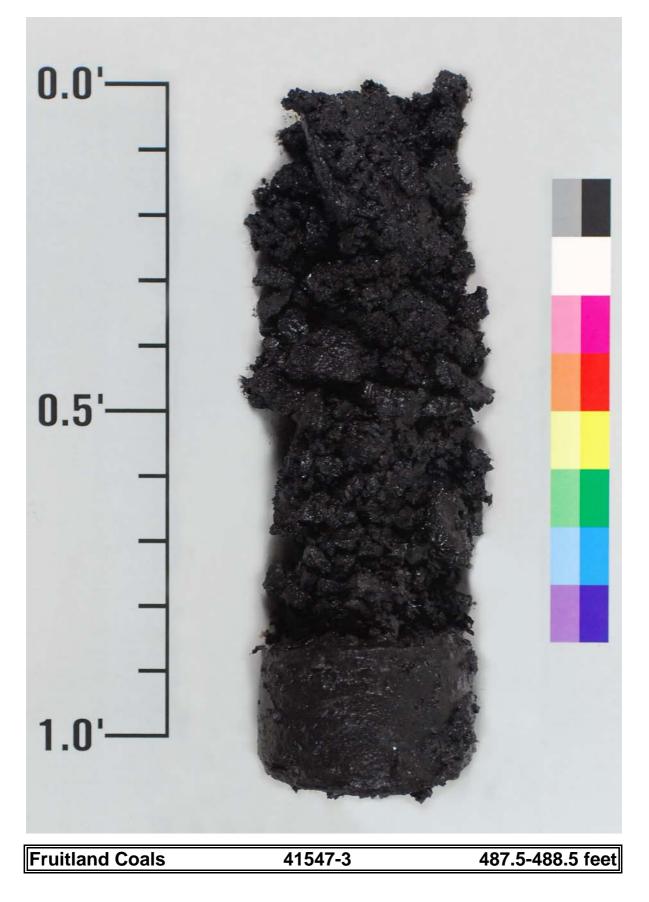
Souder, Miller & Associates Fosset Gulch MW 34-5-142 Fruitland Coals

Core Lithology and Photography

Core Lithology


Client	Name:	Souder, Miller & As	sociates		Well Name:	Fosset Gulch MW 34-5-142Job Number: 41547
		SAMPLE IN	ITERVAL			DESCRIPTION
SAMPLE ID.	CANISTER ID.	Depth Drilled (feet)	Length (inches)	Core Diameter (inches)	Peter eter es) Core Surface Texture Black gray/brown carbonaceous shale bedding plane parts and parts along pol lenses throughout, two parallel vertical fracture faces 0 rough and rubblized Black banded dull coal, mostly rubble, of contaminated, no observed mineralizat 0 rough and muddy Black banded dull coal, mostly rubble, of contaminated, no observed mineralizat 2 rough and rubblized Dark gray siltstone and black coal?, sa section appears to be siltstone, rubble 0 slightly rough with bit marks Dark gray siltstone, semi-competent - a shelly lag throughout but especially cor to be aragonite, core is fairly hard	Comments
41547-1	GT-193	480.3-481.3	10.0?	3.50	U	Black gray/brown carbonaceous shale to coaly shale, rubblized because of massive? bedding plane parts and parts along possible cleats, large woody debris and bright coal lenses throughout, two parallel vertical fractures (cleats?) with calcite mineralization on fracture faces
41547-2	GT-270	484.7-485.7	6.0?	3.40	rough and muddy	Black banded dull coal, mostly rubble, cleats?, one possible vertical fracture, very mud contaminated, no observed mineralization
41547-3	GT-230	487.5-488.5	10.0?	3.4?	U	Dark gray siltstone and black coal?, sample is rubblized to pulverized, one competent section appears to be siltstone, rubble appears to be coal judging by heft
41547-4	GT-398	524.0-525.0	12.00	3.40	• • •	Dark gray siltstone, semi-competent - a few parts on massive? bedding, fluid saturated, shelly lag throughout but especially concentrated at mid-core, shells are whole and appear to be aragonite, core is fairly hard
41547-5	GT-247	531.1-532.1	11.50	3.40	(coaly) rough with bit marks	Interbedded black shaly coal, banded coal, and carbonaceous shale; few bands of bright coal, semi-competent - parts on indeterminate bedding, one fracture down vertical center of core (not a centerline fracture), poorly developed cleats

Lithologist(s): D. Rogers



Core Photography Souder, Miller & Associates

Fosset Gulch MW 34-5-142

Appendix II

Souder, Miller & Associates Fosset Gulch MW 34-5-142 Fruitland Coals

Desorption Data and Graphs

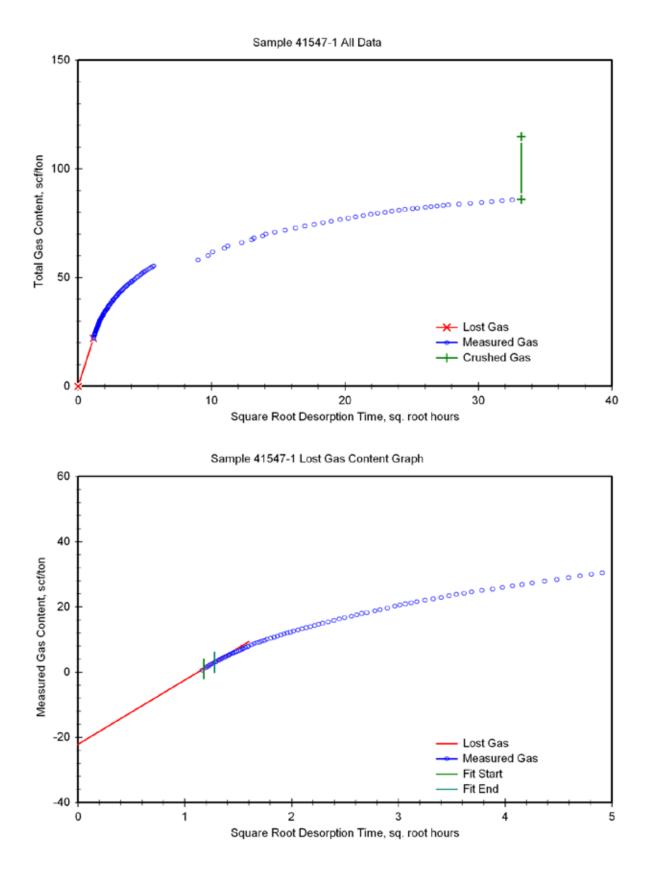
Sample 41547-1 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	480.30
Sample Bottom Depth	ft	481.30
Reservoir Pressure	psia	216.63
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	229.49
Mud Density	lbm/gal	8.60
Sample Mass	g	2,019.0
Sample Headspace Volume	cm ³	168.0
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/30/2008 08:25:02
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/30/2008 09:48:14
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/30/2008 09:52:01
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/30/2008 10:51:40
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/30/2008 11:13:10
Lost Gas Time	hours	1.353
Desorption Time Correction	hours	0.081
Fit Start Time	hours	1.387
Fit End Time	hours	1.632
Fit Start Time	hours*0.5	1.178
Fit End Time	hours*0.5	1.278
Lost Gas Content	scf/ton	22.1
Measured Gas Content	scf/ton	63.9
Crushed Gas Content	scf/ton	28.8
Total Gas Content	scf/ton	114.9
Lost Gas Fraction	vol frac	0.1924
Measured Gas Fraction	vol frac	0.5565
Crushed Gas Fraction	vol frac	0.2511
Diffusivity	1/us	0.7
Sorption Time	hours	26.0

Sample 41547-1 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
10/30/2008 11:13:10	1.3525	1.1630	0.0	0.0	68.2	57.9	11.66	0.00
10/30/2008 11:18:00	1.3522	1.1629	52.0	41.4	68.2	57.9	11.66	0.66
10/30/2008 11:22:00	1.4189	1.1912	53.0	41.9	69.6	58.4	11.66	1.32
10/30/2008 11:23:59	1.4520	1.2050	24.0	19.1	69.6	58.8	11.66	1.62
10/30/2008 11:26:00	1.4856	1.2188	23.0	18.3	69.6	59.5	11.66	1.91
10/30/2008 11:28:00	1.5189	1.2324	22.0	17.4	69.6	60.2	11.66	2.19
10/30/2008 11:30:00	1.5522	1.2459	21.0	16.6	69.8	60.8	11.66	2.45
10/30/2008 11:32:59	1.6020	1.2657	26.0	20.4	69.9	62.4	11.66	2.78
10/30/2008 11:35:59	1.6520	1.2853	29.0	22.8	69.4	63.5	11.66	3.14
10/30/2008 11:37:00	1.6689	1.2919	15.0	11.8	69.6	63.5	11.66	3.33
10/30/2008 11:41:00	1.7356	1.3174	31.0	24.4	69.6	63.6	11.66	3.72
10/30/2008 11:42:59	1.7686	1.3299	20.0	15.8	69.6	63.6	11.66	3.97
10/30/2008 11:45:00	1.8022	1.3425	15.0	11.8	69.6	63.8	11.66	4.15
10/30/2008 11:47:00	1.8356	1.3548	19.0	15.0	69.4	64.0	11.66	4.39
10/30/2008 11:49:59	1.8853	1.3731	19.0	14.8	69.8	64.2	11.66	4.63
10/30/2008 11:51:59	1.9186	1.3851	18.0	14.2	69.6	64.2	11.66	4.85
10/30/2008 11:55:00	1.9689	1.4032	21.0	16.5	69.4	64.5	11.66	5.11
10/30/2008 11:57:00	2.0022	1.4150	17.0	13.4	68.4	64.7	11.66	5.32
10/30/2008 11:59:00	2.0356	1.4267	16.0	12.5	68.5	65.1	11.66	5.52
10/30/2008 12:01:59	2.0853	1.4441	15.0	11.6	68.9	65.4	11.65	5.71
10/30/2008 12:04:00	2.1189	1.4556	16.0	12.5	68.9	65.8	11.65	5.91
10/30/2008 12:06:00	2.1522	1.4671	20.0	15.7	68.9	66.2	11.65	6.16
10/30/2008 12:08:59	2.2020	1.4839	18.0	14.1	68.9	66.2	11.65	6.38
10/30/2008 12:13:00	2.2689	1.5063	19.0	14.9	68.9	67.1	11.65	6.62
10/30/2008 12:16:00	2.3189	1.5228	18.0	14.1	68.9	68.0	11.65	6.84
10/30/2008 12:19:00	2.3689	1.5391	20.0	15.6	68.9	69.8	11.65	7.08
10/30/2008 12:20:59	2.4020	1.5498	17.0	13.2	68.9	70.7	11.65	7.29
10/30/2008 12:24:00	2.4522	1.5660	21.0	16.3	69.1	70.7	11.65	7.55
10/30/2008 12:27:00	2.5022	1.5818	22.0	17.1	69.1	71.0	11.65	7.82
10/30/2008 12:30:00	2.5522	1.5976	22.0	17.1	69.1	71.9	11.65	8.09
10/30/2008 12:34:59	2.6353	1.6234	25.0	19.3	69.1	73.4	11.65	8.40
10/30/2008 12:40:00	2.7189	1.6489	25.0	19.3	69.1	74.3	11.65	8.71
10/30/2008 12:45:00	2.8022	1.6740	24.0	18.4	69.1	75.0	11.65	9.00
10/30/2008 12:49:59	2.8853	1.6986	24.0	18.5	69.1	75.7	11.65	9.29
10/30/2008 12:55:00	2.9689	1.7231	23.0	17.7	69.1	75.3	11.65	9.57
10/30/2008 13:00:00	3.0522	1.7471	22.0	16.8	69.1	76.4	11.64	9.84

10/30/2008 13:05:00	3.1356	1.7708	22.0	16.9	69.1	77.0	11.64	10.11
10/30/2008 13:03:00	3.2522	1.8034	24.0	18.3	69.1	77.3	11.64	10.40
10/30/2008 13:12:00	3.3689	1.8355	24.0	21.5	69.1	77.0	11.64	10.40
10/30/2008 13:26:00	3.4856	1.8670	27.0	20.7	69.1	76.8	11.64	11.07
10/30/2008 13:33:00	3.6022	1.8980	27.0	20.6	69.1	76.8	11.63	11.39
10/30/2008 13:40:00	3.7189	1.9284	27.0	20.0	69.1	77.0	11.63	11.72
10/30/2008 13:47:00	3.8356	1.9585	25.0	19.1	69.1	77.1	11.63	12.03
10/30/2008 13:54:00	3.9522	1.9880	24.0	18.4	69.1	77.5	11.63	12.32
10/30/2008 14:01:00	4.0689	2.0172	25.0	19.1	69.1	78.8	11.63	12.62
10/30/2008 14:11:00	4.2356	2.0581	30.0	22.9	69.1	79.1	11.63	12.98
10/30/2008 14:21:00	4.4022	2.0982	26.0	19.8	69.1	79.8	11.63	13.30
10/30/2008 14:31:00	4.5689	2.1375	26.0	19.7	69.1	80.7	11.62	13.61
10/30/2008 14:41:00	4.7356	2.1761	31.0	23.5	69.1	83.3	11.62	13.98
10/30/2008 14:51:00	4.9022	2.2141	30.0	22.7	68.9	84.3	11.62	14.34
10/30/2008 15:01:00	5.0689	2.2514	29.0	21.9	68.9	83.8	11.62	14.69
10/30/2008 15:11:00	5.2356	2.2881	28.0	21.2	68.9	82.9	11.62	15.03
10/30/2008 15:26:00	5.4856	2.3421	35.0	26.5	68.9	82.5	11.62	15.45
10/30/2008 15:41:00	5.7356	2.3949	37.0	28.0	69.1	82.5	11.62	15.89
10/30/2008 15:56:00	5.9856	2.4465	33.0	24.9	69.4	82.7	11.62	16.29
10/30/2008 16:11:00	6.2356	2.4971	36.0	27.2	69.4	83.6	11.62	16.72
10/30/2008 16:30:00	6.5522	2.5597	41.0	31.2	69.1	79.8	11.62	17.22
10/30/2008 16:45:00	6.8022	2.6081	34.0	26.0	69.1	77.9	11.63	17.63
10/30/2008 17:00:00	7.0522	2.6556	31.0	23.7	69.1	76.1	11.62	18.00
10/30/2008 17:15:00	7.3022	2.7023	24.0	18.4	69.1	75.3	11.63	18.30
10/30/2008 17:40:00	7.7189	2.7783	41.0	31.9	69.1	69.4	11.63	18.80
10/30/2008 17:56:00	7.9856	2.8259	30.0	23.2	69.1	71.7	11.63	19.17
10/30/2008 18:20:59	8.4020	2.8986	41.0	31.9	69.1	69.2	11.64	19.68
10/30/2008 18:45:00	8.8022	2.9669	46.0	35.8	69.3	68.0	11.64	20.25
10/30/2008 19:01:00	9.0689	3.0115	27.0	21.2	69.3	65.3	11.64	20.58
10/30/2008 19:19:59	9.3853	3.0635	28.0	22.1	69.1	62.7	11.64	20.93
10/30/2008 19:41:00	9.7356	3.1202	27.0	21.3	69.4	63.1	11.65	21.27
10/30/2008 20:01:00	10.0689	3.1732	27.0	21.3	69.4	62.2	11.65	21.61
10/30/2008 20:30:00	10.5522	3.2484	35.0	27.7	69.8	60.8	11.66	22.05
10/30/2008 21:00:00	11.0522	3.3245	37.0	29.2	69.8	62.4	11.66	22.51
10/30/2008 21:30:00	11.5522	3.3989	35.0	27.7	69.6	62.2	11.66	22.95
10/30/2008 22:01:00	12.0689	3.4740	37.0	29.1	69.8	64.0	11.66	23.41
10/30/2008 22:30:00	12.5522	3.5429	34.0	26.8	70.2	64.2	11.67	23.84
10/30/2008 23:01:00	13.0689	3.6151	32.0	25.0	69.8	68.1	11.68	24.23
10/30/2008 23:31:00	13.5689	3.6836	31.0	24.2	69.4	69.2	11.68	24.62
10/31/2008 00:15:00	14.3022	3.7818	35.0	27.7	69.3	62.4	11.68	25.06
10/31/2008 01:01:00	15.0689	3.8819	38.0	29.9	69.1	66.0	11.69	25.53



10/31/2008 01:45:00	15.8022	3.9752	38.0	29.6	70.0	66.5	11.69	26.00
10/31/2008 02:30:00	16.5522	4.0684	36.0	28.3	69.8	66.2	11.69	26.45
10/31/2008 03:15:00	17.3022	4.1596	35.0	27.5	69.6	66.2	11.69	26.89
10/31/2008 04:02:00	18.0856	4.2527	39.0	30.7	68.9	65.4	11.69	27.37
10/31/2008 05:01:00	19.0689	4.3668	41.0	32.4	69.4	62.7	11.70	27.89
10/31/2008 06:03:00	20.1022	4.4836	43.0	33.7	69.8	66.5	11.70	28.42
10/31/2008 07:02:59	21.1020	4.5937	46.0	36.5	69.8	62.0	11.70	29.00
10/31/2008 08:03:00	22.1022	4.7013	43.0	34.0	69.8	64.2	11.71	29.54
10/31/2008 09:03:00	23.1022	4.8065	38.0	30.6	69.3	55.2	11.72	30.03
10/31/2008 10:02:59	24.1020	4.9094	36.0	28.9	69.6	55.7	11.72	30.49
10/31/2008 11:03:00	25.1022	5.0102	34.0	27.1	69.6	60.0	11.72	30.92
10/31/2008 12:33:00	26.6022	5.1577	39.0	30.4	69.1	71.4	11.70	31.40
10/31/2008 14:03:00	28.1022	5.3012	46.0	35.2	69.1	76.2	11.68	31.96
10/31/2008 15:33:00	29.6022	5.4408	43.0	33.1	69.3	75.3	11.68	32.48
10/31/2008 17:03:00	31.1022	5.5769	40.0	31.0	69.3	72.8	11.68	32.97
10/31/2008 18:00:00	32.0522	5.6615	31.0	24.1	69.3	71.6	11.68	33.36
11/02/2008 18:20:00	80.3856	8.9658	220.0	171.4	72.3	72.9	11.74	36.08
11/03/2008 08:26:00	94.4856	9.7204	169.0	132.3	69.8	69.7	11.72	38.18
11/03/2008 15:04:59	101.1353	10.0566	131.0	102.3	72.1	71.5	11.75	39.80
11/04/2008 10:08:00	120.1856	10.9629	136.0	105.6	69.6	69.3	11.66	41.47
11/04/2008 15:07:00	125.1689	11.1879	92.0	70.3	70.7	70.6	11.61	42.59
11/05/2008 15:48:00	149.8522	12.2414	120.0	94.0	69.8	68.6	11.70	44.08
11/06/2008 10:54:00	168.9522	12.9982	101.0	79.6	69.1	68.6	11.77	45.34
11/06/2008 15:14:00	173.2856	13.1638	65.0	50.5	72.5	68.2	11.78	46.15
11/07/2008 09:17:00	191.3356	13.8324	82.0	64.8	70.5	68.8	11.80	47.17
11/07/2008 15:34:59	197.6353	14.0583	60.0	47.2	71.2	69.3	11.80	47.92
11/08/2008 10:49:00	216.8689	14.7265	73.0	57.1	69.8	73.9	11.80	48.83
11/09/2008 09:56:00	239.9856	15.4915	77.0	58.9	69.3	73.9	11.71	49.76
11/10/2008 11:15:00	265.3022	16.2881	79.0	60.4	69.4	74.3	11.66	50.72
11/11/2008 10:08:00	288.1856	16.9760	71.0	55.7	69.8	69.6	11.75	51.61
11/12/2008 10:18:00	312.3522	17.6735	63.0	49.6	70.0	68.4	11.76	52.39
11/13/2008 10:05:00	336.1356	18.3340	65.0	49.5	70.0	68.8	11.66	53.18
11/14/2008 09:41:00	359.7356	18.9667	60.0	47.8	69.4	68.0	11.88	53.94
11/15/2008 11:22:00	385.4189	19.6321	54.0	42.6	70.5	71.4	11.89	54.61
11/16/2008 11:31:00	409.5689	20.2378	53.0	42.0	69.3	69.8	11.86	55.28
11/17/2008 09:52:00	431.9189	20.7827	48.0	37.8	70.0	75.9	11.94	55.88
11/18/2008 10:42:00	456.7522	21.3718	49.0	38.4	70.7	70.4	11.91	56.49
11/19/2008 10:19:59	480.3853	21.9177	51.0	39.5	71.8	71.1	11.87	57.11
11/20/2008 09:58:00	504.0189	22.4504	36.0	29.0	69.1	68.6	12.01	57.57
11/21/2008 09:59:00	528.0356	22.9790	40.0	28.7	69.8	68.6	11.78	58.03
11/22/2008 10:26:00	552.4856	23.5050	36.0	28.2	69.4	73.2	11.82	58.48

11/23/2008 11:25:00	577.4689	24.0306	35.0	27.0	69.8	75.0	11.80	58.91
11/24/2008 09:34:00	599.6189	24.4871	29.0	23.1	69.8	68.9	11.90	59.27
11/25/2008 14:00:00	628.0522	25.0610	31.0	23.5	69.6	73.0	11.82	59.64
11/26/2008 08:15:00	646.3022	25.4225	26.0	20.3	68.5	75.0	11.82	59.97
11/27/2008 15:36:00	677.6522	26.0318	28.0	21.6	69.3	68.9	11.79	60.31
11/28/2008 13:50:59	699.9020	26.4557	26.0	19.3	69.6	69.5	11.70	60.62
11/29/2008 12:51:00	722.9022	26.8868	21.0	16.5	68.4	68.9	11.71	60.88
11/30/2008 14:15:00	748.3022	27.3551	16.0	12.6	68.4	68.2	11.77	61.08
12/01/2008 10:24:00	768.4522	27.7210	21.0	16.3	69.3	68.1	11.77	61.34
12/03/2008 09:16:00	815.3189	28.5538	27.0	21.3	67.5	69.2	11.82	61.67
12/05/2008 09:04:59	863.1353	29.3792	31.0	23.3	68.7	70.7	11.75	62.04
12/07/2008 11:49:59	913.8853	30.2305	38.0	28.7	70.9	74.1	11.73	62.50
12/09/2008 09:49:59	959.8853	30.9820	30.0	23.6	69.3	73.2	11.85	62.87
12/11/2008 11:04:00	1009.1189	31.7666	30.0	23.2	69.8	72.5	11.83	63.24
12/13/2008 11:51:00	1057.9022	32.5254	38.0	23.9	71.8	73.2	11.43	63.62
12/15/2008 07:30:00	1101.5522	33.1896	25.0	19.7	69.1	68.7	11.78	63.93

Weatherford

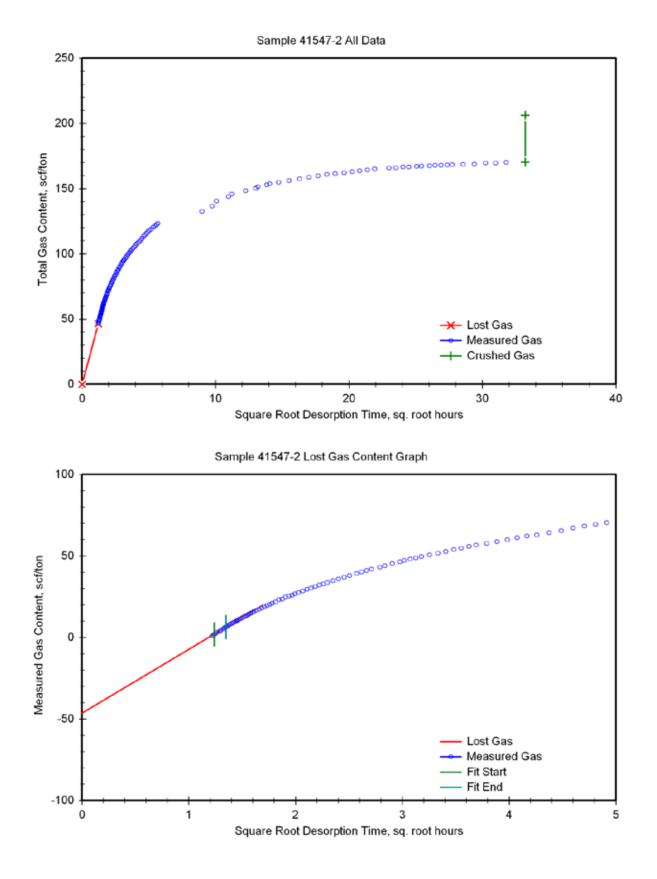
Sample 41547-2 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	484.70
Sample Bottom Depth	ft	485.70
Reservoir Pressure	psia	218.48
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	231.46
Mud Density	lbm/gal	8.60
Sample Mass	g	1,573.0
Sample Headspace Volume	cm ³	761.0
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/30/2008 08:37:55
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/30/2008 09:48:14
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/30/2008 09:52:01
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/30/2008 10:51:40
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/30/2008 11:21:03
Lost Gas Time	hours	1.484
Desorption Time Correction	hours	0.049
Fit Start Time	hours	1.531
Fit End Time	hours	1.818
Fit Start Time	hours*0.5	1.237
Fit End Time	hours*0.5	1.348
Lost Gas Content	scf/ton	46.4
Measured Gas Content	scf/ton	124.1
Crushed Gas Content	scf/ton	35.8
Total Gas Content	scf/ton	206.4
Lost Gas Fraction	vol frac	0.2249
Measured Gas Fraction	vol frac	0.6014
Crushed Gas Fraction	vol frac	0.1737
Diffusivity	1/us	0.9
Sorption Time	hours	21.2

Sample 41547-2 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
10/30/2008 11:21:03	1.4839	1.2181	0.0	0.0	69.6	58.6	11.66	0.00
10/30/2008 11:23:59	1.4836	1.2180	62.0	49.3	69.6	58.6	11.66	1.00
10/30/2008 11:26:00	1.5172	1.2318	44.0	35.0	69.6	58.8	11.66	1.72
10/30/2008 11:28:00	1.5506	1.2452	40.0	31.7	69.6	59.9	11.66	2.36
10/30/2008 11:30:00	1.5839	1.2585	46.0	36.3	69.8	60.2	11.66	3.10
10/30/2008 11:34:00	1.6506	1.2847	41.0	32.3	69.3	63.1	11.66	3.76
10/30/2008 11:35:59	1.6836	1.2975	38.0	29.6	69.6	63.5	11.66	4.36
10/30/2008 11:40:00	1.7506	1.3231	62.0	48.8	69.6	63.5	11.66	5.36
10/30/2008 11:42:00	1.7839	1.3356	41.0	31.6	70.2	63.6	11.66	6.00
10/30/2008 11:44:00	1.8172	1.3481	30.0	23.6	69.6	63.8	11.66	6.48
10/30/2008 11:46:00	1.8506	1.3604	34.0	26.8	69.4	64.0	11.66	7.03
10/30/2008 11:48:00	1.8839	1.3726	36.0	27.9	69.8	64.2	11.66	7.60
10/30/2008 11:49:58	1.9167	1.3844	31.0	24.4	69.3	64.0	11.66	8.09
10/30/2008 11:53:00	1.9672	1.4026	33.0	26.0	69.3	64.4	11.66	8.62
10/30/2008 11:55:00	2.0006	1.4144	33.0	25.8	69.4	64.5	11.66	9.15
10/30/2008 11:58:00	2.0506	1.4320	34.0	26.7	69.3	64.7	11.66	9.69
10/30/2008 12:00:00	2.0839	1.4436	28.0	21.7	69.3	65.3	11.65	10.13
10/30/2008 12:01:59	2.1170	1.4550	31.0	24.2	69.4	65.6	11.65	10.63
10/30/2008 12:04:00	2.1506	1.4665	29.0	22.7	69.4	65.8	11.65	11.09
10/30/2008 12:07:00	2.2006	1.4834	30.0	23.5	69.4	66.2	11.65	11.57
10/30/2008 12:10:00	2.2506	1.5002	34.0	26.6	69.4	66.5	11.65	12.11
10/30/2008 12:13:00	2.3006	1.5168	41.0	32.1	69.4	67.1	11.65	12.76
10/30/2008 12:16:00	2.3506	1.5332	35.0	27.1	69.6	68.1	11.65	13.32
10/30/2008 12:19:00	2.4006	1.5494	36.0	28.0	69.6	69.8	11.65	13.89
10/30/2008 12:20:59	2.4336	1.5600	30.0	23.3	69.6	70.7	11.65	14.36
10/30/2008 12:24:00	2.4839	1.5760	30.0	23.3	69.6	70.7	11.65	14.84
10/30/2008 12:27:00	2.5339	1.5918	31.0	24.0	69.6	71.4	11.65	15.33
10/30/2008 12:30:00	2.5839	1.6075	34.0	26.4	69.6	71.9	11.65	15.86
10/30/2008 12:34:58	2.6667	1.6330	49.0	37.9	69.6	73.4	11.65	16.63
10/30/2008 12:40:00	2.7506	1.6585	48.0	37.0	69.6	74.3	11.65	17.39
10/30/2008 12:45:00	2.8339	1.6834	50.0	38.3	69.6	75.0	11.65	18.17
10/30/2008 12:49:59	2.9170	1.7079	48.0	36.9	69.6	75.7	11.65	18.92
10/30/2008 12:55:00	3.0006	1.7322	46.0	35.4	69.6	75.3	11.65	19.64
10/30/2008 13:00:00	3.0839	1.7561	44.0	33.5	69.6	76.4	11.64	20.32
10/30/2008 13:05:00	3.1672	1.7797	44.0	33.7	69.6	77.0	11.64	21.01
10/30/2008 13:12:00	3.2839	1.8122	57.0	43.4	69.6	77.3	11.64	21.89

10/30/2008 13:19:00	3.4006	1.8441	92.0	70.5	69.6	77.0	11.64	23.33
10/30/2008 13:26:00	3.5172	1.8754	23.0	17.6	69.6	76.8	11.64	23.69
10/30/2008 13:33:00	3.6339	1.9063	86.0	65.4	69.6	76.8	11.63	25.02
10/30/2008 13:40:00	3.7506	1.9366	26.0	19.9	69.6	77.0	11.63	25.43
10/30/2008 13:47:00	3.8672	1.9665	45.0	34.5	69.6	77.1	11.63	26.13
10/30/2008 13:54:00	3.9839	1.9960	47.0	36.0	69.6	77.5	11.63	26.86
10/30/2008 14:01:00	4.1006	2.0250	48.0	36.6	69.6	78.8	11.63	27.61
10/30/2008 14:11:00	4.2672	2.0657	61.0	46.5	69.6	79.1	11.63	28.56
10/30/2008 14:21:00	4.4339	2.1057	67.0	51.1	69.6	79.8	11.63	29.60
10/30/2008 14:31:00	4.6006	2.1449	51.0	38.5	69.6	80.7	11.62	30.38
10/30/2008 14:41:00	4.7672	2.1834	60.0	45.4	69.6	83.3	11.62	31.31
10/30/2008 14:51:00	4.9339	2.2212	56.0	42.3	68.9	84.3	11.62	32.17
10/30/2008 15:01:00	5.1006	2.2584	54.0	40.1	69.6	83.3	11.62	32.98
10/30/2008 15:11:00	5.2672	2.2950	52.0	39.4	69.6	82.9	11.62	33.79
10/30/2008 15:26:00	5.5172	2.3489	76.0	57.6	68.9	82.5	11.62	34.96
10/30/2008 15:41:00	5.7672	2.4015	64.0	47.5	69.8	82.5	11.62	35.93
10/30/2008 15:56:00	6.0172	2.4530	70.0	53.0	69.4	83.1	11.62	37.01
10/30/2008 16:11:00	6.2672	2.5034	66.0	49.9	69.4	83.6	11.62	38.02
10/30/2008 16:31:00	6.6006	2.5692	77.0	58.7	69.4	79.7	11.62	39.22
10/30/2008 16:46:00	6.8506	2.6174	64.0	49.0	69.1	77.7	11.63	40.22
10/30/2008 17:01:00	7.1006	2.6647	55.0	41.9	69.1	76.1	11.62	41.07
10/30/2008 17:16:00	7.3506	2.7112	58.0	44.6	69.1	75.3	11.63	41.98
10/30/2008 17:41:00	7.7672	2.7870	78.0	60.6	69.1	69.4	11.63	43.21
10/30/2008 17:57:00	8.0339	2.8344	52.0	40.2	69.1	71.7	11.63	44.03
10/30/2008 18:20:59	8.4336	2.9041	84.0	65.3	69.3	69.2	11.64	45.36
10/30/2008 18:46:00	8.8506	2.9750	71.0	55.4	69.3	68.0	11.64	46.49
10/30/2008 19:01:00	9.1006	3.0167	51.0	40.0	69.3	65.1	11.65	47.30
10/30/2008 19:21:00	9.4339	3.0715	52.0	41.0	68.9	62.7	11.64	48.14
10/30/2008 19:41:00	9.7672	3.1253	47.0	37.0	69.4	63.1	11.65	48.89
10/30/2008 20:01:00	10.1006	3.1781	50.0	39.4	69.4	62.7	11.65	49.70
10/30/2008 20:30:00	10.5839	3.2533	63.0	49.7	69.8	60.6	11.66	50.71
10/30/2008 21:01:00	11.1006	3.3318	69.0	54.5	69.6	62.4	11.66	51.82
10/30/2008 21:31:00	11.6006	3.4060	65.0	51.3	69.6	62.7	11.66	52.86
10/30/2008 22:02:00	12.1172	3.4810	68.0	53.2	69.9	64.0	11.66	53.95
10/30/2008 22:31:00	12.6006	3.5497	62.0	48.9	70.2	64.2	11.67	54.94
10/30/2008 23:02:00	13.1172	3.6218	60.0	47.0	69.8	68.1	11.68	55.90
10/30/2008 23:31:00	13.6006	3.6879	54.0	42.2	69.4	69.2	11.68	56.76
10/31/2008 00:16:00	14.3506	3.7882	61.0	48.3	69.1	62.2	11.68	57.74
10/31/2008 01:01:00	15.1006	3.8859	72.0	56.6	69.1	66.0	11.69	58.89
10/31/2008 01:46:00	15.8506	3.9813	76.0	58.8	69.9	66.5	11.69	60.09
10/31/2008 02:31:00	16.6006	4.0744	68.0	53.5	69.8	66.2	11.69	61.18



10/31/2008 03:16:00	17.3506	4.1654	62.0	48.8	69.8	66.0	11.69	62.17
10/31/2008 03:10:00	18.1336	4.2584	51.0	40.1	68.9	65.8	11.69	62.99
10/31/2008 04:02:39	19.1172	4.3723	77.0	60.8	69.3	62.9	11.70	64.23
10/31/2008 06:03:00	20.1339	4.4871	82.0	63.9	69.8	66.5	11.70	65.53
10/31/2008 07:02:59	21.1336	4.5971	107.0	84.9	69.8	62.0	11.70	67.26
10/31/2008 07:02:39	22.1339	4.7047	72.0	56.9	69.8	64.5	11.70	68.42
10/31/2008 09:03:00	23.1339	4.8098	63.0	50.9	69.8	55.2	11.72	69.45
10/31/2008 09:03:00	24.1336	4.9126	66.0	53.0	69.8	55.9	11.72	70.53
10/31/2008 10:02:39	25.1339	5.0134	57.0	45.4	69.6	60.2	11.72	71.46
10/31/2008 12:33:00	26.6339	5.1608	70.0	54.0	69.4	71.6	11.72	72.56
10/31/2008 12:33:00	28.1339	5.3041	88.0	66.9	69.4	76.2	11.68	73.92
10/31/2008 15:33:00	29.6339	5.4437	74.0	56.8	69.4	75.7	11.68	75.08
10/31/2008 13:33:00	31.1339	5.5798	68.0	52.5	69.6	72.8	11.68	76.15
10/31/2008 18:00:00	32.0839	5.6643	50.0	38.9	69.6	71.7	11.68	76.94
11/02/2008 18:00:00	80.4336	8.9685	584.0	455.0	72.3	73.3	11.74	86.20
11/03/2008 08:27:00	94.5339	9.7229	261.0	204.2	69.4	70.0	11.74	90.36
11/03/2008 15:07:00	101.2006	10.0598	234.0	181.9	72.0	71.5	11.75	94.07
11/04/2008 10:09:00	120.2339	10.9651	221.0	170.4	69.4	69.3	11.66	97.54
11/04/2008 15:08:59	125.2336	11.1908	136.0	101.6	70.7	70.7	11.62	99.61
11/05/2008 15:49:00	149.9006	12.2434	158.0	123.7	69.9	68.8	11.70	102.13
11/06/2008 10:56:00	169.0172	13.0007	120.0	94.5	69.1	68.8	11.77	104.05
11/06/2008 15:15:00	173.3339	13.1656	65.0	48.2	72.1	68.2	11.78	105.04
11/07/2008 09:17:59	191.3836	13.8341	92.0	72.6	70.3	68.9	11.80	106.51
11/07/2008 15:36:00	197.6839	14.0600	62.0	48.0	71.1	69.3	11.80	107.49
11/08/2008 10:50:59	216.9336	14.7287	74.0	57.9	69.6	74.3	11.82	108.67
11/09/2008 09:58:00	240.0506	15.4936	85.0	61.0	69.1	73.9	11.71	109.91
11/10/2008 11:16:00	265.3506	16.2896	86.0	63.7	69.3	74.1	11.66	111.21
11/11/2008 10:09:00	288.2339	16.9775	70.0	55.0	69.1	68.6	11.75	112.33
11/12/2008 10:19:00	312.4006	17.6749	70.0	54.9	70.0	68.4	11.76	113.45
11/13/2008 10:09:00	336.2339	18.3367	76.0	53.8	70.0	68.8	11.66	114.55
11/14/2008 09:42:00	359.7839	18.9680	40.0	31.8	69.3	68.0	11.88	115.20
11/15/2008 11:23:59	385.4836	19.6337	45.0	34.5	70.5	71.4	11.89	115.90
11/16/2008 11:32:59	409.6336	20.2394	46.0	36.4	69.3	69.8	11.86	116.64
11/17/2008 09:53:00	431.9672	20.7838	41.0	32.3	70.0	75.9	11.94	117.30
11/18/2008 10:43:00	456.8006	21.3729	44.0	32.7	70.7	70.6	11.91	117.96
11/19/2008 10:21:00	480.4339	21.9188	60.0	43.9	71.8	71.1	11.87	118.86
11/21/2008 09:59:00	528.0672	22.9797	38.0	27.9	69.6	68.8	11.78	119.43
11/22/2008 10:27:00	552.5339	23.5060	25.0	19.6	69.4	72.8	11.82	119.83
11/23/2008 11:26:00	577.5172	24.0316	27.0	19.6	69.8	74.6	11.80	120.23
11/24/2008 09:34:58	599.6667	24.4881	15.0	11.9	69.8	68.9	11.90	120.47
11/25/2008 14:02:00	628.1172	25.0623	23.0	14.3	69.6	72.8	11.82	120.76

11/26/2008 08:16:59	646.3670	25.4237	12.0	9.4	68.7	74.4	11.82	120.95
11/27/2008 15:36:59	677.7003	26.0327	21.0	15.1	69.1	69.1	11.80	121.26
11/28/2008 13:52:00	699.9506	26.4566	24.0	13.7	69.1	70.0	11.70	121.54
11/29/2008 12:52:00	722.9506	26.8877	11.0	8.6	68.4	68.9	11.71	121.72
11/30/2008 14:16:59	748.3670	27.3563	7.0	5.5	68.4	68.4	11.77	121.83
12/01/2008 10:25:00	768.5006	27.7218	16.0	11.8	69.1	68.1	11.77	122.07
12/03/2008 09:17:00	815.3672	28.5546	7.0	5.5	67.5	69.2	11.82	122.18
12/05/2008 09:06:00	863.1839	29.3800	29.0	18.1	68.7	70.7	11.75	122.55
12/07/2008 11:51:00	913.9339	30.2313	52.0	36.7	70.9	74.1	11.73	123.30
12/09/2008 09:51:00	959.9339	30.9828	5.0	3.9	69.1	73.2	11.85	123.38
12/11/2008 11:04:58	1009.1667	31.7674	22.0	15.5	69.8	72.6	11.83	123.69
12/15/2008 07:34:59	1101.6670	33.1914	28.0	20.1	69.1	68.7	11.78	124.10

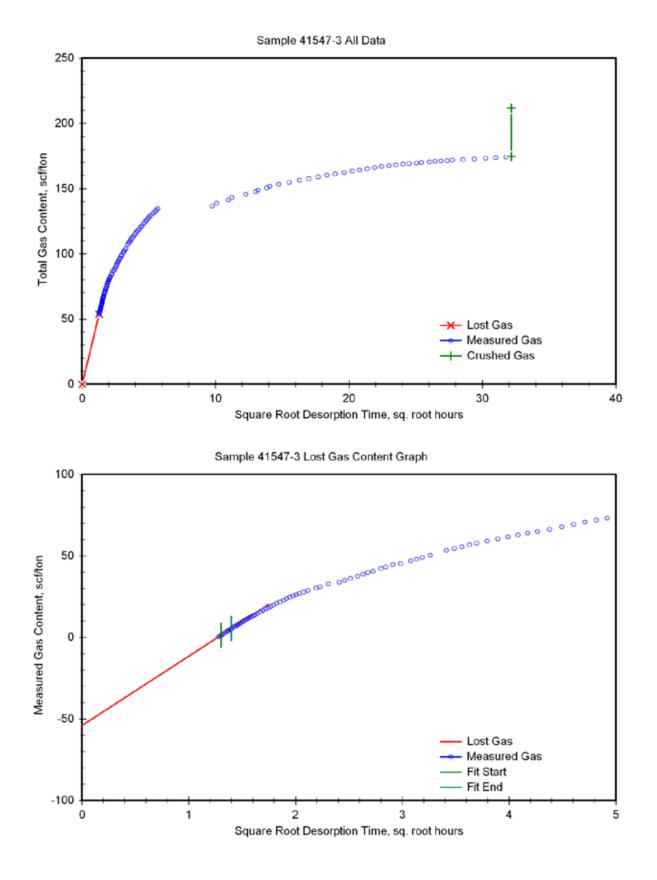
Sample 41547-3 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	487.50
Sample Bottom Depth	ft	488.50
Reservoir Pressure	psia	219.66
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	232.71
Mud Density	lbm/gal	8.60
Sample Mass	g	1,724.0
Sample Headspace Volume	cm ³	741.0
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/30/2008 08:40:39
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/30/2008 09:48:14
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/30/2008 09:52:01
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/30/2008 10:51:40
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/30/2008 11:30:12
Lost Gas Time	hours	1.636
Desorption Time Correction	hours	0.013
Fit Start Time	hours	1.695
Fit End Time	hours	1.952
Fit Start Time	hours*0.5	1.302
Fit End Time	hours*0.5	1.397
Lost Gas Content	scf/ton	53.8
Measured Gas Content	scf/ton	120.8
Crushed Gas Content	scf/ton	37.2
Total Gas Content	scf/ton	211.9
Lost Gas Fraction	vol frac	0.2542
Measured Gas Fraction	vol frac	0.5701
Crushed Gas Fraction	vol frac	0.1758
Diffusivity	1/us	1.0
Sorption Time	hours	19.0

Sample 41547-3 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
10/30/2008 11:30:12	1.6364	1.2792	0.0	0.0	70.0	61.1	11.66	0.00
10/30/2008 11:31:00	1.6361	1.2791	27.0	21.4	70.0	61.1	11.66	0.40
10/30/2008 11:32:59	1.6692	1.2920	36.0	28.5	70.0	61.8	11.66	0.93
10/30/2008 11:35:00	1.7028	1.3049	45.0	35.5	69.3	63.3	11.66	1.58
10/30/2008 11:37:00	1.7361	1.3176	33.0	25.7	69.6	63.5	11.66	2.06
10/30/2008 11:40:00	1.7861	1.3365	61.0	47.8	69.8	63.6	11.66	2.95
10/30/2008 11:42:59	1.8359	1.3549	45.0	35.0	70.2	63.6	11.66	3.60
10/30/2008 11:45:00	1.8695	1.3673	36.0	28.3	69.6	63.8	11.66	4.13
10/30/2008 11:47:00	1.9028	1.3794	39.0	30.7	69.4	64.0	11.66	4.70
10/30/2008 11:49:00	1.9361	1.3915	42.0	32.8	69.6	64.2	11.66	5.31
10/30/2008 11:51:00	1.9695	1.4034	34.0	26.8	69.6	64.0	11.66	5.81
10/30/2008 11:54:00	2.0195	1.4211	52.0	40.9	69.4	64.5	11.66	6.57
10/30/2008 11:56:00	2.0528	1.4328	30.0	23.6	69.4	64.5	11.66	7.00
10/30/2008 11:59:00	2.1028	1.4501	44.0	34.6	68.3	65.1	11.66	7.65
10/30/2008 12:01:00	2.1361	1.4616	33.0	24.5	69.4	65.3	11.65	8.10
10/30/2008 12:03:00	2.1695	1.4729	34.0	26.7	69.4	65.6	11.65	8.60
10/30/2008 12:04:59	2.2025	1.4841	33.0	25.9	69.4	66.0	11.65	9.08
10/30/2008 12:08:00	2.2528	1.5009	40.0	31.3	69.4	66.2	11.65	9.66
10/30/2008 12:10:00	2.2861	1.5120	38.0	29.7	69.4	66.9	11.65	10.21
10/30/2008 12:13:00	2.3361	1.5284	45.0	35.2	69.4	67.2	11.65	10.86
10/30/2008 12:16:00	2.3861	1.5447	39.0	30.2	69.6	68.1	11.65	11.43
10/30/2008 12:19:00	2.4361	1.5608	37.0	28.8	69.6	69.8	11.65	11.96
10/30/2008 12:20:59	2.4692	1.5714	35.0	27.2	69.4	70.7	11.65	12.47
10/30/2008 12:24:00	2.5195	1.5873	27.0	21.0	69.4	70.7	11.65	12.86
10/30/2008 12:27:00	2.5695	1.6030	39.0	30.0	69.6	71.4	11.65	13.41
10/30/2008 12:30:00	2.6195	1.6185	40.0	31.0	69.6	71.9	11.65	13.99
10/30/2008 12:34:59	2.7025	1.6439	65.0	50.2	69.6	73.4	11.65	14.92
10/30/2008 12:40:00	2.7861	1.6692	59.0	45.5	69.6	74.3	11.65	15.77
10/30/2008 12:45:00	2.8695	1.6940	64.0	49.0	69.6	75.0	11.65	16.68
10/30/2008 12:49:59	2.9525	1.7183	63.0	48.5	69.6	75.7	11.65	17.58
10/30/2008 12:55:00	3.0361	1.7425	57.0	43.9	69.6	75.3	11.65	18.40
10/30/2008 13:00:00	3.1195	1.7662	54.0	41.2	69.6	76.4	11.64	19.16
10/30/2008 13:05:00	3.2028	1.7896	58.0	44.5	69.6	77.0	11.64	19.99
10/30/2008 13:12:00	3.3195	1.8219	70.0	53.4	69.6	77.3	11.64	20.98
10/30/2008 13:19:00	3.4361	1.8537	68.0	52.1	69.6	77.0	11.64	21.95
10/30/2008 13:26:00	3.5528	1.8849	72.0	55.2	69.6	76.8	11.64	22.98

10/30/2008 13:33:00	3.6695	1.9156	65.0	49.3	69.6	76.8	11.63	23.89
10/30/2008 13:40:00	3.7861	1.9458	65.0	49.8	69.6	77.0	11.63	23.89
10/30/2008 13:40:00	3.9028	1.9756	60.0	46.0	69.6	77.1	11.63	25.67
10/30/2008 13:54:00	4.0195	2.0049	55.0	42.1	69.6	77.5	11.63	26.46
10/30/2008 14:01:00	4.1361	2.0337	43.0	32.8	69.6	78.8	11.63	27.07
10/30/2008 14:01:00	4.3028	2.0743	60.0	45.8	69.6	79.1	11.63	27.92
10/30/2008 14:21:00	4.4695	2.1141	78.0	59.4	69.6	79.8	11.63	29.02
10/30/2008 14:41:00	4.8028	2.1915	94.0	70.9	69.6	83.3	11.62	30.34
10/30/2008 14:51:00	4.9695	2.2292	55.0	41.5	69.4	84.3	11.62	31.11
10/30/2008 15:12:00	5.3195	2.3064	122.0	92.2	69.6	82.9	11.62	32.82
10/30/2008 15:41:00	5.8028	2.4089	75.0	56.6	69.8	82.5	11.62	33.88
10/30/2008 15:56:00	6.0528	2.4602	89.0	67.2	70.0	82.7	11.62	35.12
10/30/2008 16:11:00	6.3028	2.5105	83.0	62.8	69.8	83.6	11.62	36.29
10/30/2008 16:33:00	6.6695	2.5825	103.0	78.5	69.4	79.8	11.62	37.75
10/30/2008 16:47:59	6.9192	2.6304	84.0	64.2	69.6	77.9	11.63	38.94
10/30/2008 17:03:00	7.1695	2.6776	67.0	51.4	69.6	76.1	11.63	39.90
10/30/2008 17:18:00	7.4195	2.7239	61.0	46.9	69.6	75.3	11.63	40.77
10/30/2008 17:42:59	7.8359	2.7993	111.0	86.2	69.6	69.4	11.63	42.37
10/30/2008 17:58:00	8.0861	2.8436	70.0	54.2	69.6	71.7	11.63	43.38
10/30/2008 18:20:59	8.4692	2.9102	91.0	70.8	69.6	69.2	11.64	44.69
10/30/2008 18:46:59	8.9025	2.9837	45.0	35.1	69.3	68.0	11.64	45.35
10/30/2008 19:21:00	9.4695	3.0772	115.0	90.6	68.9	62.7	11.64	47.03
10/30/2008 19:42:00	9.8195	3.1336	72.0	56.7	69.4	63.1	11.65	48.08
10/30/2008 20:02:00	10.1528	3.1863	75.0	59.2	69.4	62.2	11.65	49.18
10/30/2008 20:31:00	10.6361	3.2613	87.0	68.7	69.8	60.8	11.66	50.46
10/30/2008 21:31:00	11.6361	3.4112	203.0	160.5	69.4	62.2	11.66	53.44
10/30/2008 22:02:00	12.1528	3.4861	83.0	64.8	69.9	64.0	11.66	54.65
10/30/2008 22:31:00	12.6361	3.5547	79.0	62.3	70.2	64.2	11.67	55.80
10/30/2008 23:03:00	13.1695	3.6290	77.0	60.3	69.8	68.1	11.68	56.92
10/30/2008 23:32:00	13.6528	3.6950	71.0	55.4	69.4	69.2	11.68	57.95
10/31/2008 00:16:00	14.3861	3.7929	82.0	64.9	69.1	62.4	11.68	59.16
10/31/2008 01:02:00	15.1528	3.8927	90.0	70.8	69.1	66.0	11.69	60.47
10/31/2008 01:47:00	15.9028	3.9878	89.0	68.9	70.0	66.5	11.69	61.76
10/31/2008 02:32:00	16.6528	4.0808	86.0	67.6	70.0	66.2	11.69	63.01
10/31/2008 03:17:00	17.4028	4.1717	76.0	59.8	69.4	66.2	11.69	64.12
10/31/2008 04:02:59	18.1692	4.2625	66.0	52.0	68.9	65.4	11.69	65.09
10/31/2008 05:03:00	19.1695	4.3783	95.0	74.9	69.4	62.7	11.70	66.48
10/31/2008 06:04:00	20.1861	4.4929	96.0	75.3	69.6	66.5	11.70	67.88
10/31/2008 07:04:00	21.1861	4.6028	109.0	86.5	69.6	62.0	11.70	69.49
10/31/2008 08:04:00	22.1861	4.7102	95.0	75.1	69.6	64.2	11.71	70.88
10/31/2008 09:04:00	23.1861	4.8152	83.0	66.8	69.8	55.2	11.72	72.12


10/31/2008 10:04:00	24.1861	4.9179	80.0	64.3	69.8	55.7	11.72	73.32
10/31/2008 10:04:00	25.1861	5.0186	77.0	61.2	70.0	60.0	11.72	74.46
10/31/2008 12:34:00	26.6861	5.1659	91.0	70.8	69.4	71.6	11.72	75.77
10/31/2008 12:34:00	28.1861	5.3091	100.0	75.7	69.8	76.2	11.68	77.18
10/31/2008 15:34:00	29.6861	5.4485	98.0	75.4	69.8	75.7	11.68	78.58
10/31/2008 13:34:00	31.1861	5.5845	89.0	69.1	69.6	72.6	11.68	79.86
10/31/2008 18:00:00	32.1195	5.6674	65.0	50.5	69.6	71.7	11.68	80.80
11/03/2008 08:27:00	94.5695	9.7247	144.0	112.7	69.6	70.0	11.72	82.90
11/03/2008 08:27:00	101.2692	10.0633	147.0	114.0	72.0	71.8	11.75	85.01
11/04/2008 10:10:00	120.2861	10.9675	185.0	142.4	69.4	69.3	11.66	87.66
11/04/2008 10:10:00	125.3028	11.1939	120.0	89.0	70.3	71.7	11.61	89.32
11/05/2008 15:49:59	149.9525	12.2455	175.0	137.0	69.4	68.9	11.70	91.86
11/06/2008 10:57:00	169.0695	13.0027	144.0	113.4	69.4	68.9	11.77	93.97
11/06/2008 10:37:00	173.3861	13.1676	82.0	63.5	70.9	68.6	11.79	95.15
11/07/2008 09:24:00	191.5195	13.8391	117.0	92.3	69.9	69.3	11.80	96.86
11/07/2008 15:36:59	197.7359	14.0619	83.0	64.6	70.7	69.3	11.80	98.06
11/08/2008 10:52:00	216.9861	14.7304	99.0	77.3	69.4	74.4	11.80	99.50
11/09/2008 09:59:00	240.1028	15.4953	109.0	80.6	69.1	73.5	11.71	101.00
11/10/2008 11:19:00	265.4361	16.2922	110.0	82.6	69.1	73.5	11.66	101.00
11/11/2008 10:10:00	288.2861	16.9790	97.0	76.3	69.4	68.6	11.75	102.33
11/12/2008 10:10:00	312.4525	17.6763	93.0	73.3	70.0	68.4	11.76	105.31
11/13/2008 10:09:00	336.2695	18.3377	91.0	65.6	70.0	68.8	11.66	106.53
11/14/2008 09:43:00	359.8361	18.9693	72.0	57.3	69.1	68.0	11.88	107.60
11/15/2008 11:25:00	385.5361	19.6351	69.0	54.6	68.8	71.6	11.89	107.00
11/16/2008 11:34:00	409.6861	20.2407	70.0	53.6	69.3	70.4	11.86	109.61
11/17/2008 09:53:59	432.0192	20.7851	62.0	48.9	70.0	75.9	11.94	110.52
11/18/2008 10:44:00	456.8528	21.3741	66.0	50.4	70.5	70.7	11.91	111.45
11/19/2008 10:21:59	480.4859	21.9200	75.0	55.7	71.8	71.1	11.87	112.49
11/20/2008 10:00:00	504.1195	22.4526	60.0	48.3	68.7	68.6	12.01	113.38
11/21/2008 10:00:00	528.1195	22.9809	51.0	27.5	69.6	68.9	11.78	113.89
11/22/2008 10:28:00	552.5861	23.5072	42.0	33.0	69.3	72.8	11.82	114.51
11/23/2008 11:27:00	577.5695	24.0327	41.0	30.5	69.8	74.4	11.80	115.07
11/24/2008 09:36:00	599.7195	24.4892	30.0	23.9	69.6	68.9	11.90	115.52
11/25/2008 14:04:59	628.2025	25.0640	36.0	24.6	69.4	72.8	11.82	115.97
11/26/2008 08:16:59	646.4025	25.4244	25.0	19.1	68.5	74.1	11.79	116.33
11/27/2008 15:39:00	677.7695	26.0340	31.0	24.3	69.1	69.3	11.80	116.78
11/28/2008 13:54:00	700.0195	26.4579	32.0	20.1	69.1	70.0	11.70	117.15
11/29/2008 12:53:59	723.0192	26.8890	21.0	16.5	68.4	68.9	11.71	117.46
11/30/2008 14:18:00	748.4195	27.3573	16.0	12.6	68.4	68.6	11.77	117.69
12/01/2008 10:26:00	768.5528	27.7228	24.0	17.9	69.1	68.1	11.77	118.03
12/03/2008 09:17:59	815.4192	28.5555	23.0	18.2	67.7	69.2	11.82	118.36

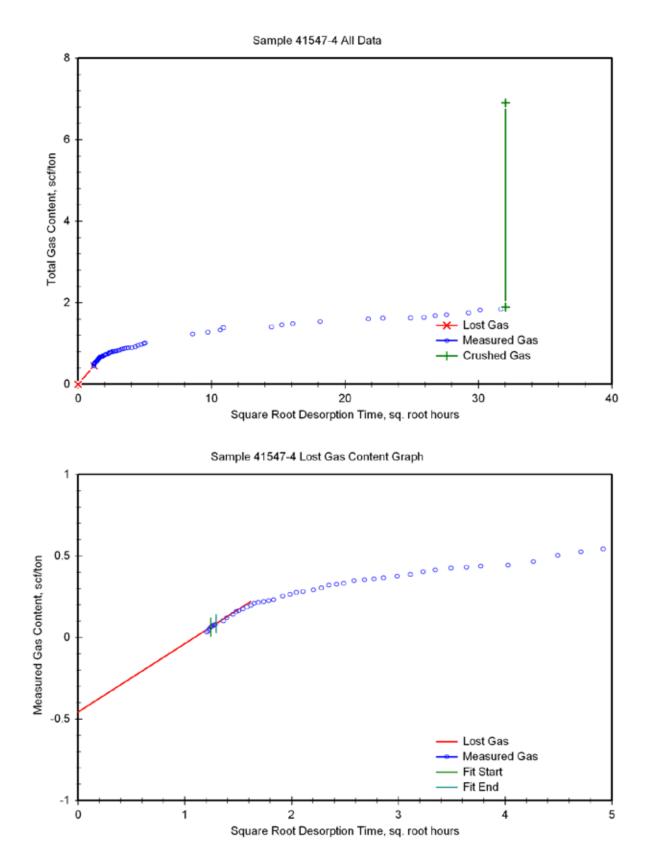
Souder, Miller & Associates, Fosset Gulch MW 34-5-14U

12/05/2008 09:07:00	863.2361	29.3809	36.0	23.9	68.7	70.7	11.75	118.81
12/07/2008 11:51:59	913.9859	30.2322	55.0	39.1	70.9	74.1	11.73	119.54
12/09/2008 09:53:59	960.0192	30.9842	27.0	21.2	69.3	73.2	11.85	119.93
12/11/2008 11:06:00	1009.2195	31.7682	34.0	25.0	70.0	72.6	11.83	120.39
12/12/2008 11:13:00	1033.3361	32.1455	35.0	20.7	70.3	80.7	11.71	120.78

Weatherford

Sample 41547-4 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	524.00
Sample Bottom Depth	ft	525.00
Reservoir Pressure	psia	234.99
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	249.02
Mud Density	lbm/gal	8.60
Sample Mass	g	4,532.0
Sample Headspace Volume	cm ³	545.0
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/30/2008 16:02:48
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/30/2008 16:45:11
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/30/2008 16:48:57
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/30/2008 17:48:06
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/30/2008 18:16:06
Lost Gas Time	hours	1.453
Desorption Time Correction	hours	0.000
Fit Start Time	hours	1.546
Fit End Time	hours	1.670
Fit Start Time	hours*0.5	1.244
Fit End Time	hours*0.5	1.292
Lost Gas Content	scf/ton	0.5
Measured Gas Content	scf/ton	1.4
Crushed Gas Content	scf/ton	5.0
Total Gas Content	scf/ton	6.9
Lost Gas Fraction	vol frac	0.0660
Measured Gas Fraction	vol frac	0.2078
Crushed Gas Fraction	vol frac	0.7262
Diffusivity	1/us	0.1
Sorption Time	hours	207.8


Sample 41547-4 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
10/30/2008 18:16:00	1.4525	1.2052	0.0	0.0	66.4	69.4	11.64	0.00
10/30/2008 18:16:06	1.4525	1.2052	6.0	4.7	66.4	69.4	11.64	0.03
10/30/2008 18:17:59	1.4839	1.2181	2.0	1.6	66.7	69.2	11.64	0.04
10/30/2008 18:20:00	1.5175	1.2319	2.0	1.6	67.5	69.4	11.64	0.05
10/30/2008 18:22:00	1.5508	1.2453	2.0	1.6	68.2	69.4	11.64	0.07
10/30/2008 18:24:00	1.5841	1.2586	1.0	0.8	68.4	69.4	11.64	0.07
10/30/2008 18:26:00	1.6175	1.2718	1.0	0.8	68.7	68.3	11.64	0.08
10/30/2008 18:27:59	1.6505	1.2847	1.0	0.8	68.7	68.3	11.64	0.08
10/30/2008 18:40:00	1.8508	1.3604	4.0	3.1	71.2	68.0	11.64	0.10
10/30/2008 18:45:00	1.9341	1.3907	3.0	2.3	72.0	68.0	11.64	0.12
10/30/2008 18:55:00	2.1008	1.4494	4.0	3.1	72.1	66.2	11.64	0.14
10/30/2008 19:00:00	2.1841	1.4779	3.0	2.4	72.3	65.4	11.64	0.16
10/30/2008 19:05:00	2.2675	1.5058	1.0	0.8	72.7	64.4	11.64	0.17
10/30/2008 19:12:00	2.3841	1.5441	2.0	1.6	72.7	63.1	11.65	0.18
10/30/2008 19:19:00	2.5008	1.5814	2.0	1.6	72.7	62.7	11.64	0.19
10/30/2008 19:26:00	2.6175	1.6179	2.0	1.6	72.5	62.6	11.64	0.20
10/30/2008 19:31:59	2.7172	1.6484	2.0	1.6	72.5	63.1	11.65	0.21
10/30/2008 19:40:00	2.8508	1.6884	1.0	0.8	72.3	63.3	11.65	0.22
10/30/2008 19:50:00	3.0175	1.7371	1.0	0.8	72.3	63.3	11.65	0.22
10/30/2008 20:00:00	3.1841	1.7844	1.0	0.8	72.1	62.6	11.65	0.23
10/30/2008 20:10:00	3.3508	1.8305	1.0	0.8	72.1	62.0	11.65	0.23
10/30/2008 20:29:00	3.6675	1.9151	4.0	3.2	72.9	60.9	11.66	0.25
10/30/2008 20:45:00	3.9341	1.9835	2.0	1.6	72.7	60.4	11.66	0.27
10/30/2008 21:00:00	4.1841	2.0455	2.0	1.6	72.5	62.2	11.66	0.28
10/30/2008 21:15:00	4.4341	2.1057	1.0	0.8	72.5	62.6	11.66	0.28
10/30/2008 21:40:00	4.8508	2.2025	2.0	1.6	72.3	62.6	11.66	0.29
10/30/2008 22:00:00	5.1841	2.2769	2.0	1.6	72.0	64.0	11.66	0.30
10/30/2008 22:19:58	5.5169	2.3488	3.0	2.4	72.7	64.0	11.66	0.32
10/30/2008 22:40:00	5.8508	2.4188	1.0	0.8	72.5	64.2	11.67	0.33
10/30/2008 23:00:00	6.1841	2.4868	1.0	0.8	72.5	68.0	11.67	0.33
10/30/2008 23:30:00	6.6841	2.5854	3.0	2.3	73.0	69.2	11.68	0.35
10/31/2008 00:00:00	7.1841	2.6803	1.0	0.8	72.9	65.1	11.68	0.35
10/31/2008 00:30:00	7.6841	2.7720	1.0	0.8	72.1	67.6	11.69	0.36
10/31/2008 01:00:00	8.1841	2.8608	1.0	0.8	72.0	65.8	11.69	0.37
10/31/2008 01:45:00	8.9341	2.9890	2.0	1.6	72.1	66.5	11.69	0.38
10/31/2008 02:30:00	9.6841	3.1119	2.0	1.6	72.0	66.2	11.69	0.39

10/31/2008 03:15:00	10.4341	3.2302	3.0	2.4	72.1	66.2	11.69	0.40
10/31/2008 04:01:00	11.2008	3.3468	2.0	1.6	72.1	65.3	11.69	0.42
10/31/2008 05:01:00	12.2008	3.4930	2.0	1.6	72.1	62.7	11.70	0.43
10/31/2008 06:01:59	13.2172	3.6355	1.0	0.8	71.8	66.5	11.70	0.43
10/31/2008 07:02:00	14.2175	3.7706	1.0	0.8	72.5	62.0	11.70	0.44
10/31/2008 09:01:59	16.2172	4.0271	1.0	0.8	72.1	55.2	11.72	0.44
10/31/2008 11:00:00	18.1841	4.2643	4.0	3.2	72.0	59.7	11.72	0.47
10/31/2008 13:00:00	20.1841	4.4927	7.0	5.4	72.1	73.5	11.70	0.50
10/31/2008 15:00:00	22.1841	4.7100	4.0	3.1	72.1	76.4	11.68	0.53
10/31/2008 17:00:00	24.1841	4.9177	3.0	2.3	72.1	72.8	11.68	0.54
10/31/2008 18:00:00	25.1841	5.0184	3.0	2.3	72.1	71.0	11.68	0.56
11/02/2008 18:27:59	73.6505	8.5820	40.0	31.1	72.9	74.0	11.74	0.78
11/03/2008 15:10:00	94.3508	9.7134	8.0	6.3	72.1	72.0	11.75	0.82
11/04/2008 10:12:00	113.3841	10.6482	11.0	8.6	69.6	69.3	11.66	0.88
11/04/2008 15:12:00	118.3841	10.8804	9.0	7.0	70.5	71.5	11.62	0.93
11/08/2008 10:54:00	210.0841	14.4943	4.0	3.1	69.8	74.4	11.80	0.96
11/09/2008 10:00:00	233.1841	15.2704	9.0	7.0	69.4	73.2	11.71	1.01
11/10/2008 11:19:59	258.5172	16.0785	5.0	3.9	69.4	73.5	11.66	1.03
11/13/2008 10:10:00	329.3508	18.1480	10.0	7.8	70.0	68.8	11.66	1.09
11/19/2008 10:23:00	473.5675	21.7616	11.0	8.7	71.8	71.1	11.87	1.15
11/21/2008 10:01:00	521.2008	22.8298	4.0	3.1	69.8	69.3	11.78	1.17
11/25/2008 14:06:00	621.2841	24.9256	1.0	0.8	69.6	72.6	11.82	1.18
11/27/2008 15:40:00	670.8508	25.9008	3.0	2.4	69.3	69.3	11.79	1.19
11/29/2008 12:55:00	716.1008	26.7601	7.0	5.5	68.5	68.9	11.71	1.23
12/01/2008 10:27:00	761.6341	27.5977	3.0	2.4	69.1	68.1	11.77	1.25
12/05/2008 09:08:00	856.3175	29.2629	9.0	7.1	68.7	70.8	11.75	1.30
12/07/2008 11:54:00	907.0841	30.1178	13.0	10.1	70.9	74.4	11.73	1.37
12/11/2008 11:06:59	1002.3005	31.6591	3.0	2.4	70.0	72.6	11.83	1.39
12/12/2008 11:15:00	1026.4341	32.0380	9.0	6.9	70.5	80.0	11.71	1.44

Weatherford

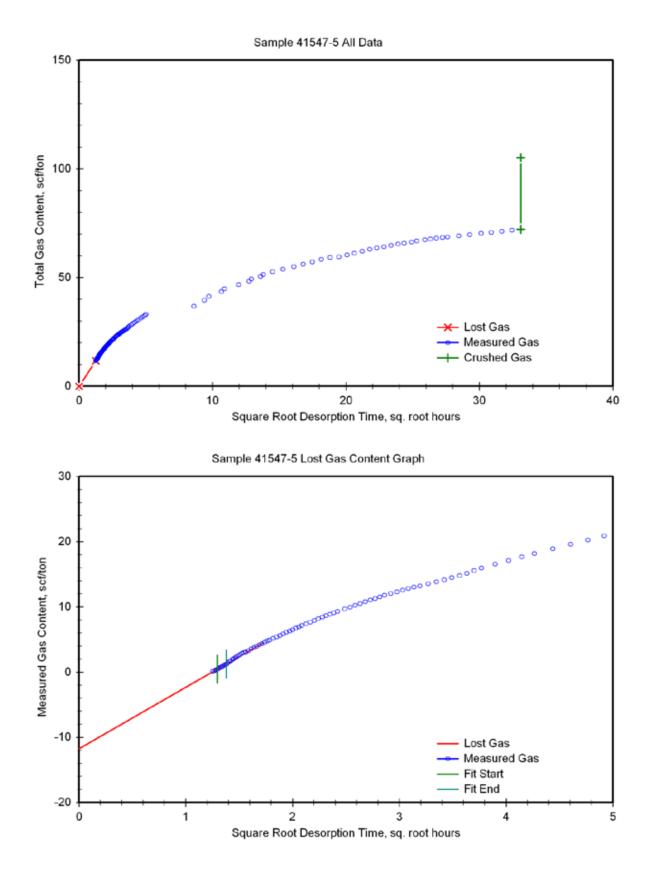
Sample 41547-5 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	531.10
Sample Bottom Depth	ft	532.10
Reservoir Pressure	psia	237.97
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	252.19
Mud Density	lbm/gal	8.60
Sample Mass	g	2,430.0
Sample Headspace Volume	cm ³	250.0
Date Time Sample Cored	mm/dd/yyyy hh:mm:ss	10/30/2008 16:43:25
Date Time Sample Start Out of Well	mm/dd/yyyy hh:mm:ss	10/30/2008 16:45:11
Date Time Desorption Time Zero	mm/dd/yyyy hh:mm:ss	10/30/2008 16:48:57
Date Time Sample at Surface	mm/dd/yyyy hh:mm:ss	10/30/2008 17:48:06
Date Time Sample Canister Sealed	mm/dd/yyyy hh:mm:ss	10/30/2008 18:22:55
Lost Gas Time	hours	1.566
Desorption Time Correction	hours	0.001
Fit Start Time	hours	1.677
Fit End Time	hours	1.897
Fit Start Time	hours*0.5	1.295
Fit End Time	hours*0.5	1.377
Lost Gas Content	scf/ton	11.7
Measured Gas Content	scf/ton	60.5
Crushed Gas Content	scf/ton	33.0
Total Gas Content	scf/ton	105.2
Lost Gas Fraction	vol frac	0.1115
Measured Gas Fraction	vol frac	0.5750
Crushed Gas Fraction	vol frac	0.3134
Diffusivity	1/us	0.2
Sorption Time	hours	95.3

Sample 41547-5 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Canister Temp.	Ambient Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
10/30/2008 18:22:55	1.5661	1.2514	0.0	0.0	68.5	68.7	11.64	0.00
10/30/2008 18:23:00	1.5661	1.2514	17.0	13.2	68.5	68.7	11.64	0.17
10/30/2008 18:25:00	1.5994	1.2647	5.0	3.9	68.5	68.7	11.64	0.23
10/30/2008 18:27:00	1.6328	1.2778	9.0	7.0	68.5	68.7	11.64	0.32
10/30/2008 18:29:00	1.6661	1.2908	11.0	8.5	68.7	68.3	11.64	0.43
10/30/2008 18:31:00	1.6994	1.3036	11.0	8.4	69.1	68.3	11.64	0.54
10/30/2008 18:33:00	1.7328	1.3163	13.0	10.1	69.1	68.3	11.64	0.67
10/30/2008 18:34:58	1.7655	1.3287	10.0	7.7	69.4	68.1	11.64	0.78
10/30/2008 18:36:59	1.7991	1.3413	12.0	9.0	70.3	67.8	11.64	0.90
10/30/2008 18:39:00	1.8328	1.3538	12.0	9.1	70.9	68.0	11.64	1.02
10/30/2008 18:41:00	1.8661	1.3661	12.0	9.2	71.4	68.0	11.64	1.14
10/30/2008 18:43:00	1.8994	1.3782	12.0	9.2	71.8	68.0	11.64	1.26
10/30/2008 18:45:00	1.9328	1.3902	16.0	12.4	72.0	68.1	11.64	1.42
10/30/2008 18:48:00	1.9828	1.4081	25.0	19.5	72.1	67.4	11.64	1.68
10/30/2008 18:49:59	2.0158	1.4198	6.0	4.7	72.1	67.2	11.64	1.74
10/30/2008 18:53:00	2.0661	1.4374	24.0	18.8	72.0	66.2	11.64	1.99
10/30/2008 18:55:00	2.0994	1.4489	12.0	9.4	72.0	66.5	11.64	2.11
10/30/2008 18:58:00	2.1494	1.4661	16.0	12.5	72.1	65.8	11.64	2.28
10/30/2008 19:00:00	2.1828	1.4774	11.0	8.6	72.0	65.3	11.64	2.39
10/30/2008 19:02:59	2.2325	1.4941	17.0	13.3	72.3	64.9	11.65	2.57
10/30/2008 19:05:59	2.2825	1.5108	17.0	13.1	72.9	64.2	11.65	2.74
10/30/2008 19:09:00	2.3328	1.5273	17.0	13.4	72.5	63.3	11.65	2.92
10/30/2008 19:12:00	2.3828	1.5436	11.0	8.6	72.7	63.1	11.65	3.03
10/30/2008 19:15:00	2.4328	1.5597	7.0	5.5	72.7	62.9	11.65	3.10
10/30/2008 19:19:58	2.5155	1.5860	19.0	14.9	72.7	62.7	11.64	3.30
10/30/2008 19:25:00	2.5994	1.6123	29.0	22.9	72.5	62.6	11.64	3.60
10/30/2008 19:30:00	2.6828	1.6379	17.0	13.4	72.7	62.7	11.65	3.78
10/30/2008 19:34:59	2.7658	1.6631	21.0	16.5	72.3	63.3	11.65	3.99
10/30/2008 19:40:00	2.8494	1.6880	20.0	15.8	72.3	63.3	11.65	4.20
10/30/2008 19:45:00	2.9328	1.7125	19.0	15.0	72.1	62.9	11.65	4.40
10/30/2008 19:50:00	3.0161	1.7367	20.0	15.7	72.3	63.3	11.65	4.61
10/30/2008 19:55:00	3.0994	1.7605	17.0	13.4	72.1	62.9	11.65	4.78
10/30/2008 20:00:00	3.1828	1.7840	16.0	12.6	72.1	62.7	11.65	4.95
10/30/2008 20:06:59	3.2991	1.8164	25.0	19.8	72.1	61.8	11.65	5.21
10/30/2008 20:14:00	3.4161	1.8483	19.0	15.0	72.0	61.8	11.65	5.41
10/30/2008 20:21:00	3.5328	1.8796	22.0	17.4	72.0	61.5	11.66	5.64

10/30/2008 20:28:00	3.6494	1.9103	22.0	17.2	72.7	60.9	11.66	5.86
10/30/2008 20:35:00	3.7661	1.9406	24.0	19.0	72.7	60.2	11.66	6.11
10/30/2008 20:42:00	3.8828	1.9705	19.0	15.1	72.7	60.2	11.66	6.31
10/30/2008 20:49:00	3.9994	1.9999	22.0	17.4	72.7	60.9	11.66	6.54
10/30/2008 20:56:00	4.1161	2.0288	22.0	17.4	72.7	62.0	11.66	6.77
10/30/2008 21:03:00	4.2328	2.0574	18.0	14.2	72.5	62.6	11.66	6.96
10/30/2008 21:10:00	4.3494	2.0855	20.0	15.7	72.7	62.6	11.66	7.17
10/30/2008 21:20:00	4.5161	2.1251	25.0	19.7	72.3	62.4	11.66	7.43
10/30/2008 21:30:00	4.6828	2.1640	25.0	19.8	72.3	62.2	11.66	7.69
10/30/2008 21:40:00	4.8494	2.2021	24.0	19.0	72.1	62.4	11.66	7.94
10/30/2008 21:49:59	5.0158	2.2396	24.0	18.9	72.0	63.3	11.67	8.19
10/30/2008 22:00:00	5.1828	2.2766	24.0	18.9	71.8	64.0	11.66	8.44
10/30/2008 22:10:00	5.3494	2.3129	21.0	16.2	72.7	64.0	11.66	8.65
10/30/2008 22:19:58	5.5155	2.3485	21.0	16.6	72.7	64.0	11.67	8.87
10/30/2008 22:30:00	5.6828	2.3839	22.0	17.3	72.5	64.2	11.67	9.10
10/30/2008 22:40:00	5.8494	2.4186	22.0	17.3	72.5	64.2	11.67	9.32
10/30/2008 23:00:00	6.1828	2.4865	35.0	27.4	72.5	68.0	11.68	9.69
10/30/2008 23:15:00	6.4328	2.5363	27.0	21.0	72.9	68.7	11.68	9.96
10/30/2008 23:30:00	6.6828	2.5851	29.0	22.6	73.0	69.2	11.68	10.26
10/30/2008 23:45:00	6.9328	2.6330	27.0	21.1	72.9	67.8	11.68	10.54
10/31/2008 00:00:00	7.1828	2.6801	26.0	20.5	72.9	64.9	11.68	10.81
10/31/2008 00:15:00	7.4328	2.7263	24.0	19.0	72.7	62.6	11.69	11.06
10/31/2008 00:30:00	7.6828	2.7718	25.0	19.8	72.1	62.7	11.69	11.32
10/31/2008 00:45:00	7.9328	2.8165	23.0	18.1	72.0	64.2	11.69	11.56
10/31/2008 01:00:00	8.1828	2.8606	23.0	18.1	72.0	66.0	11.69	11.80
10/31/2008 01:19:58	8.5155	2.9181	26.0	20.4	72.0	66.2	11.69	12.07
10/31/2008 01:40:00	8.8494	2.9748	25.0	19.6	72.1	66.5	11.69	12.33
10/31/2008 02:00:00	9.1828	3.0303	26.0	20.4	72.0	66.3	11.69	12.60
10/31/2008 02:19:59	9.5158	3.0848	24.0	18.9	72.0	66.2	11.69	12.84
10/31/2008 02:39:00	9.8328	3.1357	20.0	15.7	72.0	66.2	11.69	13.05
10/31/2008 03:00:00	10.1828	3.1910	19.0	14.9	72.1	66.0	11.69	13.25
10/31/2008 03:30:00	10.6828	3.2684	32.0	25.2	72.1	65.9	11.69	13.58
10/31/2008 04:00:00	11.1828	3.3441	28.0	22.1	72.1	65.3	11.69	13.87
10/31/2008 04:30:00	11.6828	3.4180	30.0	23.7	72.1	63.4	11.70	14.18
10/31/2008 05:00:00	12.1828	3.4904	31.0	24.6	72.1	62.7	11.70	14.51
10/31/2008 05:30:00	12.6828	3.5613	31.0	24.4	71.8	66.5	11.70	14.83
10/31/2008 06:00:00	13.1828	3.6308	31.0	24.4	71.8	66.5	11.70	15.15
10/31/2008 06:30:00	13.6828	3.6990	42.0	33.1	72.1	65.4	11.71	15.59
10/31/2008 07:00:00	14.1828	3.7660	39.0	30.7	72.5	62.0	11.70	15.99
10/31/2008 08:00:00	15.1828	3.8965	56.0	44.3	72.5	64.0	11.71	16.58
10/31/2008 09:00:00	16.1828	4.0228	54.0	43.5	72.1	55.2	11.72	17.15


10/31/2008 10:00:00	17.1828	4.1452	52.0	41.9	71.8	54.6	11.72	17.70
10/31/2008 10:00:00	18.1828	4.2641	50.0	39.8	71.0	59.7	11.72	18.23
10/31/2008 12:30:00	19.6828	4.4365	68.0	52.8	72.0	70.7	11.72	18.92
10/31/2008 14:00:00	21.1828	4.6025	69.0	52.9	72.1	76.2	11.68	19.62
10/31/2008 15:30:00	22.6828	4.7626	66.0	50.8	72.1	75.9	11.68	20.29
10/31/2008 13:30:00	24.1828	4.9176	62.0	48.1	72.1	72.6	11.68	20.29
10/31/2008 18:00:00	25.1828	5.0182	52.0	40.4	72.1	72.0	11.68	21.46
11/02/2008 18:32:00	73.7161	8.5858	361.0	280.8	73.0	74.2	11.74	25.16
11/03/2008 08:30:00	87.6828	9.3639	260.0	203.3	70.4	70.4	11.72	27.84
11/03/2008 15:12:00	94.3828	9.7151	187.0	146.1	72.1	72.2	11.75	29.76
11/04/2008 10:14:00	113.4161	10.6497	206.0	159.9	69.6	69.3	11.66	31.87
11/04/2008 15:13:00	118.3994	10.8812	127.0	97.3	70.5	70.9	11.62	33.16
11/05/2008 15:52:00	143.0494	11.9603	186.0	145.6	69.8	68.9	11.70	35.07
11/06/2008 10:57:59	162.1491	12.7338	153.0	120.5	69.1	68.9	11.77	36.66
11/06/2008 15:17:00	166.4661	12.9022	93.0	72.9	71.1	68.8	11.79	37.62
11/07/2008 09:26:00	184.6161	13.5874	124.0	97.8	70.0	69.5	11.80	38.91
11/07/2008 15:38:00	190.8161	13.8136	85.0	66.8	70.7	69.3	11.80	39.79
11/08/2008 10:55:00	210.0994	14.4948	113.0	88.3	69.8	74.3	11.80	40.96
11/09/2008 10:01:00	233.1994	15.2709	116.0	88.8	69.4	73.2	11.71	42.13
11/10/2008 11:21:00	258.5328	16.0790	120.0	92.0	69.4	73.2	11.66	43.34
11/11/2008 10:12:00	281.3828	16.7745	109.0	85.7	69.4	68.6	11.75	44.47
11/12/2008 10:21:59	305.5491	17.4800	107.0	84.2	70.0	68.4	11.76	45.58
11/13/2008 10:11:00	329.3661	18.1484	106.0	80.9	70.0	68.8	11.66	46.65
11/14/2008 09:44:00	352.9161	18.7861	93.0	74.0	69.1	68.0	11.88	47.63
11/15/2008 11:28:00	378.6494	19.4589	27.0	21.3	69.8	71.4	11.89	47.91
11/16/2008 11:35:59	402.7825	20.0694	85.0	66.9	69.3	71.1	11.86	48.79
11/17/2008 09:56:00	425.1161	20.6183	79.0	62.3	70.2	75.7	11.94	49.61
11/18/2008 10:45:00	449.9328	21.2116	80.0	62.4	70.7	74.8	11.91	50.43
11/19/2008 10:24:00	473.5828	21.7620	82.0	63.7	71.8	71.1	11.87	51.27
11/20/2008 10:01:00	497.1994	22.2980	60.0	48.2	68.9	68.9	12.01	51.91
11/21/2008 10:01:00	521.1994	22.8298	66.0	47.7	69.8	69.5	11.78	52.53
11/22/2008 10:29:00	545.6661	23.3595	58.0	45.5	69.4	73.2	11.82	53.13
11/23/2008 11:28:00	570.6494	23.8883	57.0	44.1	69.6	74.4	11.80	53.72
11/24/2008 09:36:59	592.7991	24.3475	50.0	39.8	69.8	69.1	11.90	54.24
11/25/2008 14:06:59	621.2991	24.9259	53.0	40.4	69.4	72.6	11.82	54.77
11/26/2008 08:19:00	639.4994	25.2883	43.0	33.7	68.5	74.1	11.82	55.22
11/27/2008 15:42:00	670.8828	25.9014	44.0	34.1	69.1	69.3	11.79	55.67
11/28/2008 13:56:00	693.1161	26.3271	43.0	32.1	69.1	70.0	11.70	56.09
11/29/2008 12:57:00	716.1328	26.7607	33.0	25.8	68.5	69.1	11.71	56.43
11/30/2008 14:19:59	741.5158	27.2308	26.0	20.5	68.4	68.6	11.77	56.70
12/01/2008 10:28:00	761.6494	27.5980	35.0	27.3	69.1	68.1	11.77	57.06

Souder, Miller & Associates, Fosset Gulch MW 34-5-14U

12/03/2008 09:20:00	808.5161	28.4344	44.0	34.8	67.6	69.4	11.82	57.52
12/05/2008 09:08:59	856.3325	29.2632	51.0	38.5	68.7	70.8	11.75	58.03
12/07/2008 11:55:00	907.0994	30.1181	60.0	45.3	71.1	74.4	11.73	58.62
12/09/2008 09:56:00	953.1161	30.8726	48.0	37.8	69.4	73.2	11.85	59.12
12/11/2008 11:08:00	1002.3161	31.6594	49.0	38.0	70.0	72.6	11.83	59.62
12/13/2008 12:52:00	1052.0494	32.4353	59.0	37.5	71.8	73.4	11.43	60.11
12/15/2008 07:40:00	1094.8494	33.0885	39.0	30.7	69.1	68.7	11.78	60.52

Appendix III

Souder, Miller & Associates Fosset Gulch MW 34-5-142 Fruitland Coals

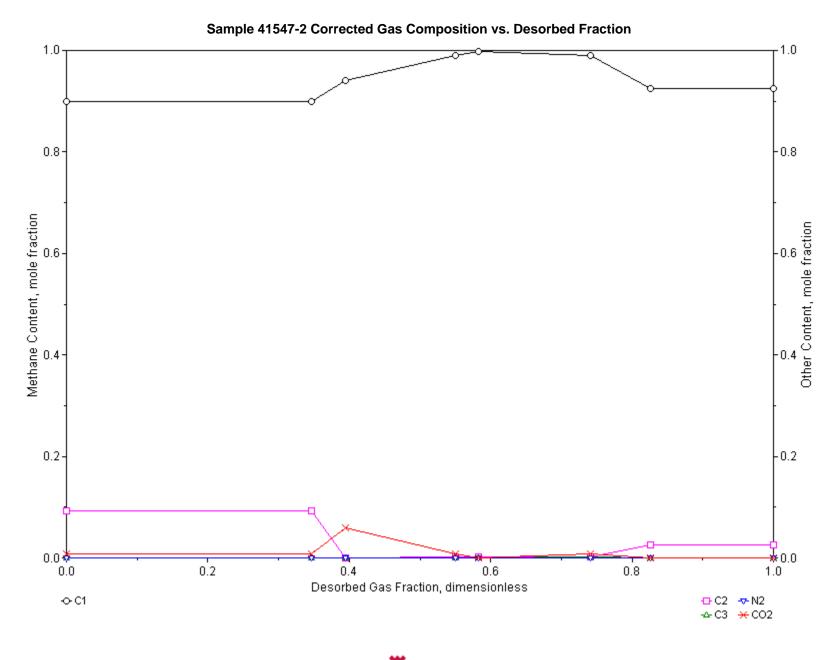
Desorption Gas Composition Results

Date Time	C ₁	C ₂	C ₃	iC4	nC₄	iC ₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
10/30/2008 13:33:00	0.2052	0.0213	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1549	0.6167	0.0018	0.0000	1.0000
10/30/2008 15:26:00	0.0089	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2003	0.7902	0.0006	0.0000	1.0000
10/31/2008 07:02:59	0.0760	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1847	0.7384	0.0006	0.0001	1.0000
10/31/2008 14:03:00	0.2157	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1560	0.6278	0.0001	0.0000	1.0000
11/07/2008 09:17:59	0.9852	0.0011	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011	0.0031	0.0072	0.0004	1.0000
12/15/2008 07:34:59	0.0326	0.0009	0.0000	0.0000	0.0000	0.0009	0.0009	0.0000	0.0000	0.2108	0.7540	0.0000	0.0000	1.0000
			Conta	mination	Correcte	d Desorp	tion Gas	Composit	ion Histo	ry				
					O ₂ , N	I ₂ , and H ₂	Removed	ł						
10/30/2008 13:33:00	0.8986	0.0933	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
10/30/2008 15:26:00	0.9403	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0597	0.0000	1.0000
10/31/2008 07:02:59	0.9899	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
10/31/2008 14:03:00	0.9979	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0000	1.0000
11/07/2008 09:17:59	0.9897	0.0011	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0072	0.0000	1.0000
12/15/2008 07:34:59	0.9250	0.0250	0.0000	0.0000	0.0000	0.0250	0.0250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

Sample 41547-2 Desorbed Gas Composition History

Sample 41547-2 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC4	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.8986	0.0933	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
0.3462	0.8986	0.0933	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
0.3943	0.9403	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0597	0.0000	1.0000
0.5509	0.9899	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
0.5831	0.9979	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0000	1.0000
0.7411	0.9897	0.0011	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0072	0.0000	1.0000
0.8263	0.9250	0.0250	0.0000	0.0000	0.0000	0.0250	0.0250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
1.0000	0.9250	0.0250	0.0000	0.0000	0.0000	0.0250	0.0250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
					Inte	egrated Ga	as Compo	sition						
-	0.9377	0.0404	0.0002	0.0000	0.0000	0.0054	0.0054	0.0000	0.0000	0.0000	0.0000	0.0108	0.0000	1.0000


Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
10/30/2008 13:33:00	0.2052	0.0213	0.0000	0.1549	0.6167	0.0018	0.0000	1.0000
10/30/2008 15:26:00	0.0089	0.0000	0.0000	0.2003	0.7902	0.0006	0.0000	1.0000
10/31/2008 07:02:59	0.0760	0.0001	0.0000	0.1847	0.7384	0.0006	0.0001	1.0000
10/31/2008 14:03:00	0.2157	0.0004	0.0000	0.1560	0.6278	0.0001	0.0000	1.0000
11/07/2008 09:17:59	0.9852	0.0011	0.0020	0.0011	0.0031	0.0072	0.0004	1.0000
12/15/2008 07:34:59	0.0326	0.0009	0.0018	0.2108	0.7540	0.0000	0.0000	1.0000
	Conta	mination Corre	ected Desorption	on Gas Compo	sition History			
		C	D_2 , N_2 , and H_2 R	lemoved				
10/30/2008 13:33:00	0.8986	0.0933	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
10/30/2008 15:26:00	0.9403	0.0000	0.0000	0.0000	0.0000	0.0597	0.0000	1.0000
10/31/2008 07:02:59	0.9899	0.0019	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
10/31/2008 14:03:00	0.9979	0.0018	0.0000	0.0000	0.0000	0.0004	0.0000	1.0000
11/07/2008 09:17:59	0.9897	0.0011	0.0020	0.0000	0.0000	0.0072	0.0000	1.0000
12/15/2008 07:34:59	0.9250	0.0250	0.0500	0.0000	0.0000	0.0000	0.0000	1.0000

Sample 41547-2 Desorbed Gas Composition History (Lumped)

Sample 41547-2 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

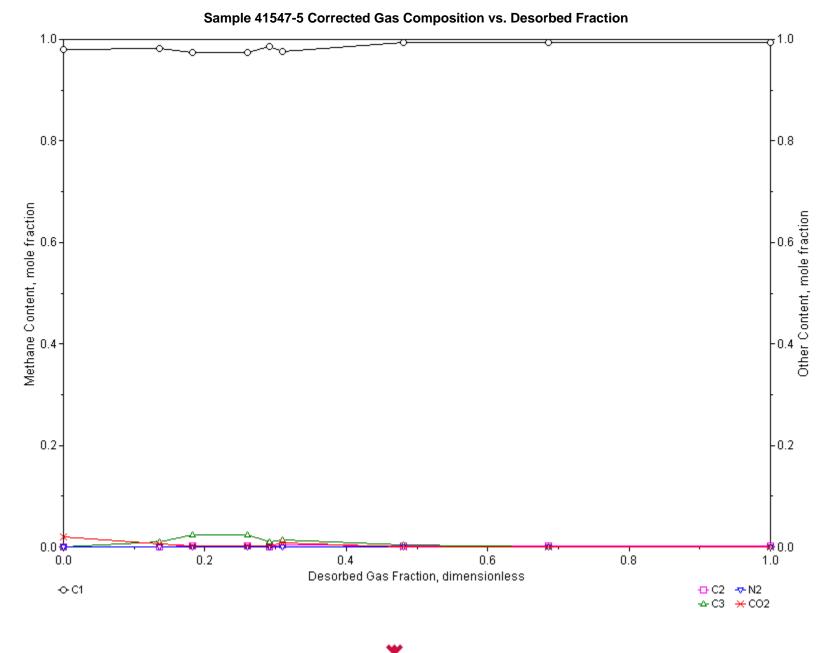
Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
vol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.8986	0.0933	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
0.3462	0.8986	0.0933	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
0.3943	0.9403	0.0000	0.0000	0.0000	0.0000	0.0597	0.0000	1.0000
0.5509	0.9899	0.0019	0.0000	0.0000	0.0000	0.0081	0.0000	1.0000
0.5831	0.9979	0.0018	0.0000	0.0000	0.0000	0.0004	0.0000	1.0000
0.7411	0.9897	0.0011	0.0020	0.0000	0.0000	0.0072	0.0000	1.0000
0.8263	0.9250	0.0250	0.0500	0.0000	0.0000	0.0000	0.0000	1.0000
1.0000	0.9250	0.0250	0.0500	0.0000	0.0000	0.0000	0.0000	1.0000
		Inte	egrated Gas Co	omposition				
-	0.9377	0.0404	0.0111	0.0000	0.0000	0.0108	0.0000	1.0000

Date Time	C ₁	C ₂	C ₃	iC4	nC ₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
10/30/2008 19:02:59	0.0634	0.0001	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1882	0.7473	0.0004	0.0000	1.0000
10/30/2008 21:20:00	0.0679	0.0001	0.0017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1875	0.7428	0.0001	0.0000	1.0000
10/31/2008 06:30:00	0.0691	0.0001	0.0017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1841	0.7450	0.0001	0.0000	1.0000
10/31/2008 12:30:00	0.1673	0.0002	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1635	0.6668	0.0004	0.0000	1.0000
10/31/2008 17:00:00	0.1243	0.0005	0.0016	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1752	0.6974	0.0010	0.0000	1.0000
11/07/2008 09:26:00	0.9722	0.0011	0.0039	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0213	0.0001	0.0005	1.0000
12/15/2008 07:40:00	0.1399	0.0002	0.0000	0.0002	0.0002	0.0002	0.0002	0.0000	0.0000	0.1880	0.6713	0.0000	0.0000	1.0000
			Conta	amination	Correcte	d Desorp	tion Gas	Composit	ion Histo	ry				
					O ₂ , I	N_2 , and H_2	Remove	d						
10/30/2008 19:02:59	0.9827	0.0009	0.0105	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0059	0.0000	1.0000
10/30/2008 21:20:00	0.9740	0.0012	0.0237	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011	0.0000	1.0000
10/31/2008 06:30:00	0.9737	0.0014	0.0235	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0014	0.0000	1.0000
10/31/2008 12:30:00	0.9860	0.0009	0.0106	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	0.0000	1.0000
10/31/2008 17:00:00	0.9755	0.0036	0.0129	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0079	0.0000	1.0000
11/07/2008 09:26:00	0.9948	0.0011	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	1.0000
12/15/2008 07:40:00	0.9946	0.0011	0.0000	0.0011	0.0011	0.0011	0.0011	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

Sample 41547-5 Desorbed Gas Composition History

Sample 41547-5 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC₄	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9807	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0193	0.0000	1.0000
0.1359	0.9827	0.0009	0.0105	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0059	0.0000	1.0000
0.1821	0.9740	0.0012	0.0237	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0011	0.0000	1.0000
0.2596	0.9737	0.0014	0.0235	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0014	0.0000	1.0000
0.2913	0.9860	0.0009	0.0106	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	0.0000	1.0000
0.3103	0.9755	0.0036	0.0129	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0079	0.0000	1.0000
0.4813	0.9948	0.0011	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	1.0000
0.6866	0.9946	0.0011	0.0000	0.0011	0.0011	0.0011	0.0011	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
1.0000	0.9946	0.0011	0.0000	0.0011	0.0011	0.0011	0.0011	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
					Inte	egrated G	as Compo	sition						
-	0.9882	0.0013	0.0060	0.0004	0.0004	0.0004	0.0004	0.0000	0.0000	0.0000	0.0000	0.0028	0.0000	1.0000


Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
10/30/2008 19:02:59	0.0634	0.0001	0.0007	0.1882	0.7473	0.0004	0.0000	1.0000
10/30/2008 21:20:00	0.0679	0.0001	0.0017	0.1875	0.7428	0.0001	0.0000	1.0000
10/31/2008 06:30:00	0.0691	0.0001	0.0017	0.1841	0.7450	0.0001	0.0000	1.0000
10/31/2008 12:30:00	0.1673	0.0002	0.0018	0.1635	0.6668	0.0004	0.0000	1.0000
10/31/2008 17:00:00	0.1243	0.0005	0.0016	0.1752	0.6974	0.0010	0.0000	1.0000
11/07/2008 09:26:00	0.9722	0.0011	0.0039	0.0009	0.0213	0.0001	0.0005	1.0000
12/15/2008 07:40:00	0.1399	0.0002	0.0006	0.1880	0.6713	0.0000	0.0000	1.0000
	Conta	mination Corre	ected Desorption	on Gas Compo	sition History			
		C	D_2 , N_2 , and H_2 F	Removed				
10/30/2008 19:02:59	0.9827	0.0009	0.0105	0.0000	0.0000	0.0059	0.0000	1.0000
10/30/2008 21:20:00	0.9740	0.0012	0.0237	0.0000	0.0000	0.0011	0.0000	1.0000
10/31/2008 06:30:00	0.9737	0.0014	0.0235	0.0000	0.0000	0.0014	0.0000	1.0000
10/31/2008 12:30:00	0.9860	0.0009	0.0106	0.0000	0.0000	0.0024	0.0000	1.0000
10/31/2008 17:00:00	0.9755	0.0036	0.0129	0.0000	0.0000	0.0079	0.0000	1.0000
11/07/2008 09:26:00	0.9948	0.0011	0.0040	0.0000	0.0000	0.0001	0.0000	1.0000
12/15/2008 07:40:00	0.9946	0.0011	0.0043	0.0000	0.0000	0.0000	0.0000	1.0000

Sample 41547-5 Desorbed Gas Composition History (Lumped)

Sample 41547-5 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

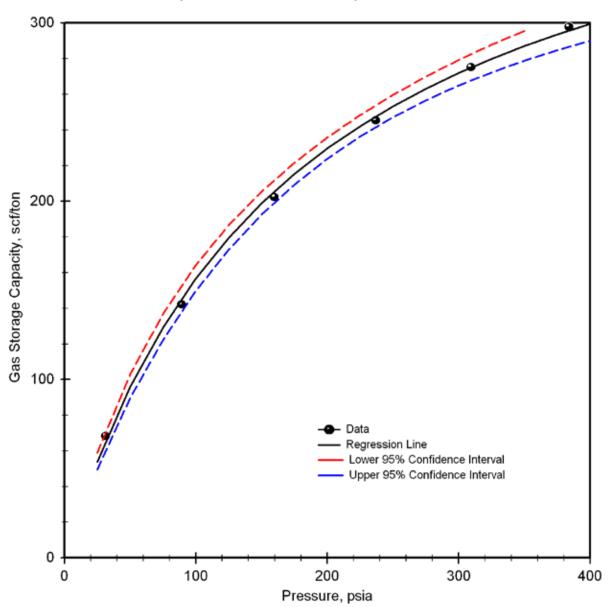
Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
vol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.9807	0.0000	0.0000	0.0000	0.0000	0.0193	0.0000	1.0000
0.1359	0.9827	0.0009	0.0105	0.0000	0.0000	0.0059	0.0000	1.0000
0.1821	0.9740	0.0012	0.0237	0.0000	0.0000	0.0011	0.0000	1.0000
0.2596	0.9737	0.0014	0.0235	0.0000	0.0000	0.0014	0.0000	1.0000
0.2913	0.9860	0.0009	0.0106	0.0000	0.0000	0.0024	0.0000	1.0000
0.3103	0.9755	0.0036	0.0129	0.0000	0.0000	0.0079	0.0000	1.0000
0.4813	0.9948	0.0011	0.0040	0.0000	0.0000	0.0001	0.0000	1.0000
0.6866	0.9946	0.0011	0.0043	0.0000	0.0000	0.0000	0.0000	1.0000
1.0000	0.9946	0.0011	0.0043	0.0000	0.0000	0.0000	0.0000	1.0000
		Inte	egrated Gas Co	omposition				
-	0.9882	0.0013	0.0078	0.0000	0.0000	0.0028	0.0000	1.0000

Weatherford

Appendix IV

Souder, Miller & Associates Fosset Gulch MW 34-5-142 Fruitland Coals

Adsorption Isotherm Results

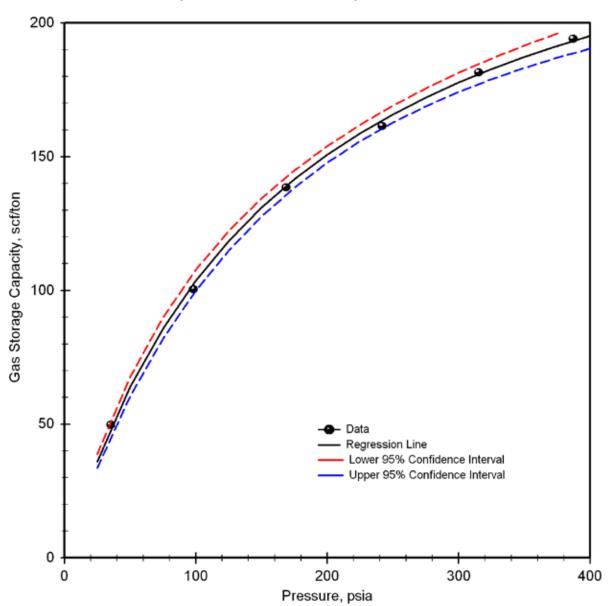

Parameter	Unit	Value
Top Depth	ft	484.70
Bottom Depth	ft	485.70
Isotherm Para	ameters	
Measurement Gas	-	methane
Measurement Temperature	°F	70.52
In-Situ Sample Cha	racterization	
Crushed Density	g/cm ³	1.522
Moisture Holding Capacity	wt frac	0.0159
Ash Content	wt frac	0.3319
Volatile Matter Content	wt frac	0.2425
Fixed Carbon Content	wt frac	0.4097
Organic Content	wt frac	0.6461
Sulfur Content	wt frac	0.0061
Carbon Content	wt frac	0.5508
Nitrogen Content	wt frac	0.0114
Hydrogen Content	wt frac	0.0385
Oxygen Content	wt frac	0.0454
Sulfur-in-Ash Content	wt frac	0.0098
Vitrinite Content	vol frac	0.937
Inertinite Content	vol frac	0.058
Liptinite Content	vol frac	0.050
Rank Paran	neters	
Parr Corrected Volatile Matter Content, dry, ash-free	wt frac	0.4932
Parr Corrected Fixed Carbon Content	wt frac	0.5068
Calorific Value, mmmf	BTU/lbm	14,773
Parr Corrected Calorific Value, mmmf	BTU/lbm	15,039
Langmuir Par	ameters	
Number of Points	-	6
Squared Regression Coefficient	-	0.9990
Langmuir Storage Capacity, dry, ash-free	scf/ton	659.67
Langmuir Storage Capacity, in-situ	scf/ton	430.26
Langmuir Storage Capacity Range, in-situ	scf/ton	1.83
Langmuir Pressure	psia	174.69
Langmuir Pressure Range	psia	11.77

Sample 41547-2 Coal Adsorption Isotherm Parameters

Sample 41547-2 Isotherm Adsorption Isotherm Data

Pressure	Storage Capacity, in-situ
psia	scf/ton
31.272	68.399
89.029	142.203
159.667	202.459
236.846	245.444
309.150	275.367
383.730	297.931

Sample 41547-2 Isotherm Adsorption Isotherm


Parameter	Unit	Value
Top Depth	ft	531.10
Bottom Depth	ft	532.10
Isotherm Para	ameters	
Measurement Gas	-	methane
Measurement Temperature	°F	70.52
In-Situ Sample Cha	racterization	
Crushed Density	g/cm ³	1.833
Moisture Holding Capacity	wt frac	0.0181
Ash Content	wt frac	0.5404
Volatile Matter Content	wt frac	0.1621
Fixed Carbon Content	wt frac	0.2795
Organic Content	wt frac	0.4272
Sulfur Content	wt frac	0.0143
Carbon Content	wt frac	0.3624
Nitrogen Content	wt frac	0.0069
Hydrogen Content	wt frac	0.0278
Oxygen Content	wt frac	0.0301
Sulfur-in-Ash Content	wt frac	0.0012
Vitrinite Content	vol frac	0.930
Inertinite Content	vol frac	0.070
Liptinite Content	vol frac	0.000
Rank Paran	neters	
Parr Corrected Volatile Matter Content, dry, ash-free	wt frac	0.8349
Parr Corrected Fixed Carbon Content	wt frac	0.1651
Calorific Value, mmmf	BTU/lbm	14,801
Parr Corrected Calorific Value, mmmf	BTU/lbm	15,566
Langmuir Par	ameters	
Number of Points	-	6
Squared Regression Coefficient	-	0.9994
Langmuir Storage Capacity, dry, ash-free	scf/ton	626.34
Langmuir Storage Capacity, in-situ	scf/ton	276.56
Langmuir Storage Capacity Range, in-situ	scf/ton	0.55
Langmuir Pressure	psia	166.78
Langmuir Pressure Range	psia	9.63

Sample 41547-5 Coal Adsorption Isotherm Parameters

Sample 41547-5 Isotherm Adsorption Isotherm Data

Pressure	Storage Capacity, in-situ
psia	scf/ton
35.195	49.760
98.092	100.553
168.541	138.571
241.616	161.593
315.003	181.637
386.902	194.151

Sample 41547-5 Isotherm Adsorption Isotherm

Final Report Reservoir Property Assessment

Souder, Miller & Associates Hwy 151 34-4-39 MW #1 Fruitland Coal San Juan Basin Archuleta County, Colorado

Submitted to: Mr. Denny Foust Souder, Miller & Associates 612 East Murray Drive Farmington, New Mexico 87499-2606

Mr. Steven Lindblom Colorado Oil and Gas Conservation Commission 1120 Lincoln Street, Suite 801 Denver, CO 80203

> Prepared by: Yi Wang and Liz Roberts Weatherford Laboratories Project 41680

> > July 14, 2009

Weatherford Laboratories Disclaimer

LEGAL NOTICE: This report was prepared by Weatherford Laboratories as an account of work performed for the client and is intended for informational purposes only. Any use of this information in relation to any specific application should be based on an independent examination and verification of its applicability for such use by professionally qualified personnel. Neither Weatherford Laboratories, nor any persons or organizations acting on its behalf:

- a. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report; or
- b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Table of Contents

Table of Contents	. i
List of Tables	. i
List of Figures	.ii
List of Appendices	.ii
Summary	1
Introduction	3
Field Activities	
Laboratory Procedures	
Gas Content Measurement Protocol	
Apparent Diffusivity and Sorption Time	
Gas Composition and Isotope Analysis	8
Sample Bulk Composition and Property Analysis1	1
Crushed Density Analysis1	2
Moisture Holding Capacity Analysis1	
Chemical Characterization1	2
Maceral and Mineral Composition1	3
Coal Vitrinite Reflectance1	3
Adsorbed Gas Storage Capacity1	3
Analysis Results1	5
Core Photography and Lithology1	
Gas Content, Diffusivity, and Sorption Time1	5
Gas Composition and Isotope Summary1	8
Sample Bulk Composition and Property Analysis Results	'1
Crushed Density Results2	21
Chemical Characterization Results	2
Petrographic Characterization Results2	
Adsorbed Gas Storage Capacity	6
Adsorbed Gas-in-Place Estimate	29
Final Summary	30
References	31

List of Tables

Analysis Program Summary	3
Core Run Summary	4
Sample Bulk Composition and Property Analysis Methodologies	
Relative Effect of Various Parameters on Gas Storage Capacity	14
Gas Content Data	
Diffusivity and Sorption Time Estimates	
Crushed Density Data	
Air-Dry Proximate Analysis Data	
In-Situ Proximate Analysis Data	
Sulfur Content Data	
Chemical Characterization Data	
Petrographic Data	
Coal Methane Adsorption Isotherm Parameters	
Gas-in-Place per Unit Volume Summary	
	Core Run Summary Sample Bulk Composition and Property Analysis Methodologies Relative Effect of Various Parameters on Gas Storage Capacity Gas Content Data Diffusivity and Sorption Time Estimates Apparent Adsorbed Gas Composition Results Isotope Results Crushed Density Data Air-Dry Proximate Analysis Data In-Situ Proximate Analysis Data Sulfur Content Data Chemical Characterization Data Petrographic Data Coal Methane Adsorption Isotherm Parameters

List of Figures

Figure 1.	Sample Processing and Analysis Flow Chart	6
Figure 2.	Relative Sorption Affinity of Gases	
Figure 3.	Carbon and Hydrogen Isotope Signatures of Methane Sources	11
Figure 4.	Gas Content Data Summary	
Figure 5.	Total Gas Content vs. Inorganic Content	
Figure 6.	Adsorbed Gas Composition	
Figure 7.	Natural Gas Classification (Carbon-Deuterium Stable Isotope Plot)	
Figure 8.	Reciprocal Modified Density vs. Dry Ash Content	
Figure 9.	Mineral Matter-Free Basis Maceral Composition Summary	
Figure 10.	Dry, Ash-Free Methane Isotherms	
Figure 11.	In-Situ Methane Isotherms	
Figure 12.	Methane Storage Capacity vs. Inorganic Content	

List of Appendices

Core Lithology and Photography	Appendix I
Desorption Data and Graphs	Appendix II
Desorption Gas Composition Results	
Adsorption Isotherm Results	
•	

Summary

Weatherford Laboratories (WFT Labs) measured properties of five core samples recovered from Fruitland Coals penetrated by Souder, Miller & Associate's Hwy 151 34-4-39 MW #1 well on November 10, 2008. Core was collected between 227 and 291 ft. The goal of this project was to evaluate the sorbed gas content, gas storage capacity, coal properties, and gas-in-place of the Fruitland Coal at the well location.

Five core samples were desorbed to determine total gas content (lost plus measured plus crushed gas content) estimates. Three desorption samples were dedicated to collection of multiple gas composition and two desorption samples were dedicated to collection of isotopic samples throughout the desorption history. Density, moisture, and sulfur analyses were performed on all core samples. Coal characterization was determined for two desorption samples, which included chemical (proximate analysis, sulfur content, sulfur-in-ash content, and heating value) and petrological analyses (vitrinite reflectance and maceral composition). These two desorption samples were also used for two methane adsorption isotherm measurements to determine methane storage capacity versus pressure at constant temperature.

A variety of factors can influence data quality. Confidence in the analytical results depends on the reliability of reservoir temperature and pressure information available for the cored intervals as well as adherence to sample collection and processing protocols. Relative confidence levels were assigned to describe the reliability of the data discussed in this report. These confidence levels are defined below.

- Low confidence Data should not be considered representative of reservoir conditions.
- Moderate confidence Data are suspect but may be useful in conjunction with other information to describe reservoir conditions.
- High confidence Data are believed to represent reservoir conditions (assuming experimental temperature and pressure data accurately describe initial reservoir conditions).

The conclusions and the confidence in these conclusions are summarized in the remainder of this section.

- 1. Confidence in the desorption data was high. The lost gas fraction of the five desorption samples ranged from 5.7 to 11.0% of the total gas content. At the conclusion of desorption experiments, all five desorption samples were crushed to determine the remaining gas content as required for accurate total gas content estimates. The percentage of the total gas released by crushing ranged from 20.3 to 54.2% of the total gas content. The average dry, ash-free and in-situ gas contents were 208.9 scf/ton (standard cubic feet per ton) and 143.9 scf/ton, respectively.
- Estimates of the diffusivity at 60°F, the desorption temperature, ranged from 0.055 to 0.202 μs⁻¹. This range corresponded to sorption times (time to desorb 63% of the gas at the desorption temperature and atmospheric pressure) ranging from 91.6 to 335.0 hours. Confidence in this data was high as there was high confidence in the desorption data.
- 3. Multiple desorption gas samples were collected from three dedicated desorption canisters. These data were integrated as a function of the desorbed gas fraction to estimate the original adsorbed gas composition. Estimates of the adsorbed gas composition included 97.6 mol% methane, with minor concentrations of carbon dioxide (2.1 mol%), propane and heavier hydrocarbons (0.2 mol%), and ethane (0.2 mol%). The confidence in these data was moderate as there was substantial air contamination in some of the gas composition samples.
- **4.** Results of isotopic analysis for two samples indicated that the origin of the released gas was transitional biogenic-thermogenic. Confidence in this data was high.

- 5. The density of the five desorption samples was determined after crushing with a helium pycnometer. The density ranged from 1.340 to 1.744 g/cm³ on an in-situ basis. Confidence in these data was high.
- 6. Estimates of the organic fraction density and inorganic fraction density were of moderate accuracy due to minor variation in the sample moist density. The organic fraction density estimate of 1.259 g/cm³ was consistent with the maceral composition. The inorganic fraction density of 3.041 g/cm³ was greater than the density of moist montmorillonite (2.12 g/cm³) and moist kaolinite (2.42 g/cm³).
- 7. Ash contents from the five desorption samples were low to moderate, ranging from 0.1361 to 0.5192 weight fraction on an in-situ basis. The moisture holding capacity (in-situ or inherent moisture content) was moderate, ranging from 0.0119 to 0.0209 weight fraction. The sulfur content was low to moderate, ranging from 0.0053 to 0.0367 weight fraction on an in-situ basis. Confidence in these data was high.
- 8. Coal rank is best determined using calorific value data on a moist, mineral-matter-free basis when the dry, mineral-matter-free fixed carbon values are less than 0.69 weight fraction and the moist, mineral-matter-free calorific value is less than 14,000 BTU/lbm, which was not the case for the two isotherm samples. The Parr corrected moist, mineral-matter-free calorific value for sample 41680-2 was 15,633 BTU/lbm and for sample 41680-4 was 15,461 BTU/lbm. For coal ranks of medium volatile bituminous or greater, coal rank is best determined using vitrinite reflectance data. The mean-maximum vitrinite reflectance for sample 41680-2 was 1.02% in oil and for sample 41680-4 was 1.12% in oil placing the rank in the high volatile A bituminous range. There was high confidence in these data.
- 9. The maceral compositions were determined for the two adsorption isotherm samples. For sample 41680-2, the composition included 92.0% vitrinite, 6.4% inertinite, and 1.6% liptinite. For sample 41680-4, the composition included 93.8% vitrinite, 5.5% inertinite, and 0.7% liptinite. Confidence in these estimates was high.
- 10. Confidence in the measured adsorbed methane storage capacity data at the measurement temperature was high as all measurements were performed with state of the art equipment adhering to strict protocols. Two isotherms were determined from two desorption samples. Based upon the reservoir temperature data, the in-situ temperature was 60°F. The isotherm data were measured on samples 41680-2 and 41680-4, which had ash contents of 0.1362 and 0.1917 weight fraction and moisture contents of 0.0119 and 0.0140 weight fraction. The dry, ash-free Langmuir methane storage capacity for sample 41680-2 was 643.4 scf/ton. At the in-situ ash content and moisture content, the Langmuir methane storage capacity was 543.7 scf/ton. The Langmuir pressure was 126.0 psia. The in-situ methane storage capacity was 643.9 scf/ton. At the in-situ ash content and moisture content, the Langmuir methane storage capacity was 543.7 scf/ton. At the in-situ ash content and moisture content, the Langmuir methane storage capacity was 543.9 scf/ton. At the in-situ ash content and moisture content, the Langmuir methane storage capacity was 543.9 scf/ton. At the in-situ ash content and moisture content, the Langmuir methane storage capacity was 507.0 scf/ton. The Langmuir pressure was 112.0 psia. The in-situ methane storage capacity was 274.7 scf/ton.
- 11. At 118.6 psia, the estimated average dry, ash-free methane storage capacity was 271.5 scf/ton. This was substantially greater than the dry, ash-free gas content of 175.1 scf/ton. Therefore, the degree of gas saturation (gas content divided by methane storage capacity) was 64.5%. The critical desorption pressure (pressure at which gas is released from the coal) was estimated to be 44.4 psia. The critical desorption pressure estimate is independent of the reservoir pressure estimate.
- 12. The density and gas content of the coal samples were used to estimate the adsorbed gas-inplace (GIP) volume per unit coal volume. The gas-in-place volume per unit thickness was 291.7 Mscf/acre-ft (thousand standard cubic feet per acre-foot of coal). Confidence in this estimate was high as there was high confidence in the gas content and density data.

Introduction

This report summarizes the procedures and results of the gas desorption and coal characterization program conducted on five core samples recovered from the Souder, Miller & Associate's Hwy 151 34-4-39 MW #1 well on November 10, 2008, from depths between 227 and 291 ft. The well is located in the San Juan Basin, specifically SE/NW Section 30, Township 34S, Range 4W, Archuleta County, Colorado. At the request of Mr. Denny Foust of Souder, Miller & Associates, WFT Labs conducted analyses on the core samples. The goal of this project was to evaluate the sorbed gas content, gas storage capacity, coal properties, and gas-in-place of the Fruitland Coal at the well location.

Many of the values presented in this report are time specific. For instance, references to gas content and gas composition are valid on the date the reservoir was sampled. These properties may have been affected by fluid production from the study well, offset wells, or drainage by mining activities since the samples were collected.

Table 1 summarizes the detailed analysis program conducted on the samples after they arrived at WFT Labs' laboratory. Information concerning the details of the measurements and the resulting data are discussed throughout this report.

Table 1.

Analysis Program Summary

Sample ID	Can ID	Drill Depth (ft)	Reservoir System		Sample Handling	Core Photography	Core Lithology	Gas Composition	Long-term Residual Gas	Isotope	Density	Moisture/Ash/Sulfur	Moisture Holding Capacity	Proximate/BTU/SO ₃ in Ash	Comprehensive Petrography	Isotherm Preparation	Isotherm
41680-1	GTI-027	227.8-228.8	Fruitland Coal		Х	Х	Х		Х		Х	Х	Х				
41680-2	GTI-019	229.0-230.0	Fruitland Coal		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	CH_4
41680-3	GTI-115	270.5-271.5	Fruitland Coal		Х	Х	Х		Х		Х	Х	Х				
41680-4	GTI-028	271.6-272.3	Fruitland Coal	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	CH_4
41680-5	GTI-048	273.5-274.5	Fruitland Coal	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				

Field Activities

WFT Labs field personnel were on location at the well site between November 9 and November 11, 2008. WFT Labs collected drilling and coring operations data, five core samples for desorption measurements, desorbed gas content data, samples for gas composition determination from three canisters, samples for isotopic determination from two canisters, and core that was retained for additional analyses. This section summarizes the field activities.

References to core depths throughout this report are based on driller's depths and may require a depth correction to agree with log depths.

On November 10, 2008, Mr. Denny Foust provided a reservoir temperature of 60°F.

Reservoir Pressure data was confirmed on February 11, 2009, by Mr. Denny Foust. A pressure gradient of 0.42 psi/ft was used in all calculations in this report.

Scorpion Drilling (Rig #2) from Farmington, New Mexico, conducted the drilling operations for the well. Core point depth (227 ft) was reached on November 9, 2008. Coring operations commenced on November 10, 2008, and were completed on the same day with a total of two intermittent core runs from 227 to 246 ft and from 268 to 291 ft. A summary of all core runs is presented in Table 2. A field report was issued previously containing details of these operations.¹

Reed Hycalog from Casper, Wyoming, conducted the coring operations. Tools used for coring operations included a 6.5-inch by 3.5-inch CMR 27 core bit and a 30-foot long conventional solid plastic inner-core barrel. Coring fluid was composed of polymer-based mud.

Core Run Summary

Core Run	Cored Interval	Length Cored	Length Recovered	Core Recovery Success	Core Recovery Time	Circulating Fluid Temp.	Fluid Density	Number of Samples
#	ft	ft	ft	%	mm:ss	°F	ppg	#
1	227.0-246.0	19.0	6.0	31.6	30:12	50.5	8.5	2
2	268.0-291.0	23.0	18.4	80.0	31:47	51.5	8.5	3
Total	-	42.0	24.4	58.1	-	-	-	5

Table 2.

Five desorption samples were collected from the Fruitland Coal. The core samples were sealed in individual desorption canisters equilibrated to approximate in-situ temperature (60°F) for gas content analysis. All canisters were filled with potable water to minimize headspace volume within the canister. Reduced head space increased the accuracy of the gas content measurements, maximized the quality of gas samples collected for compositional analysis, and reduced oxidation and desiccation of the core. Desorption readings were taken every few minutes for the first few hours, which was important for accurate lost gas content estimates. Gas content measurements continued for at least 24 hours at the well site. Three canisters (samples 41680-2, 41680-4, and 41680-5) were selected for gas composition and two canisters (41680-2 and 41680-5) were selected for isotopic analysis.

Samples not involved in desorption analysis were sealed in plastic liners and placed in core boxes. These samples and the desorption samples were delivered to WFT Labs' Arvada, Colorado, laboratory. Desorption continued at 60°F until the samples were crushed to determine the remaining gas content.

Laboratory Procedures

WFT Labs performed long-term desorption tests, gas composition analysis, sample bulk composition and property analysis including moisture, density, proximate analysis, sulfur content, sulfur-in-ash, gross calorific value, and adsorption isotherm measurements on selected samples. WFT Labs sub-contracted petrography and isotopic analyses on selected samples. The following details typical laboratory procedures and analyses conducted for a coal reservoir property assessment; although, these analyses may or may have been performed on the samples collected at this well.

Samples were processed using systematic procedures that minimized sample aerial oxidation, aerial desiccation (moisture loss), and gas loss. WFT Labs used an in-house improved procedure to air-dry processed samples that differs from the air-drying procedure described in the ASTM Method D 3302. WFT Labs' air-drying procedure attempts not to over-dry samples by only removing surface moisture. Figure 1 summarizes the general sample processing and analysis steps in the form of a flow chart. Some of the analyses summarized in this figure may not have been performed on samples from this project. Sample methodologies rigorously followed best practice analysis protocols developed by ASTM, the Gas Technology Institute (GTI), and WFT Labs.^{2,3,4,5,6}

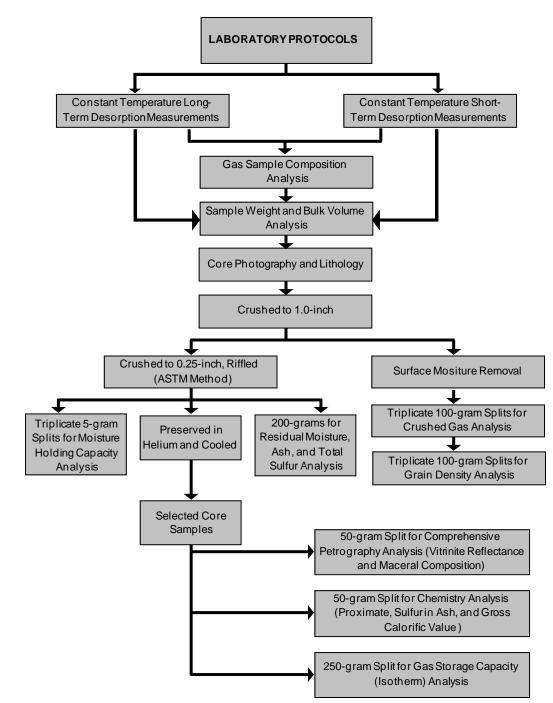


Figure 1. Sample Processing and Analysis Flow Chart

Gas Content Measurement Protocol

Desorbed gas volumes were measured as a function of time to the nearest 1 milliliter by head-pressure equalized fluid displacement. The frequency of the measurements was greatest during the early time of desorption tests to ensure sufficient data were available for lost gas content determination. The gas desorption data collected during the gas desorption tests were used to calculate the lost gas content. Lost gas content estimates were obtained from the early time gas content data using WFT Labs' modified version of the U.S. Bureau of Mines' Direct Method.^{5,6}

Samples were removed from the canister and the particle size was reduced to a one-inch diameter top size. Triplicate representative splits, approximately 100 grams each, were quickly removed from the gross sample for crushed gas analysis. The splits were individually pulverized to -200 mesh in specialized sealed crushing vessels under an inert gas (helium) atmosphere at approximate reservoir temperature. The released (crushed) gas volume was measured periodically until no measurable gas was released from the crushing vessel. The crushed gas content of the samples was calculated by dividing the released gas volume by the sample weight. An average of gas content from the triplicate splits was used as the final estimate of the crushed gas content.

RapidGas[™] is WFT Lab's methodology when samples are removed from desorption samples within three weeks of the start of desorption and pulverized to determine the released gas volume with the crushed gas method. WFT Labs uses the term accelerated gas to describe crushed gas analysis when the desorption time is greater than for *RapidGas* samples but less than the time for long-term desorption samples.

Crushed gas content (also referred to as residual gas content) is used to describe the released gas content when samples are crushed after long-term desorption at approximate reservoir temperature. WFT Labs terminates the long-term desorption measurements when the released gas volume is less than or equal to 0.05 scf/ton-D (standard cubic feet per ton-day) over a several day period.

The total air-dry gas contents were calculated by the sum of the lost gas, measured gas, and crushed gas contents. Residual moisture, ash, moisture holding capacity, and total sulfur content data were then used to convert air-dry basis gas content data to other bases (e.g., dry; dry, ash-free; and in-situ bases). All gas content volumes were converted to and reported in standard cubic feet per ton (2,000 lbm) of rock (scf/ton).

Apparent Diffusivity and Sorption Time

Gas storage and flow through coal seams are generally modeled with dual porosity reservoir models.⁶ Gas is stored by adsorption within the primary porosity system within the organic component of the coal matrix. The primary porosity consists of micro- (<2 nanometer diameter) and meso-porosity (2 to 50 nanometer diameter) pores. Gas flows to wells through the secondary porosity system, which consists of macro-pores (>50 nanometers diameter) and natural fractures. Gas flow through the primary porosity is dominated by diffusion and quantified with Fick's Law while gas flow through the secondary porosity is driven by pressure gradients and quantified with Darcy's Law.

Diffusivity is the diffusion coefficient divided by the square of an average diffusion distance. Diffusivity can be estimated from the method used for determining lost gas volume using the relationship listed in Equation 1.

$$\frac{D}{r^2} = \left(\frac{m}{203.1G_{ad}}\right)^2 \tag{1}$$

where:

 D/r^2 diffusivity, sec⁻¹ m slope of gas content versus square-root time graph, scf/ton-hr^{0.5}

G_{cad} air-dry basis total gas content, scf/ton

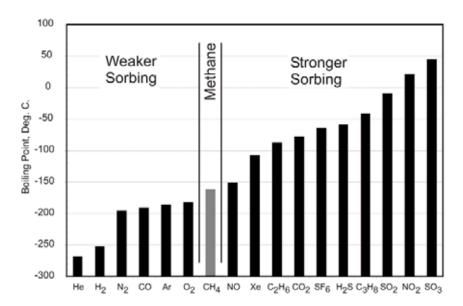
Although diffusivity values are used in reservoir models, an easier concept to understand is the sorption time. Sorption time is defined as the time required to desorb 63.2% of the original gas content if a sample is maintained at constant temperature. The relationship used to relate sorption time to diffusivity is listed in Equation 2.

$$\tau = \left(3600\alpha \frac{D}{r^2}\right)^{-1}$$
(2)

where:

au sorption time, hr

 α geometrical shale factor, cm^2


The geometrical shape factor for a sphere, the most common assumed geometry, is 15. The accuracy of the diffusivity value depends weakly upon the competency of the core sample and strongly upon the determination of the lost gas content.

Gas Composition and Isotope Analysis

It is important to determine the composition of the adsorbed gas as the gas composition directly affects the gas storage capacity and critical desorption pressure. The adsorption affinity of gases is related to their atmospheric pressure boiling point as illustrated by Figure 2. Nitrogen tends to decrease in-situ multi-component gas storage capacity while carbon dioxide, ethane, and heavier hydrocarbon gases tend to increase storage capacity. The composition of the gas desorbed from the core samples changes with time, and concentrations of heavier hydrocarbon species tend to increase relative to methane.

The gas composition as a function of desorbed gas fraction data (cumulative desorbed gas content divided by the total gas content) was integrated to determine the adsorbed gas composition for coal samples or for an average of the free and adsorbed gas compositions for shale samples. Gas composition samples were collected from dedicated canisters. These canisters are usually purged with helium at the time of sealing to reduce air contamination. Gas samples were collected periodically before measuring the released gas volume. The gas composition of the initial released gas was determined by extrapolation to zero desorbed gas content. The accuracy of the extrapolation is strongly dependent upon the lost gas content and the number of desorption gas samples taken early in the desorption measurements. If lost gas content is large, i.e., greater than 25%, the estimates of the lost gas composition of the gas released by crushing the samples at the end of the desorption measurements must also be corrected for contamination by air.

Relative Sorption Affinity of Gases

Figure 2.

Gas sample composition was analyzed at WFT Labs by gas chromatography in accordance with ASTM Method D 1945 (modified). The gas composition was calculated by integrating the gas composition as a function of cumulative desorbed gas content.

Determining the origin of the gas is important in understanding the characteristics of natural gas in a reservoir system or basin. Natural gas derived from two distinct sources listed below can be distinguished based on isotopic composition.⁷ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. Gas isotope ratios were determined by isotope ratio mass spectroscopy.

- 1. Biogenic Gas: Gas generated by anaerobic decomposition of organic matter in a shallow, low temperature sedimentary environment.
- 2. Thermogenic Gas: Gas formed in deeply buried sediments by thermal cracking of sedimentary organic matter into hydrocarbon liquids and gas (primary thermogenic gas), or by thermal cracking of oil at high temperatures into gas (secondary thermogenic gas).

Biogenic gas consists primarily of methane and is often referred to as a "dry" gas. Thermogenic gas can be dry or contain concentrations of heavier hydrocarbons (C_{2+}).

The following information is derived from Reference 7. In isotope geochemistry, it is common practice to express isotopic composition in terms of a delta (δ) value, which is a difference from a standard sample. For example, the delta value for substance A is defined by Equation 3.

$$\delta_A = 10^3 \left(\frac{R_A}{R_{st}} - 1 \right) \tag{3}$$

where:

 δ_A delta value of element A, parts per thousands, ‰

- R_A isotopic ratio of A, dimensionless
- R_{st} isotopic ratio of a standard, dimensionless

Carbon has two stable isotopes: ¹²C and ¹³C. ¹²C accounts for 98.89% of all carbon and ¹³C accounts for 1.11% of the remaining carbon. When the delta value is greater, it is common to consider substance A enriched in the rare, heavier isotope.

Hydrogen has two stable isotopes: H and ²D (deuterium). H accounts for 99.9844% of all hydrogen and ²D accounts for 0.0156% of the remaining hydrogen. Hydrogen exhibits the largest variations in stable isotope ratios of all elements.

Biogenic methane commonly occurs in recent anoxic (low oxygen concentration) sediments in both fresh water, such as lakes and swamps, and marine environments, such as estuaries and shelf regions. There are two primary pathways for methanogenesis, fermentation of acetate and reduction of CO_2 . Acetate fermentation is dominant in freshwater environments while CO_2 reduction is dominate in marine environments.

During methanogenic bacterial decomposition of organic material, methane is highly depleted in δ^{13} C and results in δ^{13} C values between -110 and -50‰. In marine sediments, methane formed by CO₂ reduction is often more depleted in ¹³C than when formed by acetate fermentation. Typical values for δ^{13} C in methane from marine environments range from -110 to -60‰ while those in methane from freshwater environments range from -50‰.

The difference in methane composition from both environments is even greater for the hydrogen isotopes. Marine bacterial methane has δD values between -250 and -170‰ while biogenic methane in freshwater environments is strongly depleted in deuterium with δD values between -400 to -250‰. This difference is due to the source of the hydrogen. Hydrogen comes from formation water during CO₂ reduction. Seventy-five percent of the hydrogen created by fermentation comes from the methyl group, which is extremely depleted in deuterium.

Thermogenic gas is produced in deeply buried sediments due to modification of the organic matter by various chemical reactions, such as cracking of kerogen. The ${}^{12}C - {}^{13}C$ bonds are preferentially broken during the first stages of maturation resulting in ${}^{13}C$ enrichment, which continues as temperature increases. In general, as thermal maturity of methane increases, the $\delta^{13}C$ values increase. Thermogenic methane commonly has $\delta^{13}C$ values between -50 and -20‰. Methane from non-marine (humic) sources are isotopically enriched relative to those generated from marine (sapropelic sources) and similar levels of thermal maturity. In contrast, δD values are independent on the source of organic material but are highly dependent on the thermal maturity.

As a side note, migration can enrich methane in δ^{12} C or δ^{13} C depending upon the properties of the rock through which the gas is migrating. Recent experiments have demonstrated that δ^{13} C can be depleted during migration through shale to different degrees depending upon the organic content of the shale.⁸

The process of diffusion can cause significant isotope fractionization. In general, light isotopes are more mobile and diffuse about 1% faster than the heavier isotopes. As a result, light isotopes escape more readily leaving the remaining methane enriched in ¹³C causing greater δ^{13} C values.

A gas mixture subjected to a temperature gradient will tend to separate by thermal diffusion; the greater mass species will migrate to the colder temperatures. Gravitational settling in porous media can also cause the heavier isotope to migrate downward.

Whiticar⁹ developed a chart for identification of methane sources based upon isotopic ratios. This chart, extracted from Reference 7, is illustrated in Figure 3. The term SMOW in the horizontal axis refers to the standard for hydrogen isotopes, which comes from a sample of mean ocean water distributed in Vienna by the International Atomic Energy Agency. The term PDB in the vertical axis refers to the standard for carbon isotopes, which is a based on Cretaceous PeeDee Belemnites found in South Carolina.

Figure 3. Carbon and Hydrogen Isotope Signatures of Methane Sources

When a helium purged canistered sample is selected for isotope analysis, one or two samples of released gas are collected from the core sample during the desorption measurements after sufficient volume of gas is measured in order to clear the canister head space of residual air. If two gas samples were collected, one sample was taken within the first few hours of the desorption measurements and the second was collected when the rate of desorption decreased significantly but still had enough volume to fill the collection tube (100 ml). If only one gas sample was collected for isotopic analysis, the sample was taken within the first few hours of the desorption measurements. The gas samples collected should be representative of the reservoir gas and are analyzed by isotope-ratio mass spectrometry (IRMS) at Isotech Laboratories, Inc.

Sample Bulk Composition and Property Analysis

Sample bulk composition and property analyses were performed according to ASTM or other standardized methodologies listed in Table 3. Chemical analysis (proximate, total sulfur, sulfur in ash, and heating value) and comprehensive petrography analysis (maceral matter composition, mineral matter composition, and vitrinite reflectance analyses) are typically conducted on selected samples to determine coal composition and thermal maturity (rank). The Center for Applied Energy Research (University of Kentucky) conducts the petrographic analysis. All other listed bulk composition and property analyses were conducted in-house by WFT Labs. Density, moisture holding capacity, chemical analysis, and petrographic analysis procedures are discussed in the following sections.

Table 3. Sample Bulk Composition and Property Analysis Methodologies

Analysis	Methodology
Air-dry moisture loss	WFT Labs' improved methodology
Sample bulk volume	Standard water displacement technique
Density	Helium multi-pycnometry
Moisture holding capacity	WFT Labs' improved methodology
Residual moisture	ASTM D 5142
Ash content	ASTM D 5142
Proximate	ASTM D 5142
Total sulfur	ASTM D 4239C
Sulfur in Ash	ASTM D 5016
Gross calorific value	ASTM D 5865
Maceral and mineral composition	ASTM D 2799
Vitrinite reflectance	ASTM D 2798

Crushed Density Analysis

Density by helium pycnometry determines crushed density values (i.e., density excluding large-scale gas filled pore volume). For coal, the crushed density is almost identical to the bulk density. Crushed density analysis requires the measurement of sample volume and mass. Sample volumes were measured at room temperature conditions on triplicate air-dried samples (representative of each desorption sample) of approximately 100 grams using a helium multi-pycnometer. Helium can penetrate the coal micro-pore structure without adsorption and does not add moisture to the sample. Sample weights were determined to the nearest 0.001 gram using an electronic balance. Sample densities were calculated by dividing the measured sample mass by the sample volume.

Moisture Holding Capacity Analysis

The in-situ (or inherent) moisture of coal is the amount of moisture the coal can hold at 100 percent relative humidity without any moisture present on the surface of the coal particles. The moisture holding capacity approximates the in-situ moisture content of the coal seam.²

The moisture holding capacity analysis procedure used by WFT Labs is in accordance with the ASTM Method D 1412 (Equilibrium Moisture). The equilibrium moisture value is defined as the average percentage weight loss upon drying triplicate 5-gram water saturated coal samples [particle size -16 US mesh (1.18 mm)], following equilibration at 96 to 97% relative humidity and 86°F (30°C) for 48 to 72 hours.

Chemical Characterization

Proximate and ultimate analysis provides chemical composition data. Proximate analysis results in estimates of the weight fraction of residual moisture, ash, and volatile matter and the calculation of fixed carbon by difference. Data from proximate analyses are used to classify coal rank and to determine the ratio of combustible to incombustible constituents. Ultimate analysis results in the weight fraction of sulfur, carbon, hydrogen, nitrogen, and oxygen by difference.²

The total sulfur content represents the sulfur occurring in both the organic and inorganic components of the coal sample. The total sulfur content is determined in accordance with ASTM D 4239C.

Residual moisture is neither a standard state nor a characteristic property of coal.² Residual moisture is dependent on the sample handling, desorption methodology, and the method used to remove excess moisture before analysis. For coal samples, it is important to maintain the residual moisture content at levels slightly greater than the inherent, or in-situ, moisture content. When the total moisture is reduced to the residual moisture value following careful methods, subsequent analyses can be reported on the ASTM as-determined mass basis.

Maceral and Mineral Composition

Maceral and mineral analysis provides organic and mineral composition data. Petrographic characterization of coal reservoir systems is performed by microscopic examination of polished surfaces of crushed particle pellets under reflected white light and ultraviolet light. The volume fraction of organic (maceral) and inorganic (mineral) components is quantified by manual point counting. The volume fraction of clay, quartz, carbonate, and sulfide minerals is also quantified by point counting. The point counting technique is a subjective process and requires a knowledgeable and highly experienced petrographer to obtain consistent data. A third-party commercial laboratory, Center for Applied Energy Research (University of Kentucky), conducted the maceral and mineral testing.

Coal Vitrinite Reflectance

The thermal maturity of coal can be quantified petrographically by vitrinite reflectance. The measurement is typically conducted on the polished surface of the crushed particle pellets used for the maceral analysis. Incident white light is reflected off the surface of vitrinite macerals immersed in oil of a specific refractive index. The reflected light is captured by a photo multiplier and converted to analog and digital output. The reflected light is typically reported as the mean-maximum reflectance since vitrinite is anisotropic under incident. Vitrinite reflectance may be the most sensitive indicator of thermal maturity for macerals that have attained a coal rank of medium volatile bituminous and greater. A third-party commercial laboratory, Center for Applied Energy Research (University of Kentucky), conducted the vitrinite reflectance testing.

Adsorbed Gas Storage Capacity

Adsorption isotherm data are important because isotherm behavior indicates the maximum gas volume that can be stored at a specific temperature and pressure. The adsorption isotherm determines the gas storage capacity of crushed samples as a function of pressure at constant temperature, which is usually the reservoir temperature. A known weight of crushed rock sample is placed in a volumetric isotherm apparatus and subjected to increasing pressure steps.¹⁰ Gas storage capacity is estimated by material balance analysis of the pressure behavior. For coal, the measurement is performed on samples equilibrated to the inherent, or in-situ, moisture content.

The gas storage capacity of coal typically increases non-linearly as pressure increases. Gas storage capacity also varies as a function of the type of gas species, coal maceral composition, and organic material thermal maturity.

The Langmuir equation listed in Equation 4 is used to model the variation of gas storage capacity as a function of pressure.¹¹

$$G_s = G_{sL} \frac{p}{p + p_L} \tag{4}$$

where:

- G_s gas storage capacity, scf/ton
- G_{sL} Langmuir storage capacity, sct/ton
- p pressure, psia
- p_L Langmuir pressure, psia

The Langmuir storage capacity is the gas storage capacity of the sample at infinite pressure and the Langmuir pressure is the pressure at which the gas storage capacity of the sample equals one-half the Langmuir storage capacity value.

Gas storage capacity is dependent upon pressure, temperature, and organic composition. Table 4 summarizes the effect that each of these parameters has on the gas storage capacity when all other parameters are held constant.

Parameters	As the Parameter:	Gas Storage Capacity:
Pressure	Increases	Increases
Temperature	Increases	Decreases
Moisture Content	Increases	Decreases
Vitrinite/Kerogen III Concentration	Increases	Increases
Thermal Maturity	Increases	Increases

Table 4. Relative Effect of Various Parameters on Gas Storage Capacity

Gas adsorbed in reservoirs typically contains gases other than methane, each gas having different adsorptive affinity, which is related to its atmospheric pressure boiling point. The extended Langmuir equation is used to model multi-component gas storage capacity when gas mixtures are present in coal reservoirs. Adsorption isotherm measurements are conducted independently for each gas component present and then combined mathematically with the extended Langmuir model to produce isotherm data that are representative of the reservoir's gas composition.

Multi-component isotherm relationships can be computed from single component data by use of extended Langmuir theory.¹² Equation 5 lists the extended Langmuir relationship.

$$G_{si} = G_{sLi} \frac{\frac{py_i}{p_{Li}}}{1 + p \sum_{j=1}^{nc} \frac{y_i}{p_{Li}}}$$
(5)

where:

G_{si}	multi-component storage capacity of component i, scf/ton
G_{sLi}	single component Langmuir storage capacity of component i, scf/ton
p_{Li}, p_{Lj}	single component Langmuir pressure of component i or j, psia
$y_i \text{ or } y_j$	mole fraction of component i or j in the free gas (vapor) phase, dimensionless
nc	number of components
p	pressure of the free gas phase, psia

One limitation in the current application of Equations 4 and 5 is that gas storage capacity is a function of temperature. No simple method accounts for temperature variations unless the isotherms are measured at multiple temperatures. Consequently, the laboratory isotherm data should be measured at an average reservoir temperature or at multiple temperatures to allow for proper correction.

Initial reservoir gas saturation (gas content divided by gas storage capacity) and critical desorption pressure (pressure at which adsorbed gas is released from the adsorbed state) are estimated from the adsorption isotherm analysis and desorption data.⁴ The critical desorption pressure is determined by calculating the pressure at which the in-situ gas content equals the in-situ gas storage capacity.

Analysis Results

This section provides summaries and discussions of the analytical results. Laboratory reports (raw data) are provided in the appendices where indicated.

Core Photography and Lithology

At the conclusion of the desorption tests, the samples were removed from desorption canisters. Digital photographs were taken and lithologic descriptions of the desorption samples immediately followed. Photographs and lithologies are included in Appendix I.

Gas Content, Diffusivity, and Sorption Time

The total gas content was determined by summing the lost gas content, measured gas content (desorbed gas content), and the gas content liberated from the crushed sample at the end of desorbed gas analysis. The gas volume measurements were corrected for canister and ambient temperature and ambient pressure variations. Gas contents were reported at standard conditions of 14.7 psia and 60°F. The total gas content estimate was based upon the air-dried sample mass. Residual moisture, moisture holding capacity, ash, and total sulfur content data were used to convert air-dry basis gas content data to other bases (i.e., dry; dry, ash-free; and in-situ bases). Figure 4 illustrates the lost, measured, and crushed gas content estimates for core samples are summarized in Table 5. Desorption data including total gas content, measured gas content, and crushed gas content are illustrated in Appendix II.

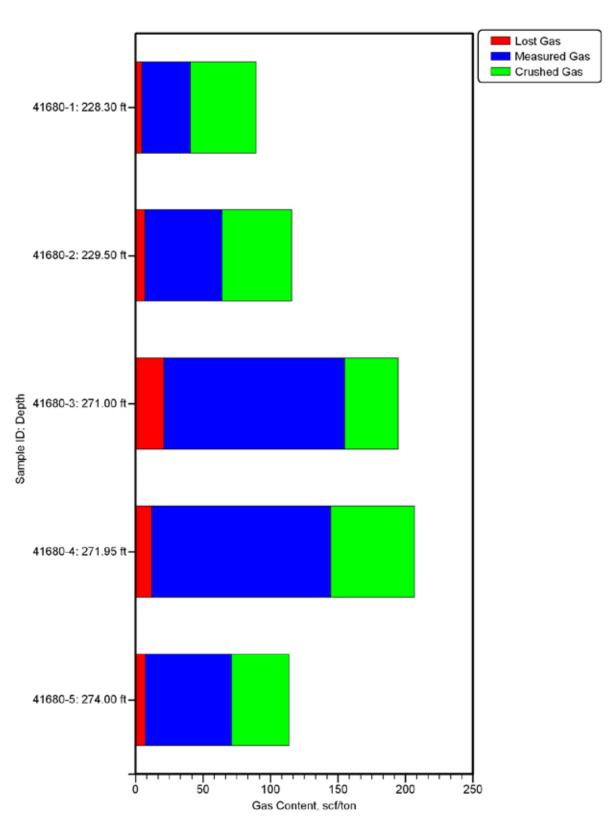
For the core samples, lost gas contents were obtained from the early time gas content data using WFT Lab's modified version of the Direct Method.^{5,6} Extrapolations were made of the early time desorption data measured at reservoir temperature to determine the lost gas content. The lost gas time (time interval used for lost gas extrapolations) ranged from 1.03 to 1.45 hours and all lost gas content values were less than 11% of the total gas content.

Measured gas contents determined from desorption tests for all desorption samples are presented in Table 5. Desorption graphs and data are included in Appendix II.

Residual (crushed) gas content was determined for the five desorption samples. Crushed gas content data are presented in Table 5.

Diffusivity and sorption time estimates for the core samples are listed in Table 6. The diffusion values were obtained from the gradient of the lost gas slope. Sorption time was computed from the diffusivity values.

In many cases, there is a relationship between the total gas content and the inorganic content of each sample. Figure 5 illustrates this relationship listed in Equation 6. The relationship had a squared correlation coefficient of 0.1114, which was not statistically significant. The extrapolation to zero inorganic content suggested the organic fraction gas content was 175.1 scf/ton, which was less than the average dry, ash-free gas content of 208.9 scf/ton.


$$G_c = 175.1 - 106.7(w_a + w_w + w_s)$$
(6)

where:

 G_c total gas content, scf/ton

- w_a ash content, weight fraction
- w_w moisture content, weight fraction
- *w_s* sulfur content, weight fraction

Figure 4.

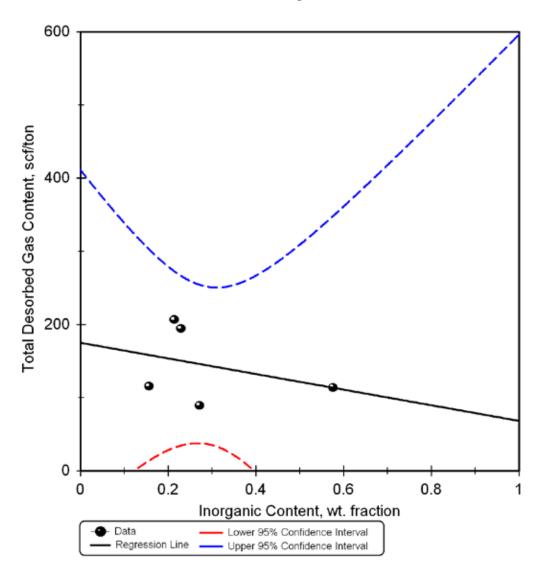
Gas Content Data Summary

Sample ID	Midpoint Depth	Mass	Lost Gas Time	Lost Gas Fraction	Measured Gas Fraction	Crushed Gas Fraction	Lost Gas Content	Measured Gas Content	Crushed Gas Content	Total Air-Dry Gas Content	Total Dry, Ash- Free Gas Content	Total In- Situ Gas Content
	ft	g	hours	%	%	%	scf/ton	scf/ton	scf/ton	scf/ton	scf/ton	scf/ton
41680-1	228.3	2,093	1.42	5.67	40.14	54.19	5.1	35.9	48.5	89.6	122.8	89.7
41680-2	229.5	2,044	1.23	6.26	49.38	44.36	7.3	57.2	51.4	115.9	137.3	116.0
41680-3	271.0	2,129	1.45	10.99	68.73	20.28	21.4	133.9	39.5	194.8	252.5	192.8
41680-4	272.0	1,443	1.03	5.95	64.09	29.95	12.3	132.6	62.0	206.9	263.1	207.2
41680-5	274.0	2,060	1.28	6.63	56.18	37.19	7.6	64.0	42.4	114.0	268.5	113.6
Average	-	1,954	1.28	7.10	55.70	37.19	10.7	84.7	48.8	144.2	208.9	143.9

Table 5.

Gas Content Data

Table 6.

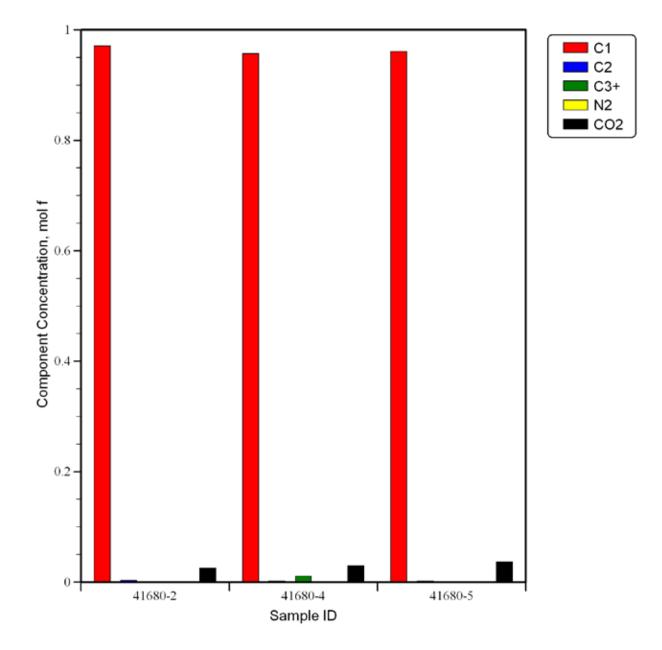

Diffusivity and Sorption Time Estimates

Comula ID	Top Depth	Bottom Depth	Sorption Time	Diffusivity
Sample ID	ft	ft	hr	1/µs
41680-1	227.8	228.8	335.0	0.055
41680-2	229.0	230.0	238.2	0.078
41680-3	270.5	271.5	91.6	0.202
41680-4	271.6	272.3	214.3	0.086
41680-5	273.5	274.5	216.9	0.085
Average	-	-	219.2	0.101

Total Gas Content vs. Inorganic Content

Gas Composition and Isotope Summary

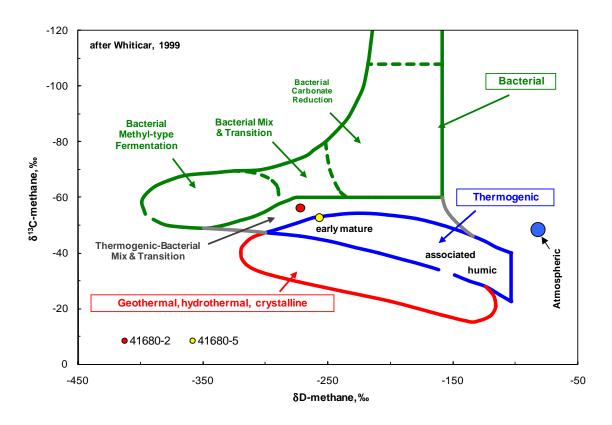
Natural gas produced from coal reservoirs may contain significant volumes of carbon dioxide, nitrogen, and other hydrocarbons in addition to methane. Knowledge of the desorbed gas composition is required to properly evaluate the gas storage capacity. Three canisters were dedicated to collection of multiple desorption gas samples. The gas compositions were corrected for air and hydrogen contamination. The degree of contamination was such that it was necessary to remove all of the nitrogen as well.


Table 7 summarizes the apparent adsorbed gas composition for three samples. The sorbed gas consisted primarily of methane (97.6 mol%). Carbon dioxide (2.1 mol%), propane and heavier hydrocarbons (0.2 mol%), and ethane (0.2 mol%) were also present in smaller concentrations. While nitrogen may be present in the adsorbed gas, contamination precluded an estimate for the adsorbed nitrogen content. Figure 6 graphically illustrates the apparent adsorbed gas composition of the samples. The original gas compositions, contamination corrected gas compositions, gas compositions as a function of desorption fractions, and integrated (adsorbed) gas compositions are all reported in Appendix III.

Sample ID	Midpoint Depth	C ₁	C ₂	C ₃₊	CO ₂	Total
	ft	mol frac	mol frac	mol frac	mol frac	mol frac
41680-2	229.5	0.9710	0.0029	0.0005	0.0257	1.0000
41680-4	272.0	0.9574	0.0019	0.0107	0.0300	1.0000
41680-5	274.0	0.9608	0.0020	0.0003	0.0370	1.0000
Average	-	0.9755	0.0016	0.0023	0.0207	1.0000

Figure 6.

Adsorbed Gas Composition


Data obtained from stable isotope analysis from the samples indicate the original gas was transitional biogenic-thermogenic. Results of isotopic analysis for the selected samples are listed in Table 8 and are illustrated by the red and yellow dots in Figure 7.

Parameter	Unit	41680-2	41680-5
Midpoint Depth	ft	229.5	274.0
Date/Time Sampled	mm/dd/yyyy hh:mm:ss	11/11/2008 17:38:00	11/11/2008 17:36:00
CO ₂ Conc.	mol frac	0.0042	0.0065
C ₁ Conc.	mol frac	0.9951	0.9930
C ₂ Conc.	mol frac	0.0007	0.0005
C ₃ Conc.	mol frac	0.0000	0.0000
iC4 Conc.	mol frac	0.0000	0.0000
nC4 Conc.	mol frac	0.0000	0.0000
iC5 Conc.	mol frac	0.0000	0.0000
nC₅ Conc.	mol frac	0.0000	0.0000
C ₆₊ Conc.	mol frac	0.0000	0.0000
Total	mol frac	1.0000	1.0000
$\delta^{13}C_1$	‰	-56.0	-52.5
δDC1	‰	-272	-257

Table 8.

Isotope Results

Figure 7. Natural Gas Classification (Carbon-Deuterium Stable Isotope Plot)

Sample Bulk Composition and Property Analysis Results

The crushed density, proximate analysis, total sulfur, sulfur in ash, gross calorific value, and petrography results for the selected core samples are discussed in the following sub-sections.

Crushed Density Results

Crushed density results are listed in Table 9. The density of coal varies as a function of its composition. Since the mineral matter component of the coal has a significantly higher density than the organic matter component, the density of coal varies as a function of its mineral matter content. The ash content of coal represents the mineral matter component of the coal. When total sulfur content is significant, the total mineral matter present is a function of the ash and sulfur content.

The average organic and inorganic (mineral matter) densities can often be estimated by linear regression of reciprocal density and ash content data.⁴ Figure 8 illustrates the relationship between reciprocal modified density and dry ash content for the desorption samples. The relationship was statistically significant (squared correlation coefficient, 0.9126).

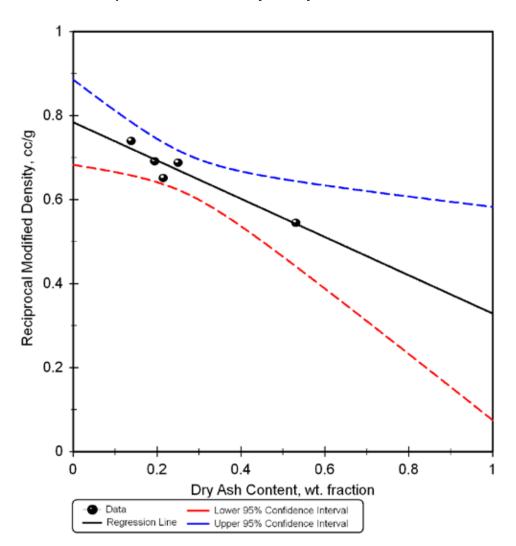


Figure 8. Reciprocal Modified Density vs. Dry Ash Content

The estimated organic density was 1.259 g/cm³ and the estimated inorganic density was 3.041 g/cm³. The organic density of coal in the sub-bituminous and bituminous rank range varies between 1.18 to 1.40 g/cm³ and depends upon the maceral composition.

The inorganic density is often between the densities of moist montmorillonite (2.12 g/cm³), moist kaolinite (2.42 g/cm³), and that of quartz (2.65 g/cm³). Occasionally, values are observed that approach 3 g/cm³ due to the presence of carbonates and heavy minerals. The average inorganic density value of 3.041 g/cm³ was higher than results observed in the past for San Juan Basin coal.

Sample ID	Top Depth	Bottom Depth	Air-Dry Helium Density	In-Situ Helium Density
p	ft	ft	g/cm ³	g/cm ³
41680-1	227.8	228.8	1.433	1.435
41680-2	229.0	230.0	1.339	1.340
41680-3	270.5	271.5	1.518	1.503
41680-4	271.6	272.3	1.429	1.431
41680-5	273.5	274.5	1.751	1.744
Average	-	-	1.494	1.491

Crushed Density Data

Chemical Characterization Results

Residual moisture, ash, and total sulfur analyses are used to convert data reported on an as-received mass basis to other mass bases such as dry; dry, ash-free; mineral-matter-free (moist or dry); and in-situ bases. It is useful to report data on the dry mass basis to review data without the effect of moisture. It is also useful to report data on the dry, ash-free mass basis to review analyses normalized to 100% organic material. Dry, ash-free values are used to compare gas content and gas storage capacity between different zones or wells since the adsorbed gas is stored predominantly by organic material (i.e., the macerals in coal). Table 10 summarizes the proximate analysis results, which include residual moisture, moisture holding capacity, ash, volatile matter, and fixed carbon results for the desorption samples on an air-dry basis. Complete proximate analysis was performed only on samples selected for isotherm analysis. In-situ proximate analysis results have also been provided in Table 11.

Table 10.

Table 9.

Air-Dry Proximate Analysis Data

Sample ID	Top Depth	Bottom Depth	Moisture Holding Capacity	Air-Dry Moisture Content	Air-Dry Ash Content	Air-Dry Volatile Matter Content	Air-Dry Fixed Carbon Content
	ft	ft	wt frac	wt frac	wt frac	wt frac	wt frac
41680-1	227.8	228.8	0.0196	0.0209	0.2448	-	-
41680-2	229.0	230.0	0.0119	0.0131	0.1360	0.2746	0.5764
41680-3	270.5	271.5	0.0200	0.0103	0.2125	-	-
41680-4	271.6	272.3	0.0140	0.0153	0.1914	0.2512	0.5421
41680-5	273.5	274.5	0.0209	0.0175	0.5211	-	-
Average	-	-	0.0173	0.0154	0.2612	0.2629	0.5592

Sample ID	Top Depth	Bottom Depth	In-Situ Moisture Content	In-Situ Ash Content	In-Situ Volatile Matter Content	In-Situ Fixed Carbon Content
	ft	ft	wt frac	wt frac	wt frac	wt frac
41680-1	227.8	228.8	0.0196	0.2451	-	-
41680-2	229.0	230.0	0.0119	0.1362	0.2749	0.5771
41680-3	270.5	271.5	0.0200	0.2104	-	-
41680-4	271.6	272.3	0.0140	0.1917	0.2515	0.5428
41680-5	273.5	274.5	0.0209	0.5192	-	-
Average	-	-	0.0173	0.2605	0.2632	0.5599

Table 11.

In-Situ Proximate Analysis Data

Ultimate analysis was not performed on these samples excluding sulfur content determination. Sulfur content both on a dry, ash-free and in-situ basis are included in Table 12.

Sulfur Content Data

Sample ID	Top Depth	Bottom Depth	Dry, Ash-Free Sulfur Content	In-Situ Sulfur Content
	ft	ft	wt frac	wt frac
41680-1	227.8	228.8	0.0073	0.0053
41680-2	229.0	230.0	0.0082	0.0070
41680-3	270.5	271.5	0.0076	0.0058
41680-4	271.6	272.3	0.0088	0.0070
41680-5	273.5	274.5	0.0798	0.0367
Average	-	-	0.0223	0.0124

Table 12.

Gross calorific value, fixed carbon content, and volatile matter content were determined to estimate the coal rank (thermal maturity) for the isotherm sample. The procedure documented in ASTM D 388 was used to correct ash content for sulfur in ash, to convert fixed carbon and volatile matter to a dry, mineral matter free basis, and to convert calorific value to a moist, mineral-matter-free basis.¹³ The moisture holding capacity data were used to convert dry basis data to a moist basis.

Table 13 summarizes the chemical characterization of the isotherm samples. Coal rank is best determined using calorific value data on a moist, mineral-matter-free basis when the dry, mineral-matter-free fixed carbon values are less than 0.69 weight fraction and the moist, mineral-matter-free calorific value is less than 14,000 BTU/lbm. This was not the case for the two isotherm samples. Vitrinite reflectance data provide more accurate results for coal rank classification.

Parameter	Unit	41680-2	41680-4
Top Depth	ft	229.0	271.6
Bottom Depth	ft	230.0	272.3
Moisture Holding Capacity, in-situ basis	wt frac	0.0119	0.0140
Residual Moisture, as-received basis	wt frac	0.0131	0.0153
Sulfur-in-Ash Content, in-situ basis	wt frac	0.0020	0.0014
Corrected Ash Content, in-situ basis	wt frac	0.1362	0.1917
Sulfur Content, in-situ basis	wt frac	0.0070	0.0070
Parr Corrected Volatile Matter Content, DMMF basis	wt frac	0.4368	0.4358
Parr Corrected Fixed Carbon Content, DMMF basis	wt frac	0.5632	0.5642
Parr Corrected Calorific Value, MMMF basis	BTU/lbm	15,633	15,461

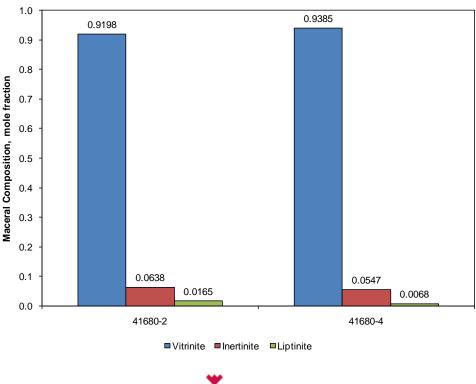
Table 13.

Chemical Characterization Data

Notes:

1. Moisture holding capacity determined by moisture equilibration at 86°F for 72 hr at 96-97% relative humidity.

2. Ash content corrected for sulfur-in-ash content.


3. DMMF = Dry, mineral-matter-free basis determined with sulfur corrections in accordance with ASTM D 388.

4. MMMF = Moist, mineral-matter-free basis determined with sulfur corrections in accordance with ASTM D 388.

Petrographic Characterization Results

This section provides a summary of the petrographic analytical results. Figure 9 illustrates the maceral composition summarized in Table 14, which also includes mineral results. For coal ranks of medium volatile bituminous or greater, coal rank is best determined using vitrinite reflectance data. The mean-maximum vitrinite reflectance for sample 41680-2 was 1.02% in oil and for sample 41680-5 was 1.12% in oil placing the rank in the high volatile A bituminous range.

Figure 9. Mineral Matter-Free Basis Maceral Composition Summary

Table 14.

Petrographic Data

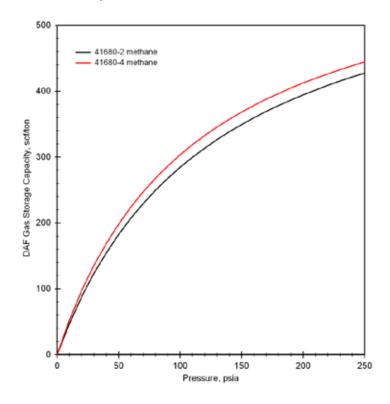
Parameter	Unit	41680-2	41680-4
Vitrinite Gro	oup Macerals,	Mineral-Matter Free Basis	
Telinite	vol frac	0.1461	0.1481
Collotelinite	vol frac	0.4259	0.5011
Vitrodetrinite	vol frac	0.2881	0.2210
Collodetrinite	vol frac	0.0000	0.0000
Corpogelinite	vol frac	0.0576	0.0638
Gelinite	vol frac	0.0021	0.0046
Total Vitrinite	vol frac	0.9198	0.9385
Inertinite Gro	oup Macerals,	Mineral-Matter Free Basis	
Fusinite	vol frac	0.0350	0.0273
Semifusinite	vol frac	0.0144	0.0205
Micrinite	vol frac	0.0000	0.0000
Macrinite	vol frac	0.0082	0.0000
Secretinite	vol frac	0.0000	0.0000
Funginite	vol frac	0.0062	0.0046
Inertodetrinite	vol frac	0.0000	0.0023
Total Inertinite	vol frac	0.0638	0.0547
Liptinite Gro	oup Macerals,	Mineral-Matter Free Basis	
Sporinite	vol frac	0.0021	0.0000
Cutinite	vol frac	0.0123	0.0068
Resinite	vol frac	0.0021	0.0000
Alginite	vol frac	0.0000	0.0000
Liptodetrinite	vol frac	0.0000	0.0000
Suberinite	vol frac	0.0000	0.0000
Exsudatinite	vol frac	0.0000	0.0000
Total Liptinite	vol frac	0.0165	0.0068
Minera	I Composition	n, Maceral-Fee Basis	
Clay	vol frac	0.8571	0.9508
Quartz	vol frac	0.1429	0.0492
Carbonate	vol frac	0.0000	0.0000
Sulfide	vol frac	0.0000	0.0000
Total	vol frac	1.0000	1.0000
	Vitrinite R	eflectance	
Mean-Maximum Reflectance	% in oil	1.02	1.12
Standard Deviation	% in oil	0.03	0.05
Coal Rank based on Vitrinite Reflectance	-	high volatile A	A bituminous

Adsorbed Gas Storage Capacity

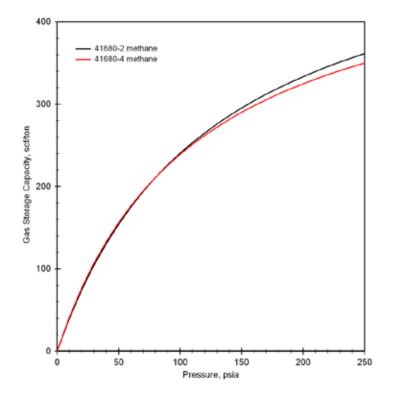
Two methane isotherm measurements were performed by WFT Labs. The isotherm parameters and gas storage capacity estimates are summarized in Table 15. Figures 10 and 11 illustrate the methane storage capacity as a function of pressure on a dry, ash-free and in-situ basis, respectively.

Parameter	Unit	41680-2	41680-4			
Sample Parameters						
Top Depth	ft	229.0	229.0			
Bottom Depth	ft	271.6	271.6			
Measurement Gas	-	methane	methane			
Measurement Temperature	°F	60.08	60.08			
Moisture Content, in-situ basis	wt frac	0.0119	0.0140			
Ash Content, in-situ basis	wt frac	0.1362	0.1917			
Sulfur Content, in-situ basis	wt frac	0.0070	0.0070			
Organic Content, in-situ basis	wt frac	0.8450	0.7873			
Vitrinite Content, mineral-matter-free basis	vol frac	0.920	0.939			
Inertinite Content, mineral-matter-free basis	vol frac	0.064	0.055			
Liptinite Content, mineral matter-free basis	vol frac	0.017	0.007			
Calorific Value, moist, mineral-matter-free basis	BTU/lbm	15,587	15,349			
Langmuir Pa	rameters					
Langmuir Storage Capacity, dry, ash-free	scf/ton	643.40	643.89			
Langmuir Storage Capacity, in-situ	scf/ton	543.66	506.96			
Langmuir Pressure	psia	125.97	112.00			
Adsorbed Gas Storage Capacity						
Reservoir Pressure	psia	114.07	132.45			
Storage Capacity, dry, ash-free	scf/ton	305.75	348.88			
Storage Capacity, in-situ	scf/ton	258.36	274.69			

Table 15.Coal Methane Adsorption Isotherm Parameters


For sample 41680-2, the dry, ash-free Langmuir storage capacity was 643.4 scf/ton, the in-situ Langmuir storage capacity was 543.7 scf/ton, and the Langmuir pressure was 126.0 psia. At a reservoir pressure of 114.1 psia, the in-situ storage capacity was 258.4 scf/ton.

For sample 41680-4, the dry, ash-free Langmuir storage capacity was 643.9 scf/ton, the in-situ Langmuir storage capacity was 507.0 scf/ton, and the Langmuir pressure was 112.0 psia. At a reservoir pressure of 132.4 psia, the in-situ storage capacity was 274.7 scf/ton.


Figure 10.

Dry, Ash-Free Methane Isotherms

In-Situ Methane Isotherms

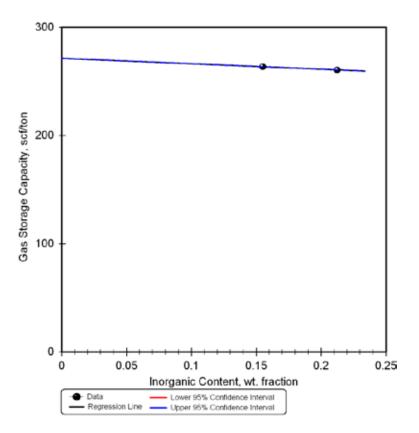
Often there is a relationship between methane storage capacity and inorganic content at reservoir pressure. Figure 12 illustrates this relationship listed in Equation 7 at a reservoir pressure of 118.6 psia.

Extrapolation to zero inorganic content suggested the dry, ash-free storage capacity was 271.5 scf/ton. The average dry, ash-free gas content determined from the desorption samples was 208.9 scf/ton. Both values were larger than the dry, ash-free gas content of 175.1 scf/ton determined from Equation 6 discussed earlier and indicated that the reservoir was undersaturated. This difference may be due to underestimation of the reservoir temperature, an overestimation of reservoir pressure, or differences in maceral composition and thermal maturities between the samples.

$$G_s = 271.5 - 50.39(w_a + w_w + w_s) \tag{7}$$

where:

 G_s gas storage capacity, scf/ton


 w_a ash content, weight fraction

w_w moisture content, weight fraction

w_s sulfur content, weight fraction

Methane Storage Capacity vs. Inorganic Content

If the reservoir pressure gradient of 0.42 psi/ft is correct, then the dry, ash-free gas content of 175.1 scf/ton is only 64.5% of the dry, ash-free gas storage capacity.

The corresponding critical desorption pressure (the pressure at which gas would be released from adsorption) is 44.4 psia. This estimate is independent of the reservoir pressure estimate. Unless the reservoir pressure is equal to the critical desorption pressure (corresponding to a reservoir pressure gradient of approximately 0.129 psi/ft, which is unlikely), the reservoir is undersaturated, which will hinder gas production.

Adsorbed Gas-in-Place Estimate

Adsorbed gas-in-place (GIP) volume was determined for a unit coal thickness based upon the gas content and density data. Gas-in-place per unit thickness volumes were computed with Equation 8.⁴

$$\frac{G}{Ah} = 1.3597 \rho G_c \tag{8}$$

where:

- G gas-in-place volume, Mscf
- A reservoir area, acres
- h reservoir thickness, ft
- ρ average in-situ density, g/cm³
- G_c average in-situ gas content, scf/ton

The in-situ density and gas content values from the five desorbed core the samples were used for these estimates. Estimated GIP values per unit volume were reported in thousands of cubic feet at standard conditions per unit reservoir volume in acre-feet. These estimates are summarized in Table 16. This table can be used with coal thickness estimates from log data and assumed drainage areas to compute the volume of gas-in-place in an area of interest.

Table 16.	Gas-in-Place per Unit Volume Summary

Seam	Top Depth	Bottom Depth	In-Situ Density	In-Situ Gas Content	Gas-In-Place per Volume
	ft	ft	g/cm ³	scf/ton	Mscf/acre-ft
Fruitland Coal	227.0	291.0	1.491	143.9	291.7

Final Summary

Weatherford Laboratories measured properties of five core samples recovered from Fruitland Coals penetrated by Souder, Miller & Associate's Hwy 151 34-4-39 MW #1 well on November 10, 2008. Core was collected between 227 and 291 ft. The goal of this project was to evaluate the sorbed gas content, gas storage capacity, coal properties, and gas-in-place of the Fruitland Coal at the well location.

Five core samples were desorbed to determine total gas content (lost plus measured plus crushed gas content) estimates. Three desorption samples were dedicated to collection of multiple gas composition and two desorption samples were dedicated to collection of isotopic samples throughout the desorption history. Density, moisture, and sulfur analyses were performed on all core samples. Coal characterization was determined for two desorption samples, which included chemical (proximate analysis, sulfur content, sulfur-in-ash content, and heating value) and petrological analyses (vitrinite reflectance and maceral composition). These two desorption samples were also used for two methane adsorption isotherm measurements to determine methane storage capacity versus pressure at constant temperature.

References

- 1. Baker, J. 2008. Summary of Field Operations, Souder, Miller & Associates, Hwy 151 34-4-39 MW #1 Well. Field Report, Weatherford Laboratories, Arvada, CO (13 November 2008).
- 2. 2001 Annual Book of ASTM Standards, Volume 05.05 Gaseous Fuels; Coal and Coke, **05.05**. American Society for Testing and Materials (ASTM), Philadelphia, PA.
- 3. McLennan, J.D. Schafer, P.S., and Pratt, T.J. 1995. *A Guide to Determining Coalbed Gas Content*. Gas Research Institute Report GRI-94/0396, 182. Chicago, IL.
- 4. Mavor, M.J. and Nelson, C.R. 1997. *Coalbed Reservoir Gas-In-Place Analysis*. Gas Research Institute Report GRI-97/0263, 144. Chicago, IL.
- Kissel, F.N., McCulloch, C.M., and Elder, C.H. 1973. Direct Method Determination of the Gas Content of Coal: Procedures and Results. Report of Investigations 8515, United States Department of the Interior, Bureau of Mines (1973).
- Mavor, M.J. 1996. Coalbed Methane Reservoir Properties. In A Guide to Coalbed Methane Reservoir Engineering, ed. J.L. Saulsberry, P.S. Schafer, and R.A. Schraufnagel. Gas Research Institute Report GRI-94/0397, Chicago, IL.
- 7 Hoefs, J. 2004. *Stable Isotope Geochemistry*, fifth edition. Berlin, Springer.
- 8. Zhang, T. and Krooss, B.M. 2001. Experimental Investigation on the Carbon Isotope Fractionization of Methane During Gas Migration by Diffusion Through Sedimentary Rocks at Elevated Temperature and Pressure. *Geochimica et Cosmochimica Acta* **65** (16): 2,723-2,742.
- 9. Whitcar, M.J. 1999. Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane. *Chemical Geology* **161** (1-3): 291-314.
- 10. Mavor, M.J., Hartman, C., and Pratt, T.J. 2004. Uncertainty in Sorption Isotherm Measurements. *Proc.*, International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama, 411.
- 11. Langmuir, I. 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum. *Journal of the American Chemical Society* **40** (9), 1,361.
- 12. Yang, R.T. 1987. *Gas Separation by Adsorption Processes*. Boston: Butterworths.
- Anonymous. 1997. Designation D 399-95 Standard Classification of Coals By Rank. In 1997 Annual Book of ASTM Standards Volume 05.05 Gaseous Fuels; Coal and Coke, 05.05: 169-171. American Society of Testing and Materials (ASTM), West Conshohocken, PA.

Appendix I

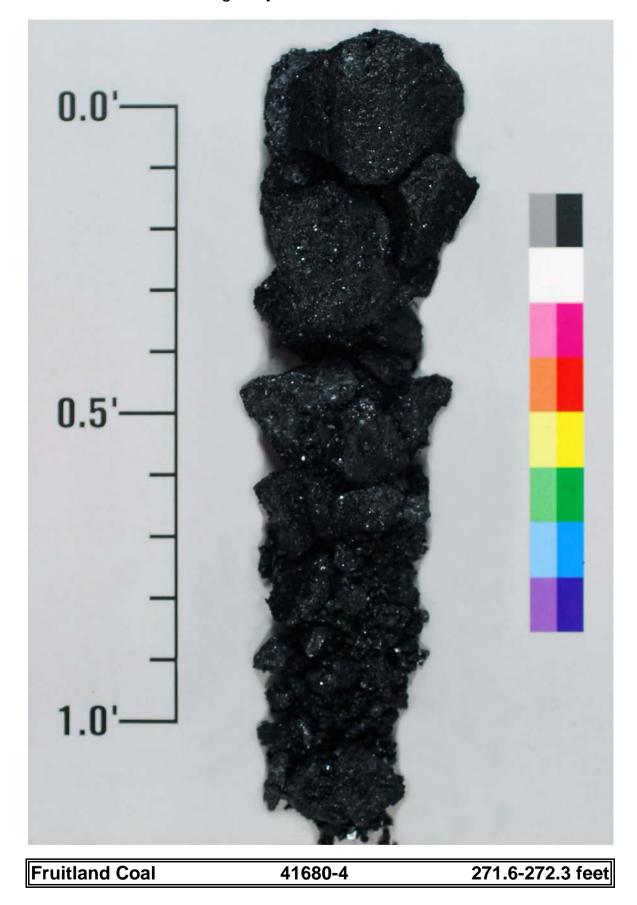
Souder, Miller & Associates Highway 151 34-4-39 MW #1 Fruitland Coal

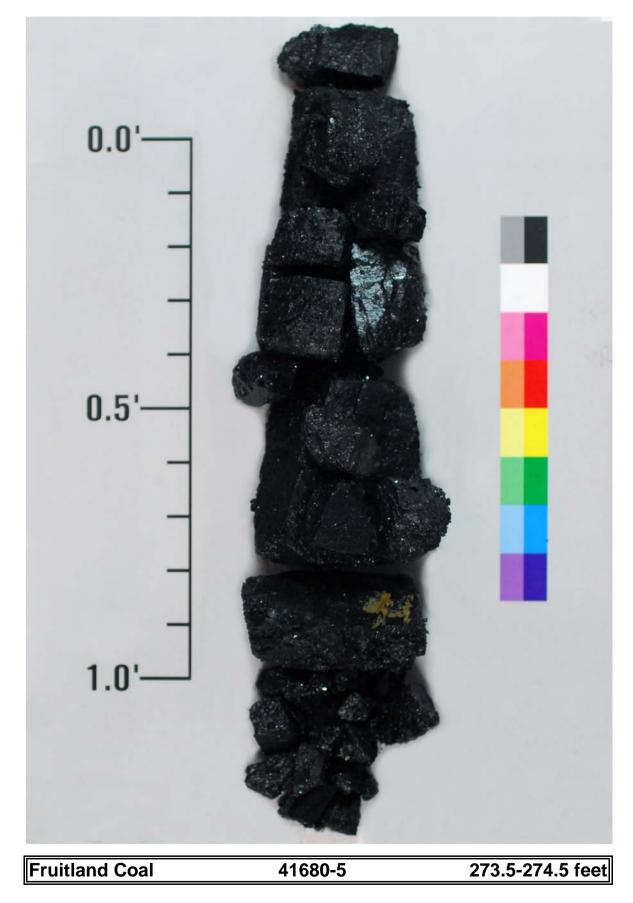
Core Lithology and Photography

Core Lithology

Client	Name:	Souder, Miller & As	sociates		Well Name:	Highway 151 34-4-39 MW #1	Job Number: 41680
SAMPLE INTERVAL		DESCRIPTION					
SAMPLE ID.	CANISTER ID.	Depth Drilled (feet)	Length (inches)	Core Diameter (inches)	Core Surface Texture	Cor	nments
41680-1	GTI-027	227.8-228.8	12.0?	3.40	(coaly) rough	Black shaly banded coal - 50% fibrous and 50% bright, partial rubble, no distinct cleats o fractures, well mixed sediments and discreet shaly layers	
41680-2	GTI-019	229.0-230.0	11.50	3.40	(coaly) rough	Black shaly banded coal - 50% dull and 50% bright, competent, moderate to poorly developments	
41680-3	GTI-115	270.5-271.5	11.5?	3.50	(coaly) rough	Black banded shaly coal - approximately 50% dull and 50% bright, semi-competent - pa poorly developed cleats, no obvious fractures, few possible layers of sediment	
41680-4	GTI-028	271.6-272.3	12.0?	3.5?	(coaly) rough	Interbedded bright and dull coal, a few larger of possible cleats, no observed fractures, heavy representative of rubble	
41680-5	GTI-048	273.5-274.5	12.0?	3.5?	(coaly) rough	Black shaly coal to carbonaceous shale, mostl possible two sets of vertical cleats, signs of int	

Lithologist(s): D. Rogers





Core Photography Souder, Miller & Associates

Highway 151 34-4-39 MW #1

Appendix II

Souder, Miller & Associates Highway 151 34-4-39 MW #1 Fruitland Coal

Desorption Data and Graphs

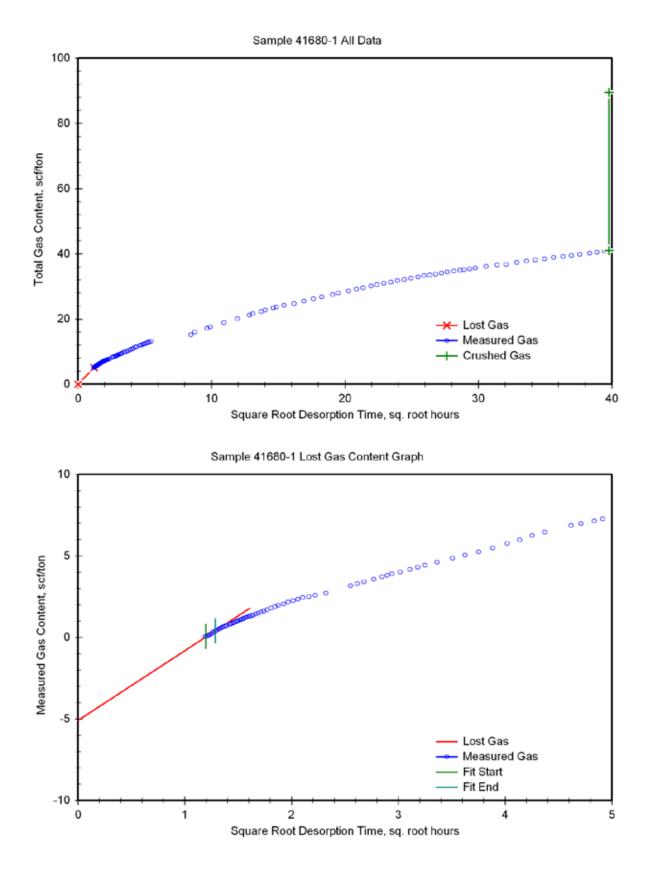
Sample 41680-1 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	227.80
Sample Bottom Depth	ft	228.80
Reservoir Pressure	psia	110.58
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	115.50
Mud Density	lbm/gal	8.50
Sample Mass	g	2,093.0
Sample Headspace Volume	cm ³	800.0
Date Time Sample Cored		11/10/2008 11:30:56
Date Time Sample Start Out of Well		11/10/2008 11:53:25
Date Time Desorption Time Zero		11/10/2008 11:54:53
Date Time Sample at Surface		11/10/2008 12:23:37
Date Time Sample Canister Sealed		11/10/2008 13:19:55
Lost Gas Time	hours	1.417
Desorption Time Correction	hours	0.034
Fit Start Time	hours	1.426
Fit End Time	hours	1.653
Fit Start Time	hours*0.5	1.194
Fit End Time	hours*0.5	1.286
Lost Gas Content	scf/ton	5.1
Measured Gas Content	scf/ton	35.9
Crushed Gas Content	scf/ton	48.5
Total Gas Content	scf/ton	89.6
Lost Gas Fraction	vol frac	0.0567
Measured Gas Fraction	vol frac	0.4014
Crushed Gas Fraction	vol frac	0.5419
Diffusivity	1/us	0.1
Sorption Time	hours	335.0

Sample 41680-1 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Ambient Temp.	Canister Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
11/10/2008 13:19:55	1.4172	1.1905	0.0	0.0	57.7	55.2	11.55	0.00
11/10/2008 13:21:59	1.4171	1.1904	5.0	4.0	57.7	55.2	11.55	0.06
11/10/2008 13:24:00	1.4507	1.2045	6.0	1.2	60.6	55.2	11.55	0.08
11/10/2008 13:26:00	1.4840	1.2182	6.0	3.4	61.7	55.2	11.55	0.13
11/10/2008 13:28:00	1.5174	1.2318	5.0	3.1	62.4	54.9	11.55	0.18
11/10/2008 13:30:00	1.5507	1.2453	5.0	3.5	62.8	54.7	11.55	0.23
11/10/2008 13:31:59	1.5838	1.2585	6.0	4.8	62.6	54.7	11.55	0.31
11/10/2008 13:34:00	1.6174	1.2718	5.0	4.0	62.4	54.5	11.55	0.37
11/10/2008 13:37:00	1.6674	1.2913	5.0	4.0	62.4	54.3	11.56	0.43
11/10/2008 13:38:00	1.6840	1.2977	5.0	3.2	62.8	54.1	11.55	0.48
11/10/2008 13:41:00	1.7340	1.3168	4.0	3.2	63.0	54.1	11.56	0.53
11/10/2008 13:43:00	1.7674	1.3294	4.0	3.2	62.4	54.1	11.55	0.58
11/10/2008 13:45:00	1.8007	1.3419	3.0	2.4	62.6	53.8	11.56	0.61
11/10/2008 13:47:00	1.8340	1.3543	3.0	2.4	62.4	53.8	11.55	0.65
11/10/2008 13:49:00	1.8674	1.3665	3.0	2.2	62.8	53.8	11.56	0.68
11/10/2008 13:50:59	1.9004	1.3786	3.0	2.4	62.8	53.8	11.56	0.72
11/10/2008 13:53:00	1.9340	1.3907	3.0	2.4	62.8	53.6	11.56	0.75
11/10/2008 13:57:59	2.0171	1.4202	5.0	4.0	62.4	53.4	11.56	0.82
11/10/2008 14:00:00	2.0507	1.4320	3.0	1.9	62.8	53.4	11.56	0.84
11/10/2008 14:02:00	2.0840	1.4436	3.0	2.4	62.6	53.4	11.56	0.88
11/10/2008 14:04:00	2.1174	1.4551	3.0	2.4	62.6	53.4	11.56	0.92
11/10/2008 14:06:00	2.1507	1.4665	2.0	1.6	62.6	53.8	11.56	0.94
11/10/2008 14:08:00	2.1840	1.4778	3.0	2.4	62.6	54.3	11.56	0.98
11/10/2008 14:10:00	2.2174	1.4891	3.0	2.4	62.6	54.9	11.56	1.01
11/10/2008 14:12:00	2.2507	1.5002	3.0	2.4	62.6	55.6	11.56	1.05
11/10/2008 14:15:00	2.3007	1.5168	3.0	2.1	62.6	55.6	11.56	1.08
11/10/2008 14:16:59	2.3338	1.5277	3.0	2.4	62.6	55.6	11.56	1.12
11/10/2008 14:19:00	2.3674	1.5386	2.0	1.6	62.6	55.6	11.56	1.14
11/10/2008 14:21:00	2.4007	1.5494	2.0	1.6	62.6	55.4	11.56	1.17
11/10/2008 14:23:59	2.4504	1.5654	4.0	3.2	62.6	54.9	11.56	1.22
11/10/2008 14:26:00	2.4840	1.5761	2.0	1.6	62.6	53.8	11.56	1.24
11/10/2008 14:29:00	2.5340	1.5919	3.0	2.4	62.4	53.6	11.56	1.28
11/10/2008 14:32:00	2.5840	1.6075	3.0	2.4	62.4	53.4	11.56	1.31
11/10/2008 14:35:00	2.6340	1.6230	3.0	2.4	62.4	53.4	11.56	1.35
11/10/2008 14:38:00	2.6840	1.6383	3.0	2.4	62.2	53.2	11.56	1.39
11/10/2008 14:42:59	2.7671	1.6635	5.0	4.0	62.2	53.1	11.56	1.45

11/10/2000 11:40:00	2 0507	4 0004	5.0	1.0	<u> </u>	F2 4		4 5 4
11/10/2008 14:48:00	2.8507	1.6884	5.0 5.0	4.0	62.2 62.2	53.1	11.56	<u>1.51</u> 1.57
11/10/2008 14:53:00	2.9340	<u>1.7129</u> 1.7371				53.1	11.56	
11/10/2008 14:58:00	3.0174		5.0	4.0	62.1	53.1	11.56	1.63
11/10/2008 15:04:59	3.1338	1.7702	7.0	5.6	62.0	53.8	11.57	1.72
11/10/2008 15:13:00	3.2674	1.8076	8.0 7.0	6.4 5.5	61.9 61.9	55.6	11.57	1.81
11/10/2008 15:20:59	3.4004	1.8440				57.9	11.57	1.90
11/10/2008 15:27:59	3.5171	1.8754	7.0	5.2	61.9	59.7	11.57	1.98
11/10/2008 15:39:00	3.7007	1.9237	7.0	5.5	61.9	61.0	11.57	2.06
11/10/2008 15:49:00	3.8674	1.9666	10.0	7.8	61.9	63.0	11.57	2.18
11/10/2008 16:00:00	4.0507	2.0126	7.0	5.5	61.9	64.4	11.57	2.27
11/10/2008 16:11:00	4.2340	2.0577	8.0	6.2	62.0	66.2	11.58	2.36
11/10/2008 16:21:59	4.4171	2.1017	8.0	6.2	59.4	66.2	11.58	2.46
11/10/2008 16:37:00	4.6674	2.1604	5.0	3.9	59.2	61.5	11.58	2.52
11/10/2008 16:53:00	4.9340	2.2213	7.0	5.5	59.2	60.8	11.58	2.60
11/10/2008 17:19:59	5.3838	2.3203	10.0	7.9	58.3	56.3	11.58	2.72
11/10/2008 18:27:00	6.5007	2.5496	40.0	29.9	60.6	50.0	11.59	3.18
11/10/2008 18:46:59	6.8338	2.6141	10.0	8.0	60.6	50.4	11.59	3.30
11/10/2008 19:07:00	7.1674	2.6772	10.0	8.0	60.6	54.9	11.60	3.43
11/10/2008 19:37:00	7.6674	2.7690	12.0	9.5	60.6	56.1	11.60	3.57
11/10/2008 20:03:00	8.1007	2.8462	14.0	11.1	60.4	58.8	11.60	3.74
11/10/2008 20:19:59	8.3838	2.8955	6.0	4.7	60.4	61.0	11.61	3.81
11/10/2008 20:35:00	8.6340	2.9384	7.0	5.5	60.4	62.4	11.61	3.90
11/10/2008 21:01:59	9.0838	3.0139	10.0	7.8	60.4	63.9	11.61	4.02
11/10/2008 21:36:00	9.6507	3.1066	14.0	11.0	60.6	64.8	11.62	4.19
11/10/2008 22:04:00	10.1174	3.1808	11.0	8.6	60.6	65.1	11.62	4.32
11/10/2008 22:30:00	10.5507	3.2482	10.0	7.8	60.6	66.4	11.62	4.44
11/10/2008 23:15:00	11.3007	3.3617	17.0	13.0	60.8	67.5	11.62	4.64
11/11/2008 00:14:00	12.2840	3.5049	19.0	14.8	60.8	67.1	11.63	4.86
11/11/2008 01:05:00	13.1340	3.6241	17.0	13.0	60.8	66.2	11.63	5.06
11/11/2008 02:01:00	14.0674	3.7506	17.0	13.3	60.8	65.3	11.63	5.27
11/11/2008 03:01:00	15.0674	3.8817	20.0	15.5	60.8	69.6	11.63	5.51
11/11/2008 04:05:59	16.1504	4.0188	24.0	18.0	61.5	70.9	11.63	5.78
11/11/2008 05:03:00	17.1007	4.1353	18.0	13.9	61.7	71.6	11.64	5.99
11/11/2008 06:01:59	18.0838	4.2525	22.0	16.8	62.1	72.0	11.64	6.25
11/11/2008 07:02:59	19.1004	4.3704	19.0	14.7	62.2	72.7	11.65	6.48
11/11/2008 09:16:00	21.3174	4.6171	33.0	26.4	61.9	55.9	11.66	6.88
11/11/2008 10:07:00	22.1674	4.7082	10.0	8.1	60.8	50.2	11.66	7.00
11/11/2008 11:19:59	23.3838	4.8357	13.0	10.4	59.4	53.1	11.65	7.16
11/11/2008 12:06:00	24.1507	4.9143	10.0	8.0	59.0	52.2	11.65	7.29
11/11/2008 13:05:00	25.1340	5.0134	11.0	8.5	58.8	54.3	11.64	7.42
11/11/2008 14:19:00	26.3674	5.1349	18.0	12.2	60.1	57.9	11.63	7.60



	07 4000	5 0000	10.0	0.0	50.7	50.7	44.04	
11/11/2008 15:04:59	27.1338	5.2090	12.0	9.6	59.7	56.7	11.64	7.75
11/11/2008 16:02:00	28.0840	5.2994	17.0	13.7	59.0	49.6	11.64	7.96
11/11/2008 17:40:00	29.7174	5.4514	10.0	8.1	58.1	48.2	11.65	8.09
11/13/2008 11:12:00	71.2507	8.4410	170.0	132.9	59.9	59.9	11.66	10.12
11/13/2008 16:34:59	76.6338	8.7541	74.0	58.4	59.9	59.9	11.65	11.01
11/14/2008 09:07:00	93.1674	9.6523	90.0	72.7	59.9	59.9	11.87	12.13
11/14/2008 13:59:00	98.0340	9.9012	42.0	32.8	60.6	72.1	11.88	12.63
11/15/2008 11:14:00	119.2840	10.9217	99.0	79.9	61.3	61.2	11.90	13.85
11/16/2008 10:10:00	142.2174	11.9255	101.0	80.3	61.0	65.8	11.88	15.08
11/17/2008 08:34:00	164.6174	12.8303	89.0	70.5	61.0	73.4	11.94	16.16
11/17/2008 15:12:00	171.2507	13.0863	37.0	27.7	61.9	71.6	11.93	16.58
11/18/2008 08:19:59	188.3838	13.7253	63.0	49.9	61.2	73.0	11.92	17.35
11/18/2008 16:18:00	196.3507	14.0125	37.0	23.5	63.7	76.2	11.88	17.71
11/19/2008 09:49:59	213.8838	14.6248	57.0	46.0	63.0	60.3	11.87	18.41
11/19/2008 16:05:00	220.1340	14.8369	22.0	17.1	62.2	78.2	11.86	18.67
11/20/2008 09:27:59	237.5171	15.4116	40.0	32.2	60.3	67.6	12.01	19.17
11/21/2008 09:10:00	261.2174	16.1622	60.0	35.8	59.9	59.9	11.78	19.71
11/22/2008 09:46:59	285.8338	16.9066	62.0	48.5	61.0	74.6	11.82	20.46
11/23/2008 10:46:00	310.8174	17.6300	58.0	45.2	59.9	75.3	11.80	21.15
11/24/2008 09:01:59	333.0838	18.2506	47.0	37.3	61.5	70.1	11.90	21.72
11/25/2008 15:52:00	363.9174	19.0766	66.0	48.4	60.8	73.4	11.82	22.46
11/26/2008 07:31:59	379.5838	19.4829	40.0	31.7	59.9	67.8	11.82	22.95
11/27/2008 14:27:00	410.5007	20.2608	57.0	44.4	59.9	66.7	11.80	23.63
11/28/2008 14:42:00	434.7507	20.8507	54.0	35.1	61.0	75.0	11.70	24.16
11/29/2008 11:45:00	455.8007	21.3495	41.0	31.6	60.4	77.9	11.72	24.65
11/30/2008 13:05:00	481.1340	21.9348	40.0	31.0	60.3	77.3	11.77	25.12
12/01/2008 09:16:00	501.3174	22.3901	35.0	25.1	62.1	67.8	11.77	25.51
12/02/2008 08:31:00	524.5674	22.9034	42.0	30.4	60.6	69.2	11.69	25.97
12/03/2008 09:03:00	549.1007	23.4329	31.0	24.5	59.7	68.7	11.82	26.35
12/04/2008 08:48:00	572.8507	23.9343	31.0	25.0	61.2	60.6	11.88	26.73
12/05/2008 08:54:00	596.9507	24.4326	40.0	24.0	61.5	71.2	11.75	27.10
12/06/2008 09:58:00	622.0174	24.9403	35.0	27.2	61.3	77.9	11.83	27.51
12/07/2008 12:42:00	648.7507	25.4706	42.0	25.7	62.1	75.2	11.72	27.91
12/08/2008 10:25:00	670.4674	25.8934	38.0	22.8	63.0	59.9	11.61	28.26
12/09/2008 09:40:00	693.7174	26.3385	18.0	14.1	61.3	74.1	11.85	28.47
12/10/2008 08:55:00	716.9674	26.7762	26.0	18.9	62.1	72.5	11.84	28.76
12/11/2008 09:29:00	741.5340	27.2311	28.0	22.1	60.8	71.9	11.84	29.10
12/12/2008 08:42:59	764.7671	27.6544	32.0	18.8	61.9	72.3	11.75	29.39
12/13/2008 12:46:00	792.8174	28.1570	50.0	20.0	62.6	73.9	11.44	29.70
12/14/2008 14:01:00	818.0674	28.6019	21.0	16.3	61.5	71.4	11.66	29.95
12/15/2008 08:51:59	836.9171	28.9295	13.0	10.3	60.4	68.7	11.78	30.10

12/16/2008 08:57:00	861.0007	29.3428	31.0	16.1	60.8	70.8	11.65	30.35
12/17/2008 09:40:00	885.7174	29.7610	23.0	18.0	61.0	70.5	11.73	30.62
12/19/2008 10:02:59	934.1004	30.5631	42.0	31.4	61.0	71.0	11.71	31.11
12/21/2008 13:34:59	985.6338	31.3948	36.0	28.1	61.7	76.8	11.83	31.53
12/23/2008 07:50:00	1027.8840	32.0606	37.0	13.2	61.3	76.8	11.54	31.74
12/25/2008 12:32:00	1080.5840	32.8722	56.0	41.2	63.3	71.6	11.55	32.37
12/27/2008 12:16:00	1128.3174	33.5904	34.0	26.6	62.1	66.7	11.65	32.77
12/29/2008 08:21:00	1172.4007	34.2403	25.0	19.7	61.5	72.8	11.84	33.08
12/31/2008 09:15:00	1221.3007	34.9471	35.0	23.7	61.7	76.8	11.78	33.44
01/02/2009 08:23:59	1268.4504	35.6153	44.0	27.3	61.3	73.7	11.65	33.86
01/04/2009 11:13:00	1319.2674	36.3217	25.0	20.1	61.2	60.0	11.83	34.16
01/06/2009 09:10:00	1365.2174	36.9488	40.0	19.8	61.3	73.5	11.63	34.47
01/08/2009 08:38:00	1412.6840	37.5857	31.0	24.7	61.7	60.4	11.72	34.85
01/10/2009 16:25:00	1468.4674	38.3206	27.0	21.2	61.5	73.7	11.84	35.17
01/12/2009 10:15:00	1510.3007	38.8626	21.0	16.6	63.1	73.5	11.91	35.42
01/14/2009 09:22:00	1557.4174	39.4641	29.0	22.2	60.6	72.1	11.84	35.76
01/15/2009 09:23:00	1581.4340	39.7672	15.0	11.8	61.9	74.1	11.90	35.94

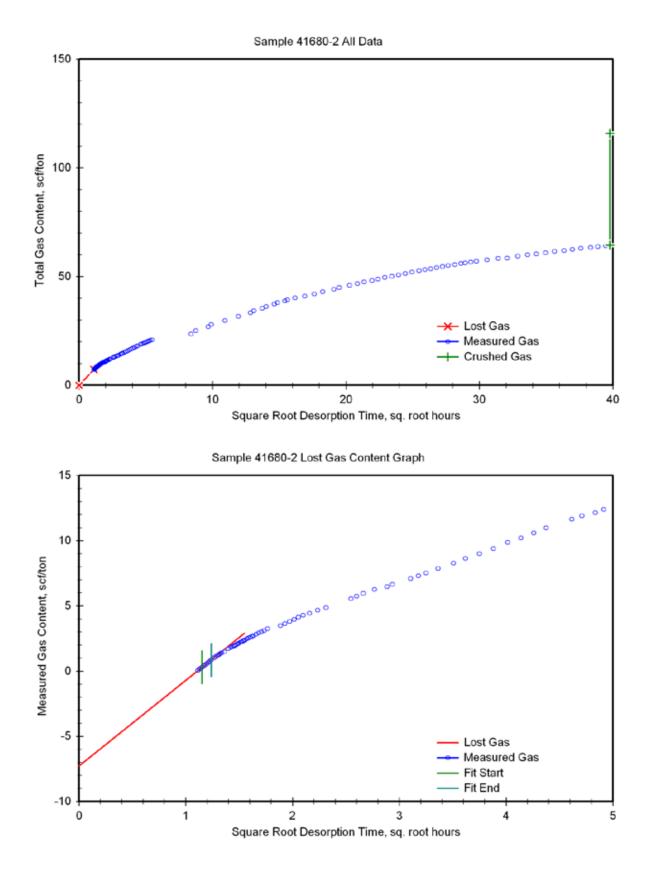
Sample 41680-2 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	229.00
Sample Bottom Depth	ft	230.00
Reservoir Pressure	psia	111.09
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	116.03
Mud Density	lbm/gal	8.50
Sample Mass	g	2,044.0
Sample Headspace Volume	cm ³	600.0
Date Time Sample Cored		11/10/2008 11:31:38
Date Time Sample Start Out of Well		11/10/2008 11:53:25
Date Time Desorption Time Zero		11/10/2008 11:54:53
Date Time Sample at Surface		11/10/2008 12:23:37
Date Time Sample Canister Sealed		11/10/2008 13:08:55
Lost Gas Time	hours	1.234
Desorption Time Correction	hours	0.035
Fit Start Time	hours	1.325
Fit End Time	hours	1.531
Fit Start Time	hours*0.5	1.151
Fit End Time	hours*0.5	1.237
Lost Gas Content	scf/ton	7.3
Measured Gas Content	scf/ton	57.2
Crushed Gas Content	scf/ton	51.4
Total Gas Content	scf/ton	115.9
Lost Gas Fraction	vol frac	0.0626
Measured Gas Fraction	vol frac	0.4938
Crushed Gas Fraction	vol frac	0.4436
Diffusivity	1/us	0.1
Sorption Time	hours	238.2

Sample 41680-2 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Ambient Temp.	Canister Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
11/10/2008 13:08:55	1.2339	1.1108	0.0	0.0	57.0	56.1	11.55	0.00
11/10/2008 13:11:00	1.2338	1.1107	6.0	4.8	57.0	56.1	11.55	0.07
11/10/2008 13:12:59	1.2668	1.1255	10.0	5.8	59.5	55.9	11.56	0.17
11/10/2008 13:15:00	1.3004	1.1404	8.0	4.6	61.2	55.6	11.55	0.24
11/10/2008 13:17:00	1.3338	1.1549	8.0	5.1	62.6	55.6	11.55	0.32
11/10/2008 13:19:00	1.3671	1.1692	8.0	6.3	62.4	55.4	11.55	0.42
11/10/2008 13:21:00	1.4004	1.1834	8.0	6.3	62.4	55.4	11.56	0.52
11/10/2008 13:23:00	1.4338	1.1974	8.0	5.6	63.0	55.2	11.55	0.60
11/10/2008 13:25:00	1.4671	1.2112	7.0	5.6	63.0	55.2	11.55	0.69
11/10/2008 13:27:00	1.5004	1.2249	7.0	5.6	63.0	54.9	11.55	0.78
11/10/2008 13:29:00	1.5338	1.2385	7.0	5.6	63.0	54.9	11.55	0.87
11/10/2008 13:33:00	1.6004	1.2651	14.0	11.0	63.1	54.5	11.55	1.04
11/10/2008 13:34:59	1.6335	1.2781	7.0	5.6	63.0	54.5	11.55	1.13
11/10/2008 13:38:00	1.6838	1.2976	7.0	5.6	62.8	54.1	11.56	1.21
11/10/2008 13:40:00	1.7171	1.3104	6.0	4.4	63.0	54.1	11.55	1.28
11/10/2008 13:42:00	1.7504	1.3230	6.0	4.8	63.0	54.1	11.56	1.36
11/10/2008 13:44:00	1.7838	1.3356	5.0	4.0	63.0	54.0	11.56	1.42
11/10/2008 13:47:59	1.8501	1.3602	7.0	5.6	63.0	53.8	11.56	1.51
11/10/2008 13:54:00	1.9504	1.3966	18.0	14.3	63.0	53.6	11.56	1.73
11/10/2008 13:57:59	2.0168	1.4201	7.0	5.6	62.8	53.4	11.56	1.82
11/10/2008 14:01:00	2.0671	1.4377	5.0	4.0	62.8	53.4	11.56	1.88
11/10/2008 14:03:00	2.1004	1.4493	4.0	3.2	62.6	53.4	11.56	1.93
11/10/2008 14:04:59	2.1335	1.4606	4.0	3.2	62.6	53.4	11.56	1.98
11/10/2008 14:06:59	2.1668	1.4720	4.0	3.2	62.6	54.0	11.56	2.03
11/10/2008 14:09:00	2.2004	1.4834	5.0	4.0	62.6	54.7	11.56	2.09
11/10/2008 14:11:00	2.2338	1.4946	5.0	4.0	62.6	55.2	11.56	2.16
11/10/2008 14:14:00	2.2838	1.5112	6.0	4.6	62.6	55.6	11.56	2.23
11/10/2008 14:16:00	2.3171	1.5222	3.0	2.2	62.8	55.6	11.56	2.26
11/10/2008 14:18:00	2.3504	1.5331	4.0	3.2	62.6	55.6	11.56	2.31
11/10/2008 14:19:59	2.3835	1.5439	4.0	3.2	62.6	55.6	11.56	2.36
11/10/2008 14:22:00	2.4171	1.5547	4.0	3.2	62.6	55.2	11.56	2.41
11/10/2008 14:25:00	2.4671	1.5707	6.0	4.8	62.8	54.5	11.56	2.49
11/10/2008 14:28:00	2.5171	1.5865	5.0	4.0	62.6	53.6	11.56	2.55
11/10/2008 14:31:00	2.5671	1.6022	5.0	4.0	62.4	53.6	11.56	2.61
11/10/2008 14:34:00	2.6171	1.6177	5.0	4.0	62.4	53.4	11.56	2.67
11/10/2008 14:37:00	2.6671	1.6331	5.0	4.0	62.4	53.2	11.56	2.73

11/10/2008 14:42:00	2.7504	1.6584	8.0	6.4	62.2	53.1	11.56	2.83
11/10/2008 14:47:00	2.8338	1.6834	8.0	6.4	62.2	53.1	11.56	2.93
11/10/2008 14:51:59	2.9168	1.7079	7.0	5.6	62.2	53.1	11.56	3.02
11/10/2008 14:57:00	3.0004	1.7322	8.0	6.4	62.1	53.1	11.56	3.12
11/10/2008 15:04:00	3.1171	1.7655	11.0	8.7	61.9	55.4	11.57	3.26
11/10/2008 15:30:00	3.5504	1.8843	20.0	15.8	61.9	59.7	11.57	3.51
11/10/2008 15:40:00	3.7171	1.9280	12.0	9.4	61.9	61.2	11.57	3.65
11/10/2008 15:49:59	3.8835	1.9707	14.0	10.8	61.9	63.0	11.57	3.82
11/10/2008 16:00:00	4.0504	2.0126	13.0	10.2	61.9	64.4	11.57	3.98
11/10/2008 16:10:00	4.2171	2.0536	13.0	10.1	62.1	66.2	11.58	4.14
11/10/2008 16:21:00	4.4004	2.0977	13.0	10.1	59.4	66.2	11.58	4.30
11/10/2008 16:36:00	4.6504	2.1565	11.0	8.6	59.4	61.7	11.58	4.43
11/10/2008 16:56:00	4.9838	2.2324	21.0	16.5	59.0	60.1	11.58	4.69
11/10/2008 17:18:00	5.3504	2.3131	14.0	11.1	59.0	56.7	11.58	4.87
11/10/2008 18:26:00	6.4838	2.5463	57.0	44.6	60.6	50.0	11.59	5.57
11/10/2008 18:42:00	6.7504	2.5982	15.0	12.1	60.6	49.6	11.59	5.75
11/10/2008 19:02:00	7.0838	2.6615	17.0	13.3	60.6	62.9	11.59	5.96
11/10/2008 19:36:00	7.6504	2.7659	25.0	19.9	60.4	56.1	11.60	6.28
11/10/2008 20:16:00	8.3171	2.8839	17.0	13.4	60.4	60.6	11.61	6.49
11/10/2008 20:32:59	8.6001	2.9326	13.0	10.2	60.4	62.4	11.61	6.65
11/10/2008 21:34:59	9.6335	3.1038	37.0	29.0	60.6	64.8	11.62	7.10
11/10/2008 22:02:59	10.1001	3.1781	18.0	14.1	60.6	65.1	11.62	7.32
11/10/2008 22:30:00	10.5504	3.2481	18.0	14.1	60.6	66.4	11.62	7.54
11/10/2008 23:15:00	11.3004	3.3616	28.0	21.8	60.6	67.5	11.62	7.88
11/11/2008 00:14:00	12.2838	3.5048	34.0	26.5	60.6	67.1	11.63	8.30
11/11/2008 01:02:59	13.1001	3.6194	29.0	22.5	60.6	66.2	11.63	8.65
11/11/2008 02:00:00	14.0504	3.7484	30.0	23.1	61.0	65.3	11.63	9.01
11/11/2008 03:00:00	15.0504	3.8795	33.0	25.6	60.8	70.0	11.63	9.42
11/11/2008 04:04:00	16.1171	4.0146	37.0	28.5	61.2	70.9	11.63	9.86
11/11/2008 05:04:00	17.1171	4.1373	29.0	22.4	61.5	71.6	11.64	10.21
11/11/2008 06:04:00	18.1171	4.2564	33.0	25.2	62.1	72.0	11.64	10.61
11/11/2008 07:05:00	19.1338	4.3742	31.0	24.0	62.2	72.7	11.65	10.98
11/11/2008 09:15:00	21.3004	4.6152	53.0	42.3	61.9	56.5	11.66	11.65
11/11/2008 10:08:00	22.1838	4.7100	21.0	17.0	60.8	50.0	11.66	11.91
11/11/2008 11:19:00	23.3671	4.8340	20.0	16.1	59.5	53.1	11.66	12.17
11/11/2008 12:04:59	24.1335	4.9126	20.0	16.1	59.0	51.4	11.65	12.42
11/11/2008 13:05:00	25.1338	5.0134	17.0	13.4	58.8	54.1	11.64	12.63
11/11/2008 14:08:00	26.1838	5.1170	29.0	21.4	60.1	57.9	11.63	12.96
11/11/2008 15:04:59	27.1335	5.2090	16.0	12.7	59.7	56.7	11.64	13.16
11/11/2008 16:02:00	28.0838	5.2994	17.0	13.7	59.0	49.3	11.64	13.38
11/11/2008 17:32:59	29.6001	5.4406	25.0	20.2	58.1	49.8	11.65	13.70



11/13/2008 10:12:00	70.2504	8.3816	225.0	170.9	67.0	59.7	11.66	16.38
11/13/2008 10:12:00	76.6504	8.7550	121.0	95.9	62.6	59.9	11.65	17.88
11/14/2008 09:13:00	93.2671	9.6575	147.0	118.8	62.4	59.9	11.87	19.74
11/14/2008 14:03:00	98.1004	9.9046	82.0	64.8	60.8	72.1	11.88	20.76
11/15/2008 11:15:00	119.3004	10.9225	150.0	120.8	61.7	61.7	11.90	22.65
11/16/2008 10:11:00	142.2338	11.9262	145.0	115.7	61.3	65.8	11.88	22.05
11/17/2008 08:35:00	164.6338	12.8310	138.0	109.3	60.8	73.2	11.94	26.18
11/17/2008 08:35:00	171.2671	13.0869	70.0	54.8	61.2	71.6	11.94	27.03
11/18/2008 08:21:00	188.4004	13.7259	98.0	77.4	61.2	73.0	11.93	28.25
11/18/2008 16:19:00	196.3671	14.0131	66.0	48.3	63.0	76.1	11.88	29.00
11/19/2008 09:51:00	213.9004	14.6253	90.0	71.8	63.5	60.3	11.87	30.13
11/19/2008 09:51:00	213.9004	14.8375	52.0	40.6	61.7	78.0	11.87	30.76
11/20/2008 09:29:00	237.5338	15.4121	68.0	54.8	60.3	67.6	12.01	31.62
11/20/2008 09:29:00	243.5504	15.6061	43.0	32.7	60.8	60.1	11.97	32.14
11/20/2008 13:30:00	243.3304	16.1627	66.0	55.1	60.8	60.4	12.27	33.00
11/22/2008 09:48:00	285.8504	16.9071	87.0	49.4	60.6	74.2	12.27	33.00
11/22/2008 09:48:00	310.8501	17.6309	91.0	70.1	60.6	74.2	11.82	33.77
11/23/2008 10:47:59	333.1004	18.2510	75.0	59.6	62.6	75.3	11.90	35.81
11/24/2008 09:03:00		19.0770	95.0	73.0	60.8	70.1	11.90	36.95
	363.9338				59.9		11.82	
11/26/2008 07:38:00	379.6838	19.4855	63.0	49.9		67.8		37.73
11/27/2008 14:32:00	410.5838	20.2629	83.0	64.8	60.3	66.7	11.80	38.75
11/28/2008 14:44:00	434.7838	20.8515	76.0	54.5	60.8	73.7	11.70	39.60
11/29/2008 11:49:59	455.8835	21.3514	62.0	47.8	61.0	77.5	11.72	40.35
11/30/2008 13:09:00	481.2004	21.9363	58.0	45.1	60.8	75.7	11.77	41.06
12/01/2008 09:17:00	501.3338	22.3905	53.0	40.8	61.7	67.8	11.77	41.70
12/02/2008 08:32:59	524.6001	22.9042	59.0	44.4	60.1	69.0	11.69	42.39
12/03/2008 09:04:00	549.1171	23.4332	46.0	36.4	59.9	68.9	11.82	42.96
12/04/2008 08:49:00	572.8671	23.9346	49.0	39.6	61.2	60.6	11.88	43.58
12/05/2008 08:55:00	596.9671	24.4329	55.0	38.2	60.8	71.2	11.75	44.18
12/06/2008 09:59:00	622.0338	24.9406	53.0	41.3	61.2	76.8	11.83	44.83
12/07/2008 12:43:00	648.7671	25.4709	59.0	41.3	61.2	75.3	11.72	45.48
12/08/2008 10:28:00	670.5171	25.8943	52.0	34.8	63.0	59.9	11.61	46.03
12/09/2008 09:41:00	693.7338	26.3388	34.0	26.7	61.0	74.3	11.85	46.44
12/10/2008 08:56:00	716.9838	26.7766	40.0	30.8	61.3	72.5	11.84	46.93
12/11/2008 09:30:00	741.5504	27.2314	41.0	32.3	60.8	71.9	11.84	47.43
12/12/2008 08:44:00	764.7838	27.6547	44.0	30.3	61.3	72.1	11.75	47.91
12/13/2008 12:46:59	792.8335	28.1573	58.0	30.0	62.6	73.9	11.44	48.38
12/14/2008 14:02:00	818.0838	28.6022	36.0	27.9	61.2	71.4	11.66	48.82
12/15/2008 08:53:00	836.9338	28.9298	26.0	20.5	60.6	68.7	11.78	49.14
12/16/2008 08:58:00	861.0171	29.3431	39.0	24.9	60.3	70.8	11.65	49.53
12/17/2008 09:43:00	885.7671	29.7618	31.0	24.3	60.6	70.5	11.73	49.91

12/19/2008 10:04:00	934.1171	30.5633	54.0	40.9	60.6	71.0	11.70	50.55
12/21/2008 13:37:00	985.6671	31.3953	51.0	39.9	61.2	75.5	11.83	51.17
12/23/2008 07:50:59	1027.9001	32.0609	32.0	12.7	61.3	76.0	11.54	51.37
12/25/2008 12:33:00	1080.6004	32.8725	70.0	53.8	61.5	71.6	11.55	52.22
12/27/2008 12:17:00	1128.3338	33.5907	49.0	38.3	61.0	66.9	11.65	52.82
12/29/2008 08:22:00	1172.4171	34.2406	39.0	30.7	61.0	72.8	11.84	53.30
12/31/2008 09:16:00	1221.3171	34.9473	45.0	31.9	61.7	76.2	11.78	53.80
01/02/2009 08:25:00	1268.4671	35.6155	53.0	36.0	61.2	73.7	11.65	54.36
01/04/2009 11:14:00	1319.2838	36.3219	37.0	29.7	61.3	60.9	11.83	54.83
01/06/2009 09:12:00	1365.2504	36.9493	46.0	28.0	60.6	73.0	11.63	55.27
01/08/2009 08:40:00	1412.7171	37.5861	41.0	32.6	60.6	61.0	11.72	55.78
01/10/2009 16:29:00	1468.5338	38.3215	38.0	29.8	61.3	73.5	11.84	56.25
01/12/2009 10:16:00	1510.3171	38.8628	28.0	22.1	61.9	73.9	11.91	56.59
01/14/2009 09:23:00	1557.4338	39.4643	30.0	22.0	60.6	72.1	11.84	56.94
01/15/2009 09:24:00	1581.4504	39.7675	23.0	18.1	61.3	74.1	11.90	57.22

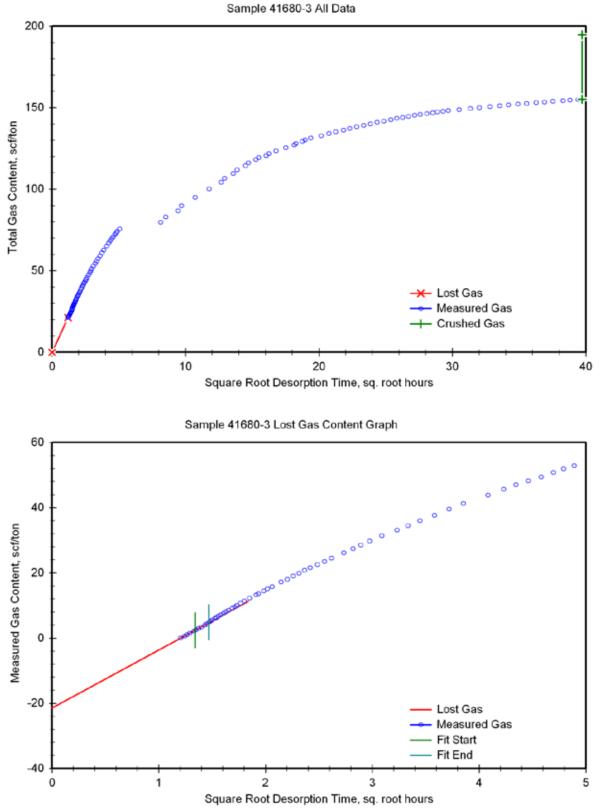
Sample 41680-3 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	270.50
Sample Bottom Depth	ft	271.50
Reservoir Pressure	psia	128.52
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	134.36
Mud Density	lbm/gal	8.50
Sample Mass	g	2,129.0
Sample Headspace Volume	cm ³	680.0
Date Time Sample Cored		11/10/2008 15:28:20
Date Time Sample Start Out of Well		11/10/2008 16:06:45
Date Time Desorption Time Zero		11/10/2008 16:08:18
Date Time Sample at Surface		11/10/2008 16:38:32
Date Time Sample Canister Sealed		11/10/2008 17:35:10
Lost Gas Time	hours	1.448
Desorption Time Correction	hours	0.031
Fit Start Time	hours	1.795
Fit End Time	hours	2.155
Fit Start Time	hours*0.5	1.340
Fit End Time	hours*0.5	1.468
Lost Gas Content	scf/ton	21.4
Measured Gas Content	scf/ton	133.9
Crushed Gas Content	scf/ton	39.5
Total Gas Content	scf/ton	194.8
Lost Gas Fraction	vol frac	0.1099
Measured Gas Fraction	vol frac	0.6873
Crushed Gas Fraction	vol frac	0.2028
Diffusivity	1/us	0.2
Sorption Time	hours	91.6

Sample 41680-3 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Ambient Temp.	Canister Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
11/10/2008 17:35:10	1.4478	1.2032	0.0	0.0	56.3	54.7	11.58	0.00
11/10/2008 17:37:00	1.4477	1.2032	9.0	7.2	56.3	54.7	11.58	0.11
11/10/2008 17:42:59	1.5475	1.2440	51.0	38.8	58.1	54.3	11.58	0.69
11/10/2008 17:46:00	1.5977	1.2640	31.0	24.5	58.3	54.0	11.58	1.06
11/10/2008 17:49:59	1.6641	1.2900	42.0	32.8	59.0	53.6	11.58	1.55
11/10/2008 17:56:00	1.7644	1.3283	56.0	44.7	59.2	53.1	11.59	2.23
11/10/2008 17:59:00	1.8144	1.3470	27.0	21.4	59.2	52.7	11.58	2.55
11/10/2008 18:03:00	1.8811	1.3715	37.0	29.6	59.2	52.7	11.59	2.99
11/10/2008 18:07:00	1.9477	1.3956	38.0	30.4	59.4	52.5	11.59	3.45
11/10/2008 18:13:00	2.0477	1.4310	52.0	40.5	60.3	52.3	11.59	4.06
11/10/2008 18:16:00	2.0977	1.4484	24.0	19.1	60.4	52.2	11.59	4.35
11/10/2008 18:20:00	2.1644	1.4712	52.0	41.5	60.6	51.1	11.59	4.97
11/10/2008 18:22:00	2.1977	1.4825	23.0	18.5	60.6	50.4	11.59	5.25
11/10/2008 18:25:00	2.2477	1.4992	23.0	18.3	60.6	50.0	11.59	5.52
11/10/2008 18:30:00	2.3311	1.5268	49.0	39.4	60.6	49.8	11.59	6.12
11/10/2008 18:33:00	2.3811	1.5431	17.0	13.7	60.6	49.8	11.59	6.32
11/10/2008 18:36:00	2.4311	1.5592	42.0	33.8	60.6	49.6	11.59	6.83
11/10/2008 18:40:00	2.4977	1.5804	30.0	24.1	60.6	49.6	11.59	7.20
11/10/2008 18:45:00	2.5811	1.6066	39.0	31.4	60.6	50.0	11.59	7.67
11/10/2008 18:49:00	2.6477	1.6272	37.0	29.7	60.6	51.3	11.59	8.11
11/10/2008 18:53:59	2.7308	1.6525	37.0	29.6	60.6	52.2	11.59	8.56
11/10/2008 19:01:00	2.8477	1.6875	53.0	42.4	60.6	52.9	11.59	9.20
11/10/2008 19:05:59	2.9308	1.7120	33.0	26.4	60.6	53.4	11.60	9.59
11/10/2008 19:10:00	2.9977	1.7314	39.0	31.1	60.6	55.2	11.60	10.06
11/10/2008 19:17:00	3.1144	1.7648	57.0	45.4	60.6	55.9	11.60	10.74
11/10/2008 19:24:00	3.2311	1.7975	52.0	41.3	60.6	56.8	11.60	11.37
11/10/2008 19:34:59	3.4141	1.8477	75.0	59.7	60.4	56.1	11.60	12.26
11/10/2008 19:49:00	3.6477	1.9099	86.0	68.3	59.7	57.2	11.61	13.29
11/10/2008 19:54:00	3.7311	1.9316	34.0	26.5	60.1	57.9	11.61	13.69
11/10/2008 20:06:00	3.9311	1.9827	70.0	55.0	60.4	59.7	11.61	14.52
11/10/2008 20:14:00	4.0644	2.0160	48.0	37.9	60.4	60.4	11.61	15.09
11/10/2008 20:25:00	4.2477	2.0610	63.0	49.4	60.6	61.7	11.61	15.83
11/10/2008 20:46:00	4.5977	2.1442	123.0	96.5	60.4	63.7	11.61	17.28
11/10/2008 21:01:00	4.8477	2.2018	65.0	50.8	60.6	63.9	11.61	18.05
11/10/2008 21:16:00	5.0977	2.2578	86.0	67.4	60.6	64.2	11.61	19.06
11/10/2008 21:31:00	5.3477	2.3125	74.0	58.0	60.6	64.8	11.62	19.93

11/10/2008 21:46:00	5.5977	2.3660	78.0	61.1	60.4	65.1	11.62	20.85
11/10/2008 22:01:00	5.8477	2.4182	66.0	51.5	60.6	65.1	11.62	21.63
11/10/2008 22:21:00	6.1811	2.4862	83.0	64.9	60.6	66.0	11.62	22.60
11/10/2008 22:21:00	6.5144	2.5523	81.0	63.2	60.6	66.6	11.62	23.56
11/10/2008 23:01:00	6.8477	2.6168	87.0	67.6	60.6	66.9	11.62	24.57
11/10/2008 23:38:00	7.4644	2.7321	137.0	107.0	60.8	66.6	11.63	26.18
11/11/2008 00:07:00	7.9477	2.8192	113.0	88.2	60.8	66.9	11.63	27.51
11/11/2008 00:32:00	8.3644	2.8921	92.0	71.8	60.8	67.1	11.63	28.59
11/11/2008 01:01:00	8.8477	2.9745	103.0	80.5	60.8	66.2	11.63	29.80
11/11/2008 01:42:00	9.5311	3.0872	137.0	107.2	60.8	66.0	11.63	31.42
11/11/2008 02:35:59	10.4308	3.2297	149.0	115.6	61.2	68.5	11.63	33.16
11/11/2008 03:16:00	11.0977	3.3313	118.0	91.7	61.0	69.4	11.63	34.54
11/11/2008 04:02:00	11.8644	3.4445	129.0	99.7	61.3	70.9	11.63	36.04
11/11/2008 05:00:00	12.8311	3.5820	146.0	112.9	61.7	71.6	11.64	37.74
11/11/2008 06:00:00	13.8311	3.7190	160.0	123.7	62.1	72.0	11.64	39.60
11/11/2008 07:00:00	14.8311	3.8511	150.0	116.1	62.2	72.7	11.65	41.34
11/11/2008 08:49:59	16.6641	4.0822	213.0	167.5	61.3	64.6	11.66	43.86
11/11/2008 10:02:59	17.8808	4.2286	150.0	121.3	60.8	50.0	11.66	45.69
11/11/2008 11:02:00	18.8644	4.3433	113.0	91.2	59.9	51.1	11.66	47.06
11/11/2008 12:03:00	19.8811	4.4588	101.0	81.4	59.0	51.4	11.65	48.29
11/11/2008 13:08:00	20.9644	4.5787	101.0	80.9	58.5	54.3	11.64	49.50
11/11/2008 14:13:00	22.0477	4.6955	114.0	88.6	59.9	57.9	11.63	50.84
11/11/2008 15:07:00	22.9477	4.7904	92.0	73.3	59.7	56.8	11.64	51.94
11/11/2008 16:04:00	23.8977	4.8885	82.0	66.3	59.4	49.3	11.64	52.94
11/11/2008 17:41:00	25.5144	5.0512	108.0	87.7	58.1	47.8	11.65	54.26
11/13/2008 10:15:00	66.0811	8.1290	370.0	275.7	75.0	61.5	11.66	58.41
11/13/2008 16:40:00	72.4977	8.5146	290.0	216.2	89.2	59.9	11.65	61.66
11/14/2008 09:08:59	88.9808	9.4330	310.0	250.5	93.4	59.9	11.87	65.43
11/14/2008 14:08:00	93.9644	9.6935	260.0	205.1	63.7	72.8	11.88	68.51
11/15/2008 11:16:59	115.1141	10.7291	425.0	342.6	63.1	62.2	11.90	73.67
11/16/2008 10:18:00	138.1311	11.7529	430.0	342.5	63.7	65.8	11.88	78.82
11/17/2008 08:38:00	160.4644	12.6675	344.0	272.6	62.8	73.0	11.94	82.93
11/17/2008 15:15:00	167.0811	12.9260	207.0	164.4	61.3	71.4	11.93	85.40
11/18/2008 08:23:00	184.2144	13.5726	246.0	193.1	62.6	72.8	11.92	88.30
11/18/2008 16:21:00	192.1811	13.8629	188.0	144.8	63.3	75.2	11.88	90.48
11/19/2008 09:52:00	209.6977	14.4809	223.0	177.8	64.9	60.3	11.87	93.16
11/19/2008 16:08:00	215.9644	14.6957	146.0	114.0	63.5	77.3	11.86	94.88
11/20/2008 09:31:00	233.3477	15.2757	162.0	130.5	61.2	67.6	12.01	96.84
11/20/2008 15:32:00	239.3644	15.4714	112.0	89.1	61.2	60.4	11.97	98.18
11/21/2008 09:13:00	257.0477	16.0327	107.0	77.8	60.3	60.6	11.78	99.35
11/21/2008 15:59:00	263.8144	16.2424	105.0	83.0	60.3	67.8	11.79	100.60



11/22/2008 09:51:00	281.6811	16.7834	138.0	107.9	62.1	73.4	11.82	102.22
11/23/2008 10:50:59	306.6808	17.5123	161.0	124.6	62.1	74.4	11.80	104.10
11/24/2008 09:06:00	328.9311	18.1365	145.0	115.2	62.4	69.8	11.90	105.83
11/24/2008 13:55:00	333.7477	18.2688	80.0	61.6	61.5	72.8	11.85	106.76
11/25/2008 07:45:00	351.5811	18.7505	112.0	88.4	61.7	69.8	11.85	108.09
11/25/2008 15:56:00	359.7644	18.9675	79.0	59.2	63.1	73.2	11.82	108.98
11/26/2008 07:41:00	375.5144	19.3782	92.0	72.9	61.0	67.4	11.82	110.08
11/27/2008 14:34:00	406.3977	20.1593	124.0	97.4	61.2	66.7	11.80	111.55
11/28/2008 14:48:00	430.6311	20.7517	118.0	86.2	62.2	72.6	11.70	112.84
11/29/2008 11:53:00	451.7144	21.2536	95.0	73.6	61.7	75.0	11.72	113.95
11/30/2008 13:12:59	477.0475	21.8414	85.0	66.4	61.3	73.5	11.77	114.95
12/01/2008 09:19:00	497.1477	22.2968	85.0	65.5	62.6	67.6	11.77	115.93
12/02/2008 08:38:00	520.4644	22.8137	89.0	67.4	61.2	68.9	11.69	116.95
12/03/2008 09:08:59	544.9808	23.3448	79.0	62.5	63.0	68.9	11.82	117.89
12/04/2008 08:51:59	568.6975	23.8474	74.0	58.1	67.4	60.6	11.88	118.76
12/05/2008 08:57:00	592.7811	24.3471	76.0	59.5	61.5	70.8	11.75	119.66
12/06/2008 10:01:00	617.8477	24.8565	73.0	57.1	63.3	75.3	11.83	120.52
12/07/2008 12:45:00	644.5811	25.3886	78.0	55.8	63.0	75.0	11.72	121.36
12/08/2008 10:30:00	666.3311	25.8134	70.0	48.9	64.0	61.2	11.61	122.10
12/09/2008 09:43:00	689.5477	26.2592	50.0	39.3	63.5	73.7	11.85	122.69
12/10/2008 08:58:00	712.7977	26.6983	54.0	42.5	62.4	72.1	11.84	123.33
12/11/2008 09:32:00	737.3644	27.1545	53.0	41.8	62.1	71.6	11.84	123.95
12/12/2008 08:46:00	760.5977	27.5789	54.0	38.1	62.2	71.6	11.75	124.53
12/13/2008 12:49:00	788.6477	28.0829	69.0	38.3	61.5	73.5	11.43	125.10
12/14/2008 14:04:59	813.9141	28.5292	46.0	35.7	62.4	71.4	11.66	125.64
12/15/2008 08:55:00	832.7477	28.8574	34.0	26.8	61.7	68.3	11.78	126.05
12/16/2008 09:00:00	856.8311	29.2717	47.0	30.4	61.5	70.1	11.65	126.50
12/17/2008 09:45:00	881.5811	29.6914	33.0	25.8	65.3	70.5	11.73	126.89
12/19/2008 10:05:59	929.9308	30.4948	53.0	40.4	64.9	71.0	11.70	127.50
12/21/2008 13:38:59	981.4808	31.3286	52.0	40.7	62.8	75.2	11.83	128.11
12/23/2008 07:56:00	1023.7644	31.9963	65.0	37.5	62.0	76.0	11.55	128.68
12/25/2008 12:34:59	1076.4141	32.8088	61.0	46.5	62.6	71.7	11.55	129.37
12/27/2008 12:19:00	1124.1477	33.5283	48.0	37.6	61.7	66.9	11.65	129.94
12/29/2008 08:23:59	1168.2308	34.1794	40.0	31.5	62.4	72.8	11.84	130.41
12/31/2008 09:17:59	1217.1308	34.8874	43.0	30.1	63.0	75.7	11.78	130.87
01/02/2009 08:27:00	1264.2811	35.5567	48.0	29.1	64.8	73.7	11.65	131.31
01/04/2009 11:16:59	1315.1141	36.2645	37.0	29.6	62.6	63.1	11.83	131.75
01/06/2009 09:14:00	1361.0644	36.8926	43.0	23.0	63.5	72.8	11.63	132.10
01/08/2009 08:49:00	1408.6477	37.5320	40.0	31.8	61.5	61.3	11.72	132.58
01/10/2009 16:30:00	1464.3311	38.2666	36.0	28.3	61.2	73.4	11.84	133.00
01/12/2009 10:18:00	1506.1311	38.8089	26.0	20.5	63.3	73.9	11.91	133.31

01/14/2009 09:36:59	1553.4475	39.4138	32.0	20.5	64.8	72.5	11.84	133.62
01/15/2009 09:26:00	1577.2644	39.7148	21.0	16.5	62.8	74.3	11.90	133.87

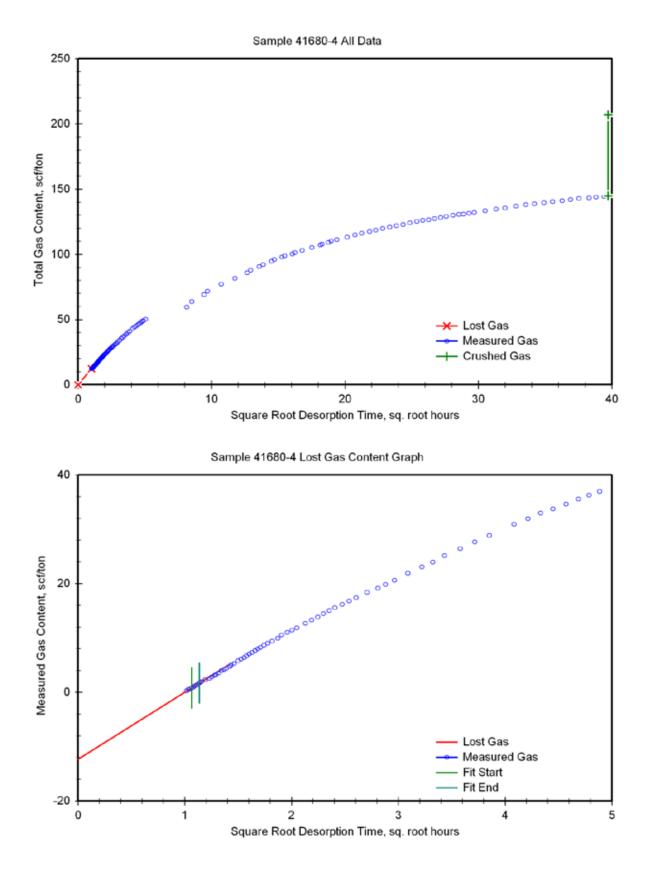
Sample 41680-4 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	271.60
Sample Bottom Depth	ft	272.30
Reservoir Pressure	psia	128.91
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	134.78
Mud Density	lbm/gal	8.50
Sample Mass	g	1,443.0
Sample Headspace Volume	cm ³	1093.0
Date Time Sample Cored		11/10/2008 15:30:23
Date Time Sample Start Out of Well		11/10/2008 16:06:45
Date Time Desorption Time Zero		11/10/2008 16:08:18
Date Time Sample at Surface		11/10/2008 16:38:32
Date Time Sample Canister Sealed		11/10/2008 17:10:11
Lost Gas Time	hours	1.031
Desorption Time Correction	hours	0.080
Fit Start Time	hours	1.134
Fit End Time	hours	1.291
Fit Start Time	hours*0.5	1.065
Fit End Time	hours*0.5	1.136
Lost Gas Content	scf/ton	12.3
Measured Gas Content	scf/ton	132.6
Crushed Gas Content	scf/ton	62.0
Total Gas Content	scf/ton	206.9
Lost Gas Fraction	vol frac	0.0595
Measured Gas Fraction	vol frac	0.6409
Crushed Gas Fraction	vol frac	0.2995
Diffusivity	1/us	0.1
Sorption Time	hours	214.3

Sample 41680-4 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Ambient Temp.	Canister Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
11/10/2008 17:10:11	1.0314	1.0156	0.0	0.0	57.2	57.6	11.58	0.00
11/10/2008 17:15:00	1.0314	1.0156	17.0	13.5	57.2	57.6	11.58	0.30
11/10/2008 17:16:59	1.0644	1.0317	13.0	10.3	56.8	57.2	11.58	0.53
11/10/2008 17:19:00	1.0980	1.0479	11.0	6.9	57.9	56.5	11.58	0.68
11/10/2008 17:21:00	1.1314	1.0637	10.0	7.3	58.3	56.1	11.58	0.84
11/10/2008 17:23:00	1.1647	1.0792	11.0	8.2	58.6	55.8	11.58	1.02
11/10/2008 17:25:00	1.1980	1.0945	12.0	8.2	59.4	55.8	11.58	1.21
11/10/2008 17:27:00	1.2314	1.1097	12.0	8.3	59.9	55.8	11.58	1.39
11/10/2008 17:29:00	1.2647	1.1246	11.0	8.7	59.7	55.6	11.58	1.59
11/10/2008 17:31:00	1.2980	1.1393	14.0	10.1	60.1	55.4	11.58	1.81
11/10/2008 17:32:59	1.3311	1.1537	8.0	6.4	60.1	55.2	11.59	1.95
11/10/2008 17:38:00	1.4147	1.1894	22.0	16.7	60.4	54.5	11.58	2.32
11/10/2008 17:44:00	1.5147	1.2307	15.0	12.0	59.9	54.1	11.58	2.59
11/10/2008 17:47:00	1.5647	1.2509	15.0	11.6	60.1	53.6	11.58	2.85
11/10/2008 17:51:00	1.6314	1.2772	16.0	12.8	59.9	53.4	11.58	3.13
11/10/2008 17:53:00	1.6647	1.2902	10.0	8.0	59.9	53.2	11.59	3.31
11/10/2008 17:57:00	1.7314	1.3158	17.0	13.2	59.9	53.1	11.58	3.60
11/10/2008 18:01:00	1.7980	1.3409	21.0	16.8	59.9	52.7	11.59	3.97
11/10/2008 18:04:59	1.8644	1.3654	13.0	10.4	59.7	52.7	11.59	4.20
11/10/2008 18:08:00	1.9147	1.3837	13.0	10.4	59.4	52.5	11.58	4.43
11/10/2008 18:14:00	2.0147	1.4194	22.0	16.3	60.4	52.2	11.59	4.80
11/10/2008 18:16:00	2.0480	1.4311	15.0	11.7	60.6	52.2	11.59	5.06
11/10/2008 18:20:59	2.1311	1.4598	15.0	12.0	60.6	50.7	11.59	5.32
11/10/2008 18:27:59	2.2477	1.4992	30.0	24.1	60.6	50.0	11.59	5.86
11/10/2008 18:33:00	2.3314	1.5269	17.0	13.7	60.6	49.6	11.59	6.16
11/10/2008 18:38:00	2.4147	1.5539	15.0	12.1	60.6	49.6	11.59	6.43
11/10/2008 18:42:00	2.4814	1.5752	18.0	14.5	60.4	49.6	11.60	6.75
11/10/2008 18:46:59	2.5644	1.6014	18.0	13.8	60.6	50.2	11.59	7.06
11/10/2008 18:52:00	2.6480	1.6273	17.0	13.6	60.5	51.8	11.59	7.36
11/10/2008 18:58:00	2.7480	1.6577	18.0	14.4	60.6	52.9	11.60	7.68
11/10/2008 19:02:59	2.8311	1.6826	18.0	14.4	60.6	52.9	11.60	8.00
11/10/2008 19:08:00	2.9147	1.7072	15.0	12.0	60.6	54.9	11.60	8.26
11/10/2008 19:15:00	3.0314	1.7411	22.0	17.5	60.4	55.8	11.60	8.65
11/10/2008 19:21:59	3.1477	1.7742	21.0	16.4	60.6	56.7	11.60	9.02
11/10/2008 19:31:00	3.2980	1.8160	25.0	19.9	60.4	56.1	11.60	9.46
11/10/2008 19:43:00	3.4980	1.8703	30.0	23.9	60.3	56.1	11.60	9.99

					a a i			
11/10/2008 19:50:59	3.6311	1.9055	33.0	26.2	60.1	57.7	11.61	10.57
11/10/2008 20:03:00	3.8314	1.9574	28.0	21.7	60.4	58.8	11.61	11.05
11/10/2008 20:14:00	4.0147	2.0037	23.0	18.2	60.4	60.4	11.61	11.45
11/10/2008 20:25:00	4.1980	2.0489	25.0	19.7	60.4	61.5	11.61	11.89
11/10/2008 20:45:00	4.5314	2.1287	48.0	37.7	60.4	63.7	11.61	12.73
11/10/2008 21:00:00	4.7814	2.1866	33.0	25.5	60.6	63.9	11.61	13.29
11/10/2008 21:15:00	5.0314	2.2431	35.0	27.4	60.4	64.2	11.61	13.90
11/10/2008 21:30:00	5.2814	2.2981	34.0	26.6	60.4	64.8	11.62	14.49
11/10/2008 21:45:00	5.5314	2.3519	35.0	27.1	60.6	65.1	11.62	15.09
11/10/2008 22:00:00	5.7814	2.4044	29.0	22.7	60.6	65.1	11.62	15.60
11/10/2008 22:19:59	6.1144	2.4727	34.0	26.6	60.6	65.8	11.62	16.19
11/10/2008 22:40:00	6.4480	2.5393	36.0	28.1	60.6	66.6	11.62	16.81
11/10/2008 23:00:00	6.7814	2.6041	37.0	28.2	60.8	66.9	11.62	17.44
11/10/2008 23:32:00	7.3147	2.7046	56.0	43.7	60.8	66.6	11.63	18.41
11/11/2008 00:06:00	7.8814	2.8074	45.0	35.1	60.6	66.7	11.63	19.19
11/11/2008 00:30:00	8.2814	2.8777	41.0	32.0	60.6	67.1	11.63	19.90
11/11/2008 01:00:00	8.7814	2.9633	44.0	34.1	60.8	66.2	11.63	20.66
11/11/2008 01:45:00	9.5314	3.0873	73.0	57.1	60.8	66.0	11.63	21.92
11/11/2008 02:35:00	10.3647	3.2194	70.0	54.2	61.0	68.5	11.63	23.13
11/11/2008 03:15:00	11.0314	3.3213	51.0	39.6	61.0	69.4	11.63	24.01
11/11/2008 04:00:00	11.7814	3.4324	69.0	53.0	61.3	70.9	11.63	25.18
11/11/2008 05:01:00	12.7980	3.5774	74.0	57.3	61.5	71.5	11.64	26.46
11/11/2008 06:01:00	13.7980	3.7146	71.0	54.7	61.9	72.0	11.64	27.67
11/11/2008 07:02:59	14.8311	3.8511	70.0	54.0	62.2	72.7	11.65	28.87
11/11/2008 08:53:00	16.6647	4.0822	118.0	92.8	61.7	64.2	11.66	30.93
11/11/2008 09:59:00	17.7647	4.2148	60.0	48.5	60.8	50.0	11.66	32.01
11/11/2008 10:59:00	18.7647	4.3318	56.0	45.2	59.9	51.1	11.66	33.01
11/11/2008 11:59:00	19.7647	4.4457	44.0	35.5	59.0	51.4	11.65	33.80
11/11/2008 13:05:59	20.8811	4.5696	48.0	37.6	58.8	54.3	11.63	34.63
11/11/2008 14:10:00	21.9480	4.6849	55.0	42.3	59.9	57.9	11.64	35.57
11/11/2008 15:06:00	22.8814	4.7834	42.0	33.5	59.7	56.7	11.64	36.32
11/11/2008 16:05:00	23.8647	4.8852	36.0	29.1	58.8	49.5	11.64	36.96
11/11/2008 17:42:00	25.4814	5.0479	54.0	43.9	58.1	47.5	11.65	37.94
11/13/2008 10:16:00	66.0480	8.1270	540.0	423.0	61.0	61.0	11.66	47.33
11/13/2008 16:37:00	72.3980	8.5087	243.0	190.5	62.1	59.9	11.65	51.55
11/14/2008 09:10:00	88.9480	9.4312	300.0	241.4	63.9	59.9	11.82	56.91
11/14/2008 14:06:00	93.8814	9.6892	145.0	114.5	60.8	72.3	11.88	59.46
11/15/2008 11:16:00	115.0480	10.7260	300.0	240.8	62.1	62.1	11.90	64.80
11/16/2008 10:16:00	138.0480	11.7494	260.0	207.9	61.3	65.8	11.88	69.42
11/17/2008 08:35:59	160.3811	12.6642	248.0	196.5	60.8	73.0	11.94	73.78
11/17/2008 15:14:00	167.0147	12.9234	104.0	81.2	61.2	71.4	11.93	75.58



11/18/2008 08:22:00	184.1480	13.5701	161.0	127.4	61.0	73.0	11.92	78.41
11/18/2008 16:19:59	192.1144	13.8605	95.0	68.5	62.6	75.7	11.88	79.93
11/19/2008 09:51:00	209.6314	14.4787	144.0	115.1	62.8	60.3	11.87	82.49
11/19/2008 16:07:00	215.8980	14.6935	75.0	58.5	61.9	77.5	11.86	83.79
11/20/2008 09:30:00	233.2814	15.2736	105.0	84.6	60.1	67.6	12.01	85.67
11/20/2008 15:31:00	239.2980	15.4693	57.0	41.9	60.8	60.3	11.97	86.60
11/21/2008 09:12:00	256.9814	16.0306	105.0	71.0	60.1	60.6	11.78	88.17
11/21/2008 15:58:00	263.7480	16.2403	54.0	42.7	60.1	67.8	11.79	89.12
11/22/2008 09:49:00	281.5980	16.7809	100.0	78.4	60.8	73.7	11.82	90.86
11/23/2008 10:49:00	306.5980	17.5099	131.0	100.8	60.6	74.8	11.80	93.10
11/24/2008 09:04:00	328.8480	18.1342	105.0	83.4	61.3	70.1	11.90	94.95
11/24/2008 13:54:00	333.6814	18.2669	40.0	27.8	61.3	72.8	11.85	95.57
11/25/2008 07:43:00	351.4980	18.7483	83.0	65.7	60.6	69.8	11.85	97.02
11/25/2008 15:53:59	359.6811	18.9653	51.0	38.5	60.4	73.5	11.82	97.88
11/26/2008 07:40:00	375.4480	19.3765	68.0	53.9	59.9	67.8	11.82	99.08
11/27/2008 14:32:59	406.3311	20.1577	111.0	86.6	60.1	66.7	11.80	101.00
11/28/2008 14:46:00	430.5480	20.7497	105.0	73.8	60.4	73.0	11.70	102.64
11/29/2008 11:51:59	451.6477	21.2520	79.0	61.1	60.6	76.1	11.72	103.99
11/30/2008 13:11:00	476.9647	21.8395	74.0	57.7	60.3	74.6	11.77	105.27
12/01/2008 09:17:59	497.0811	22.2953	68.0	50.9	61.7	67.8	11.77	106.40
12/02/2008 08:34:00	520.3480	22.8111	75.0	55.5	60.1	68.9	11.69	107.64
12/03/2008 09:08:00	544.9147	23.3434	61.0	48.2	60.3	68.9	11.82	108.71
12/04/2008 08:51:00	568.6314	23.8460	58.0	46.8	60.3	60.6	11.88	109.75
12/05/2008 08:56:00	592.7147	24.3457	71.0	45.6	60.6	70.8	11.75	110.76
12/06/2008 09:59:00	617.7647	24.8549	63.0	49.2	60.8	76.2	11.83	111.85
12/07/2008 12:44:00	644.5147	25.3873	76.0	50.2	61.2	75.2	11.72	112.96
12/08/2008 10:29:00	666.2647	25.8121	65.0	38.2	64.0	61.2	11.61	113.81
12/09/2008 09:42:00	689.4814	26.2580	34.0	26.7	61.2	73.7	11.85	114.41
12/10/2008 08:57:00	712.7314	26.6970	47.0	35.8	61.5	72.1	11.84	115.20
12/11/2008 09:31:00	737.2980	27.1532	48.0	37.8	60.8	71.7	11.84	116.04
12/12/2008 08:45:00	760.5314	27.5777	55.0	36.5	60.8	71.7	11.75	116.85
12/13/2008 12:48:00	788.5814	28.0817	80.0	35.5	61.7	73.7	11.43	117.64
12/14/2008 14:03:00	813.8314	28.5277	35.0	27.2	60.6	71.4	11.66	118.24
12/15/2008 08:54:00	832.6814	28.8562	23.0	18.1	60.6	68.5	11.78	118.64
12/16/2008 08:59:00	856.7647	29.2705	50.0	29.0	60.4	70.5	11.65	119.29
12/17/2008 09:44:00	881.5147	29.6903	40.0	31.3	61.2	70.7	11.73	119.98
12/19/2008 10:05:00	929.8647	30.4937	73.0	54.7	61.2	71.0	11.70	121.20
12/21/2008 13:38:00	981.4147	31.3275	67.0	52.4	62.1	75.3	11.83	122.36
12/23/2008 07:50:59	1023.6311	31.9942	82.0	42.0	61.7	76.0	11.54	123.29
12/25/2008 12:34:00	1076.3480	32.8077	88.0	67.6	62.2	71.6	11.55	124.79
12/27/2008 12:17:59	1124.0811	33.5273	57.0	44.6	61.5	66.9	11.65	125.78

12/29/2008 08:23:00	1168.1647	34.1784	41.0	32.3	61.7	72.3	11.84	126.50
12/31/2008 09:17:00	1217.0647	34.8865	57.0	39.3	62.1	76.2	11.78	127.37
01/02/2009 08:26:00	1264.2147	35.5558	66.0	41.8	61.7	73.7	11.65	128.30
01/04/2009 11:16:00	1315.0480	36.2636	40.0	32.0	61.3	62.6	11.83	129.01
01/06/2009 09:13:00	1360.9980	36.8917	60.0	31.4	61.3	72.8	11.63	129.71
01/08/2009 08:47:00	1408.5647	37.5308	44.0	35.0	61.5	61.2	11.72	130.49
01/10/2009 16:30:00	1464.2814	38.2659	38.0	29.8	61.9	73.5	11.84	131.15
01/12/2009 10:17:00	1506.0647	38.8080	29.0	22.9	62.4	73.9	11.91	131.66
01/14/2009 09:33:00	1553.3314	39.4123	37.0	25.9	61.3	72.3	11.84	132.23
01/15/2009 09:25:00	1577.1980	39.7140	22.0	17.3	61.9	74.3	11.90	132.62

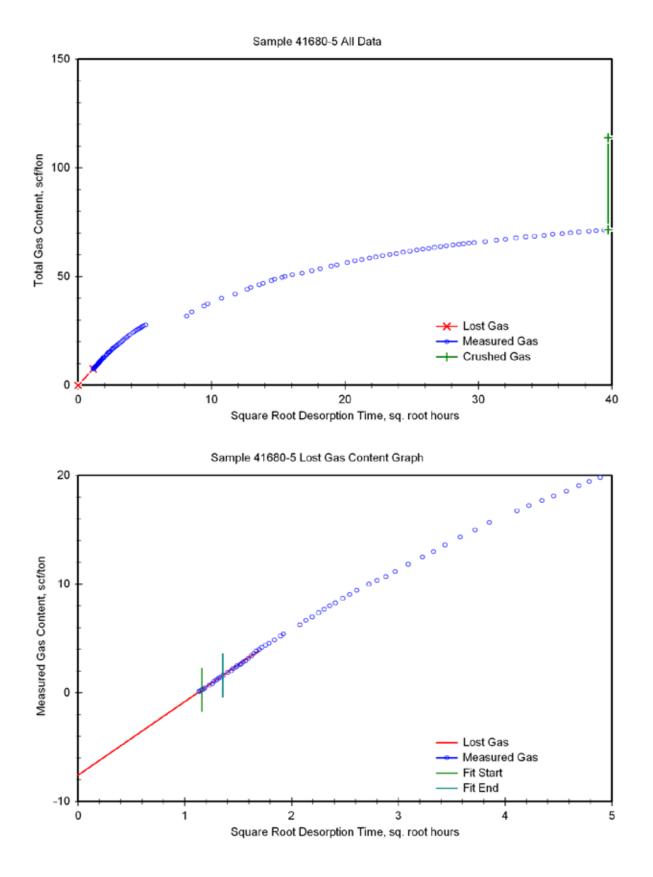
Sample 41680-5 Desorption Parameters

Parameter	Unit	Value
Sample Top Depth	ft	273.50
Sample Bottom Depth	ft	274.50
Reservoir Pressure	psia	129.78
Reservoir Pressure Gradient	psi/ft	0.4200
Mud Hydrostatic Pressure	psia	135.68
Mud Density	lbm/gal	8.50
Sample Mass	g	2,060.0
Sample Headspace Volume	cm ³	889.0
Date Time Sample Cored		11/10/2008 15:31:52
Date Time Sample Start Out of Well		11/10/2008 16:06:45
Date Time Desorption Time Zero		11/10/2008 16:08:18
Date Time Sample at Surface		11/10/2008 16:38:32
Date Time Sample Canister Sealed		11/10/2008 17:24:50
Lost Gas Time	hours	1.276
Desorption Time Correction	hours	0.053
Fit Start Time	hours	1.341
Fit End Time	hours	1.838
Fit Start Time	hours*0.5	1.158
Fit End Time	hours*0.5	1.356
Lost Gas Content	scf/ton	7.6
Measured Gas Content	scf/ton	64.0
Crushed Gas Content	scf/ton	42.4
Total Gas Content	scf/ton	114.0
Lost Gas Fraction	vol frac	0.0663
Measured Gas Fraction	vol frac	0.5618
Crushed Gas Fraction	vol frac	0.3719
Diffusivity	1/us	0.1
Sorption Time	hours	216.9

Sample 41680-5 Desorption History

Date Time	Desorption Time	Sq. Root Desorption Time	Measured Gas Volume	Corrected Gas Volume	Ambient Temp.	Canister Temp.	Ambient Pressure	Cumulative Gas Content
mm/dd/yyyy hh:mm:ss	hours	hrs*0.5	cm ³	cm ³	°F	°F	psia	scf/ton
11/10/2008 17:24:50	1.2756	1.1294	0.0	0.0	56.1	55.6	11.58	0.00
11/10/2008 17:28:00	1.2755	1.1294	10.0	7.9	56.1	55.6	11.58	0.12
11/10/2008 17:30:00	1.3089	1.1441	10.0	4.7	58.5	55.6	11.58	0.20
11/10/2008 17:32:00	1.3422	1.1585	10.0	6.1	60.1	55.4	11.59	0.29
11/10/2008 17:34:00	1.3755	1.1728	8.0	6.1	60.1	55.2	11.58	0.39
11/10/2008 17:35:59	1.4086	1.1868	8.0	6.1	60.3	54.9	11.58	0.48
11/10/2008 17:42:00	1.5089	1.2284	19.0	15.1	60.3	54.5	11.58	0.72
11/10/2008 17:46:00	1.5755	1.2552	13.0	10.4	60.1	54.1	11.58	0.88
11/10/2008 17:49:00	1.6255	1.2750	15.0	12.0	60.1	53.6	11.58	1.06
11/10/2008 17:51:59	1.6752	1.2943	10.0	8.0	59.9	53.4	11.58	1.19
11/10/2008 17:55:00	1.7255	1.3136	13.0	10.4	59.7	53.1	11.59	1.35
11/10/2008 17:58:00	1.7755	1.3325	10.0	8.0	59.7	52.9	11.59	1.47
11/10/2008 18:01:59	1.8419	1.3572	13.0	10.1	59.9	52.7	11.59	1.63
11/10/2008 18:08:59	1.9586	1.3995	21.0	16.5	60.1	52.3	11.59	1.89
11/10/2008 18:15:00	2.0589	1.4349	13.0	10.0	60.4	52.2	11.59	2.04
11/10/2008 18:17:59	2.1086	1.4521	17.0	13.3	60.6	51.8	11.59	2.25
11/10/2008 18:22:00	2.1755	1.4750	9.0	7.2	60.6	50.5	11.59	2.36
11/10/2008 18:24:00	2.2089	1.4862	9.0	7.2	60.6	50.0	11.59	2.48
11/10/2008 18:29:00	2.2922	1.5140	12.0	9.7	60.6	49.8	11.59	2.63
11/10/2008 18:31:00	2.3255	1.5250	6.0	4.8	60.6	49.8	11.59	2.70
11/10/2008 18:34:59	2.3919	1.5466	12.0	9.7	60.6	49.6	11.59	2.85
11/10/2008 18:39:00	2.4589	1.5681	10.0	8.0	60.6	49.6	11.59	2.98
11/10/2008 18:44:00	2.5422	1.5944	17.0	13.7	60.6	49.6	11.59	3.19
11/10/2008 18:49:00	2.6255	1.6203	19.0	15.2	60.4	51.8	11.59	3.43
11/10/2008 18:53:59	2.7086	1.6458	18.0	14.4	60.6	52.2	11.60	3.65
11/10/2008 18:59:00	2.7922	1.6710	15.0	12.0	60.6	52.9	11.60	3.84
11/10/2008 19:04:00	2.8755	1.6957	14.0	11.2	60.6	52.9	11.60	4.01
11/10/2008 19:09:00	2.9589	1.7201	14.0	11.2	60.6	55.0	11.60	4.18
11/10/2008 19:16:00	3.0755	1.7537	16.0	12.7	60.6	55.9	11.60	4.38
11/10/2008 19:23:00	3.1922	1.7867	15.0	11.9	60.6	56.8	11.60	4.57
11/10/2008 19:34:00	3.3755	1.8373	25.0	19.9	60.6	56.1	11.60	4.88
11/10/2008 19:47:00	3.5922	1.8953	31.0	24.6	60.1	57.0	11.61	5.26
11/10/2008 19:53:00	3.6922	1.9215	15.0	11.5	60.4	57.7	11.61	5.44
11/10/2008 20:30:00	4.3089	2.0758	69.0	54.2	60.4	62.4	11.61	6.28
11/10/2008 20:45:00	4.5589	2.1351	33.0	25.9	60.4	63.7	11.61	6.68
11/10/2008 21:00:00	4.8089	2.1929	25.0	19.3	60.6	63.9	11.61	6.99

11/10/2008 21:16:00	5.0755	2.2529	32.0	25.1	60.6	64.2	11.61	7.38
11/10/2008 21:30:00	5.3089	2.3041	25.0	19.6	60.6	64.8	11.62	7.68
11/10/2008 21:45:00	5.5589	2.3577	28.0	21.9	60.6	65.1	11.62	8.02
11/10/2008 22:00:00	5.8089	2.4102	23.0	18.0	60.6	65.1	11.62	8.30
11/10/2008 22:19:59	6.1419	2.4783	33.0	25.8	60.6	66.0	11.62	8.70
11/10/2008 22:40:00	6.4755	2.5447	30.0	23.4	60.6	66.6	11.62	9.07
11/10/2008 23:00:00	6.8089	2.6094	32.0	24.4	60.8	66.9	11.62	9.45
11/10/2008 23:37:00	7.4255	2.7250	46.0	35.9	60.6	66.6	11.63	10.00
11/11/2008 00:01:59	7.8419	2.8003	28.0	21.6	60.6	66.2	11.62	10.34
11/11/2008 00:30:00	8.3089	2.8825	31.0	24.2	60.6	67.1	11.63	10.72
11/11/2008 01:00:00	8.8089	2.9680	37.0	28.7	60.8	66.2	11.63	11.16
11/11/2008 01:45:00	9.5589	3.0917	55.0	43.0	60.8	66.0	11.63	11.83
11/11/2008 02:35:00	10.3922	3.2237	56.0	43.1	61.2	68.5	11.63	12.50
11/11/2008 03:16:00	11.0755	3.3280	40.0	31.1	61.0	69.4	11.63	12.98
11/11/2008 04:01:00	11.8255	3.4388	54.0	41.5	61.3	70.9	11.63	13.63
11/11/2008 05:00:00	12.8089	3.5789	59.0	45.5	61.7	71.6	11.64	14.34
11/11/2008 06:00:00	13.8089	3.7160	56.0	43.1	62.1	72.0	11.64	15.01
11/11/2008 07:01:00	14.8255	3.8504	55.0	42.5	62.2	72.7	11.65	15.67
11/11/2008 09:04:59	16.8919	4.1100	88.0	70.0	60.8	59.0	11.66	16.76
11/11/2008 10:01:00	17.8255	4.2220	39.0	31.6	60.8	50.0	11.66	17.25
11/11/2008 11:03:00	18.8589	4.3427	37.0	29.8	59.7	52.0	11.66	17.71
11/11/2008 12:01:00	19.8255	4.4526	33.0	26.6	59.0	51.4	11.65	18.12
11/11/2008 13:05:59	20.9086	4.5726	37.0	29.3	58.6	54.3	11.63	18.58
11/11/2008 14:11:00	21.9922	4.6896	44.0	32.9	59.9	57.9	11.63	19.09
11/11/2008 15:06:00	22.9089	4.7863	31.0	24.7	59.7	56.8	11.64	19.47
11/11/2008 16:05:59	23.9086	4.8896	27.0	21.8	59.0	49.5	11.64	19.81
11/11/2008 17:35:59	25.4086	5.0407	28.0	22.7	58.1	49.3	11.65	20.17
11/13/2008 10:27:00	66.2589	8.1400	340.0	264.8	61.0	63.0	11.66	24.28
11/13/2008 16:40:00	72.4755	8.5133	160.0	126.2	61.2	60.1	11.65	26.25
11/14/2008 09:14:00	89.0422	9.4362	212.0	170.6	61.9	59.9	11.82	28.90
11/14/2008 14:12:00	94.0089	9.6958	91.0	71.8	61.2	73.0	11.88	30.02
11/15/2008 11:19:59	115.1419	10.7304	205.0	165.4	61.5	61.7	11.90	32.59
11/16/2008 10:21:00	138.1589	11.7541	161.0	128.7	60.8	65.8	11.88	34.59
11/17/2008 08:41:00	160.4922	12.6686	169.0	134.0	60.6	72.8	11.94	36.67
11/17/2008 15:16:00	167.0755	12.9258	65.0	50.5	61.0	71.2	11.93	37.46
11/18/2008 08:23:59	184.2086	13.5723	106.0	83.6	61.0	72.8	11.92	38.76
11/18/2008 16:23:00	192.1922	13.8633	64.0	46.4	61.9	75.0	11.88	39.48
11/19/2008 09:53:00	209.6922	14.4808	98.0	77.5	62.6	60.3	11.87	40.69
11/19/2008 16:09:00	215.9589	14.6955	50.0	39.1	61.9	77.0	11.86	41.29
11/20/2008 09:32:00	233.3422	15.2755	65.0	52.4	60.2	67.6	12.01	42.11
11/20/2008 15:33:00	239.3589	15.4712	35.0	25.2	60.6	60.6	11.97	42.50



				1			1	
11/21/2008 09:14:00	257.0422	16.0325	70.0	58.4	59.9	60.6	12.27	43.41
11/22/2008 09:53:00	281.6922	16.7837	93.0	45.0	60.6	72.6	11.82	44.11
11/23/2008 10:53:00	306.6922	17.5126	96.0	73.6	60.6	73.7	11.80	45.25
11/24/2008 09:08:00	328.9422	18.1368	74.0	58.8	60.8	69.8	11.90	46.17
11/25/2008 15:57:00	359.7589	18.9673	98.0	72.7	60.6	73.2	11.82	47.30
11/26/2008 07:43:00	375.5255	19.3785	56.0	44.4	59.9	67.4	11.82	47.99
11/27/2008 14:35:00	406.3922	20.1592	83.0	64.6	60.1	66.7	11.80	48.99
11/28/2008 14:54:00	430.7089	20.7535	75.0	52.5	60.3	72.1	11.71	49.81
11/29/2008 11:54:00	451.7089	21.2534	49.0	38.0	60.3	74.1	11.72	50.40
11/30/2008 13:14:00	477.0422	21.8413	50.0	39.1	60.3	72.6	11.77	51.01
12/01/2008 09:20:00	497.1422	22.2967	46.0	34.8	61.2	67.6	11.77	51.55
12/02/2008 08:39:00	520.4589	22.8136	52.0	37.4	60.1	68.9	11.69	52.13
12/03/2008 09:10:00	544.9755	23.3447	41.0	32.4	60.3	68.9	11.82	52.64
12/04/2008 08:53:00	568.6922	23.8473	40.0	32.3	60.6	60.6	11.88	53.14
12/05/2008 08:58:00	592.7755	24.3470	51.0	32.2	60.6	70.7	11.75	53.64
12/06/2008 10:02:00	617.8422	24.8564	45.0	35.3	60.8	73.7	11.83	54.19
12/07/2008 12:46:00	644.5755	25.3885	54.0	33.8	61.2	76.0	11.70	54.71
12/08/2008 10:30:00	666.3089	25.8130	47.0	28.4	63.0	61.2	11.60	55.16
12/09/2008 09:44:00	689.5422	26.2591	22.0	17.3	61.2	73.7	11.85	55.42
12/10/2008 08:59:00	712.7922	26.6982	33.0	25.4	61.2	72.1	11.84	55.82
12/11/2008 09:33:00	737.3589	27.1544	35.0	27.6	60.6	71.2	11.84	56.25
12/12/2008 08:47:00	760.5922	27.5788	40.0	25.4	61.0	71.6	11.75	56.64
12/13/2008 12:49:59	788.6419	28.0828	60.0	25.8	61.3	73.5	11.43	57.05
12/14/2008 14:06:00	813.9089	28.5291	22.0	17.1	60.6	71.4	11.66	57.31
12/15/2008 08:56:00	832.7422	28.8573	17.0	13.4	60.4	68.3	11.78	57.52
12/16/2008 09:01:00	856.8255	29.2716	38.0	21.4	60.3	70.1	11.65	57.85
12/17/2008 09:46:00	881.5755	29.6913	21.0	16.4	60.6	70.5	11.73	58.11
12/19/2008 10:07:00	929.9255	30.4947	48.0	35.7	60.6	71.0	11.70	58.66
12/21/2008 13:40:00	981.4755	31.3285	44.0	34.4	61.0	74.6	11.83	59.20
12/23/2008 08:00:00	1023.8089	31.9970	60.0	27.4	62.0	74.0	11.54	59.62
12/25/2008 12:36:00	1076.4089	32.8087	54.0	41.5	61.0	71.7	11.55	60.27
12/27/2008 12:20:00	1124.1422	33.5282	40.0	31.3	60.6	66.9	11.65	60.76
12/29/2008 08:23:59	1168.2086	34.1791	26.0	20.4	61.0	72.8	11.84	61.07
12/31/2008 09:19:00	1217.1255	34.8873	39.0	26.5	61.2	75.7	11.78	61.49
01/02/2009 08:29:00	1264.2922	35.5569	47.0	28.6	61.0	73.7	11.65	61.93
01/04/2009 11:18:00	1315.1089	36.2644	26.0	20.8	61.0	63.8	11.83	62.25
01/06/2009 09:15:00	1361.0589	36.8925	46.0	23.6	60.8	72.8	11.63	62.62
01/08/2009 08:49:59	1408.6419	37.5319	31.0	24.7	61.0	61.3	11.72	63.00
01/10/2009 16:31:00	1464.3255	38.2665	27.0	21.2	63.3	73.4	11.84	63.33
01/12/2009 10:19:00	1506.1255	38.8088	20.0	15.8	61.5	73.9	11.91	63.58
01/14/2009 09:38:00	1553.4422	39.4137	27.0	18.1	60.8	72.5	11.84	63.86

		01/15/2009 09:27:00	1577.2589	39.7147	15.0	11.8	61.0	74.4	11.90	64.04
--	--	---------------------	-----------	---------	------	------	------	------	-------	-------

Appendix III

Souder, Miller & Associates Highway 151 34-4-39 MW #1 Fruitland Coal

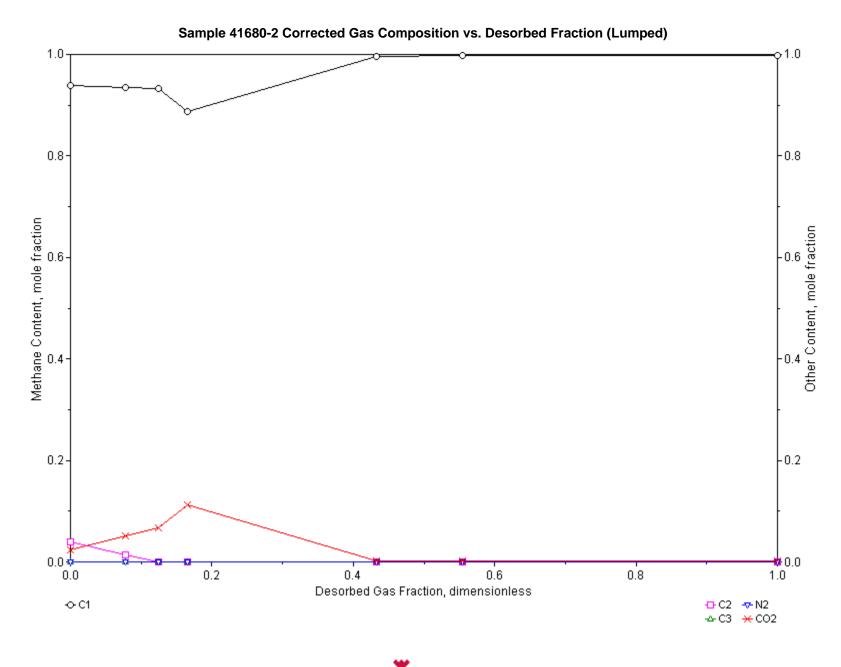
Desorption Gas Composition Results

Date Time	C ₁	C ₂	C ₃	iC4	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
11/10/2008 13:54:00	0.00403	0.00006	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.19454	0.80113	0.00022	0.00001	1.00000
11/10/2008 21:34:58	0.00230	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.19460	0.80293	0.00017	0.00000	1.00000
11/11/2008 10:08:00	0.00472	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.19455	0.80012	0.00060	0.00001	1.00000
12/03/2008 09:04:00	0.92476	0.00050	0.00037	0.00012	0.00012	0.00012	0.00012	0.00000	0.00000	0.00399	0.06826	0.00162	0.00000	1.00000
01/14/2009 09:23:00	0.93827	0.00066	0.00000	0.00013	0.00013	0.00013	0.00013	0.00000	0.00000	0.00450	0.05444	0.00159	0.00000	1.00000
			(Contamina	tion Correc	cted Desor	ption Gas	Compositic	on History					
					0	$_2$, N $_2$, and H	2 Removed	ł						
11/10/2008 13:54:00	0.93477	0.01463	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.05060	0.00000	1.00000
11/10/2008 21:34:58	0.93291	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.06709	0.00000	1.00000
11/11/2008 10:08:00	0.88696	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.11304	0.00000	1.00000
12/03/2008 09:04:00	0.99678	0.00054	0.00040	0.00013	0.00013	0.00013	0.00013	0.00000	0.00000	0.00000	0.00000	0.00175	0.00000	1.00000
01/14/2009 09:23:00	0.99704	0.00070	0.00000	0.00014	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00169	0.00000	1.00000

Sample 41680-2 Desorbed Gas Composition History

Sample 41680-2 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC₄	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.93788	0.03911	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.02300	0.00000	1.00000
0.0776	0.93477	0.01463	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.05060	0.00000	1.00000
0.1239	0.93291	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.06709	0.00000	1.00000
0.1654	0.88696	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.11304	0.00000	1.00000
0.4334	0.99678	0.00054	0.00040	0.00013	0.00013	0.00013	0.00013	0.00000	0.00000	0.00000	0.00000	0.00175	0.00000	1.00000
0.5539	0.99704	0.00070	0.00000	0.00014	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00169	0.00000	1.00000
1.0000	0.99704	0.00070	0.00000	0.00014	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00169	0.00000	1.00000
	Integrated Gas Composition													
	0.97099	0.00288	0.00008	0.00010	0.00010	0.00010	0.00010	0.00000	0.00000	0.00000	0.00000	0.02566	0.00000	1.00000


Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total				
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac				
11/10/2008 13:54:00	0.00403	0.00006	0.00000	0.19454	0.80113	0.00022	0.00001	1.00000				
11/10/2008 21:34:58	0.00230	0.00000	0.00000	0.19460	0.80293	0.00017	0.00000	1.00000				
11/11/2008 10:08:00	0.00472	0.00000	0.00000	0.19455	0.80012	0.00060	0.00001	1.00000				
12/03/2008 09:04:00	0.92476	0.00050	0.00087	0.00399	0.06826	0.00162	0.00000	1.00000				
01/14/2009 09:23:00	0.93827	0.00066	0.00053	0.00450	0.05444	0.00159	0.00000	1.00000				
	Contamination Corrected Desorption Gas Composition History											
			O ₂ , N ₂ , and H ₂ R	emoved								
11/10/2008 13:54:00	0.93477	0.01463	0.00000	0.00000	0.00000	0.05060	0.00000	1.00000				
11/10/2008 21:34:58	0.93291	0.00000	0.00000	0.00000	0.00000	0.06709	0.00000	1.00000				
11/11/2008 10:08:00	0.88696	0.00000	0.00000	0.00000	0.00000	0.11304	0.00000	1.00000				
12/03/2008 09:04:00	0.99678	0.00054	0.00094	0.00000	0.00000	0.00175	0.00000	1.00000				
01/14/2009 09:23:00	0.99704	0.00070	0.00056	0.00000	0.00000	0.00169	0.00000	1.00000				

Sample 41680-2 Desorbed Gas Composition History (Lumped)

Sample 41680-2 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

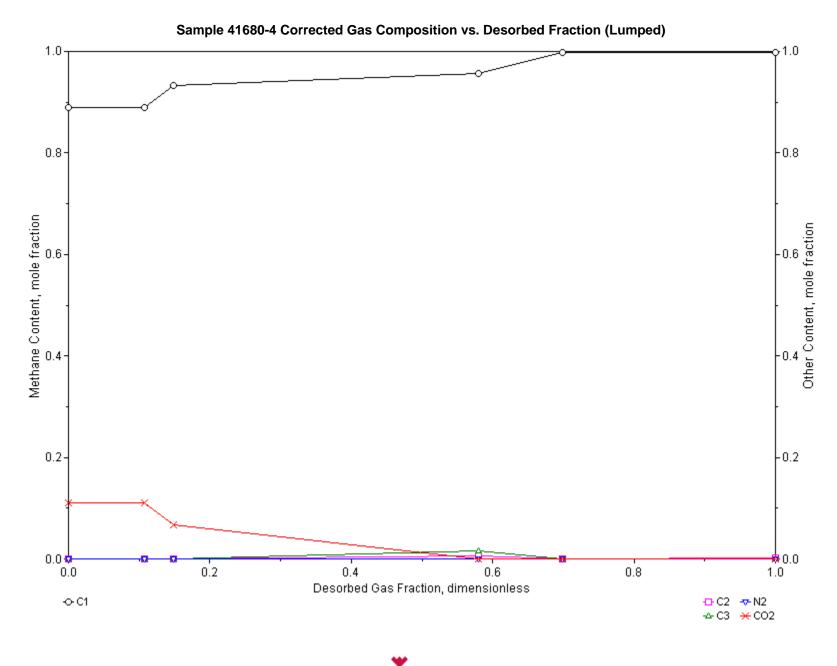
Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total			
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac			
0.0000	0.93788	0.03911	0.00000	0.00000	0.00000	0.02300	0.00000	1.00000			
0.0776	0.93477	0.01463	0.00000	0.00000	0.00000	0.05060	0.00000	1.00000			
0.1239	0.93291	0.00000	0.00000	0.00000	0.00000	0.06709	0.00000	1.00000			
0.1654	0.88696	0.00000	0.00000	0.00000	0.00000	0.11304	0.00000	1.00000			
0.4334	0.99678	0.00054	0.00094	0.00000	0.00000	0.00175	0.00000	1.00000			
0.5539	0.99704	0.00070	0.00056	0.00000	0.00000	0.00169	0.00000	1.00000			
1.0000	0.99704	0.00070	0.00056	0.00000	0.00000	0.00169	0.00000	1.00000			
Integrated Gas Composition											
	0.97099	0.00288	0.00047	0.00000	0.00000	0.02566	0.00000	1.00000			

Date Time	C ₁	C ₂	C₃	iC4	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
11/10/2008 19:43:00	0.00299	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.19404	0.80261	0.00037	0.00000	1.00000
11/10/2008 23:32:00	0.00500	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.19462	0.80001	0.00036	0.00001	1.00000
12/02/2008 08:34:00	0.02605	0.00015	0.00045	0.00015	0.00015	0.00015	0.00015	0.00000	0.00000	0.21246	0.76029	0.00000	0.00000	1.00000
01/14/2009 09:33:00	0.98426	0.00064	0.00000	0.00013	0.00013	0.00013	0.00013	0.00000	0.00000	0.00335	0.01122	0.00000	0.00000	1.00000
01/15/2009 16:18:00	0.16181	0.00028	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.18287	0.65504	0.00000	0.00000	1.00000
			C	ontaminat	ion Correc	ted Desorp	tion Gas C	compositio	n History					
					O ₂	N ₂ , and H ₂	2 Removed							
11/10/2008 19:43:00	0.89048	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.10952	0.00000	1.00000
11/10/2008 23:32:00	0.93243	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.06757	0.00000	1.00000
12/02/2008 08:34:00	0.95604	0.00549	0.01648	0.00549	0.00549	0.00549	0.00549	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
01/14/2009 09:33:00	0.99882	0.00065	0.00000	0.00013	0.00013	0.00013	0.00013	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
01/15/2009 16:18:00	0.99826	0.00174	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000

Sample 41680-4 Desorbed Gas Composition History

Sample 41680-4 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC₄	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.89048	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.10952	0.00000	1.00000
0.1078	0.89048	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.10952	0.00000	1.00000
0.1485	0.93243	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.06757	0.00000	1.00000
0.5797	0.95604	0.00549	0.01648	0.00549	0.00549	0.00549	0.00549	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
0.6986	0.99882	0.00065	0.00000	0.00013	0.00013	0.00013	0.00013	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
1.0000	0.99826	0.00174	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
	Integrated Gas Composition													
	0.95742	0.00191	0.00453	0.00154	0.00154	0.00154	0.00154	0.00000	0.00000	0.00000	0.00000	0.02998	0.00000	1.00000


Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total				
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac				
11/10/2008 19:43:00	0.00299	0.00000	0.00000	0.19404	0.80261	0.00037	0.00000	1.00000				
11/10/2008 23:32:00	0.00500	0.00000	0.00000	0.19462	0.80001	0.00036	0.00001	1.00000				
12/02/2008 08:34:00	0.02605	0.00015	0.00105	0.21246	0.76029	0.00000	0.00000	1.00000				
01/14/2009 09:33:00	0.98426	0.00064	0.00052	0.00335	0.01122	0.00000	0.00000	1.00000				
01/15/2009 16:18:00	0.16181	0.00028	0.00000	0.18287	0.65504	0.00000	0.00000	1.00000				
	Contamination Corrected Desorption Gas Composition History											
			O ₂ , N ₂ , and H ₂ R	emoved								
11/10/2008 19:43:00	0.89048	0.00000	0.00000	0.00000	0.00000	0.10952	0.00000	1.00000				
11/10/2008 23:32:00	0.93243	0.00000	0.00000	0.00000	0.00000	0.06757	0.00000	1.00000				
12/02/2008 08:34:00	0.95604	0.00549	0.03846	0.00000	0.00000	0.00000	0.00000	1.00000				
01/14/2009 09:33:00	0.99882	0.00065	0.00052	0.00000	0.00000	0.00000	0.00000	1.00000				
01/15/2009 16:18:00	0.99826	0.00174	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000				

Sample 41680-4 Desorbed Gas Composition History (Lumped)

Sample 41680-4 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total			
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac			
0.0000	0.89048	0.00000	0.00000	0.00000	0.00000	0.10952	0.00000	1.00000			
0.1078	0.89048	0.00000	0.00000	0.00000	0.00000	0.10952	0.00000	1.00000			
0.1485	0.93243	0.00000	0.00000	0.00000	0.00000	0.06757	0.00000	1.00000			
0.5797	0.95604	0.00549	0.03846	0.00000	0.00000	0.00000	0.00000	1.00000			
0.6986	0.99882	0.00065	0.00052	0.00000	0.00000	0.00000	0.00000	1.00000			
1.0000	0.99826	0.00174	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000			
Integrated Gas Composition											
	0.95742	0.00191	0.01069	0.00000	0.00000	0.02998	0.00000	1.00000			

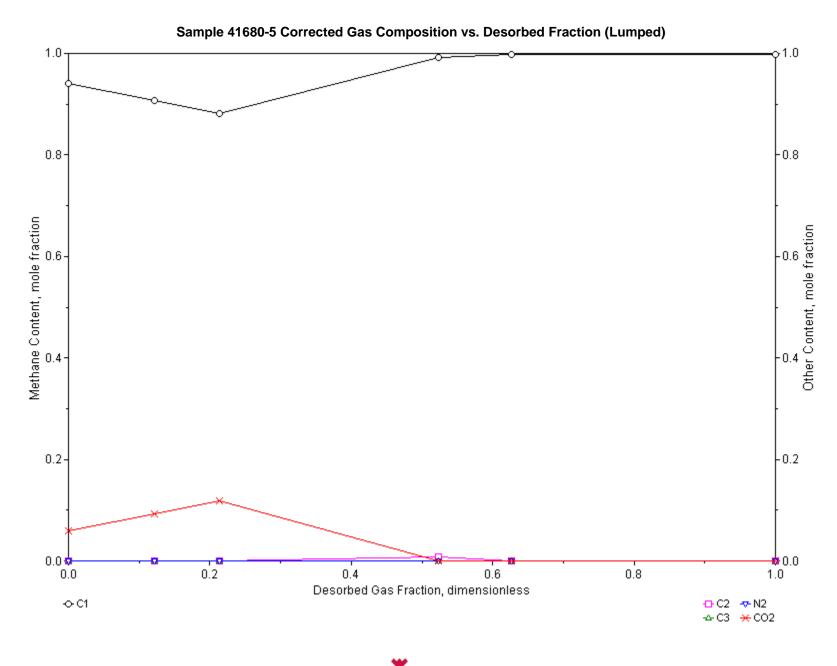
Weatherford

Sample 41680-5 Desorbed Gas Composition History

Date Time	C ₁	C ₂	C₃	iC4	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
mm/dd/yyyy	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol	mol
hh:mm:ss	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac	frac
11/10/2008 20:30:00	0.00278	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.19465	0.80221	0.00028	0.00007	1.00000
11/11/2008 09:04:59	0.00350	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.19441	0.80163	0.00047	0.00000	1.00000
12/02/2008 08:39:00	0.97711	0.00827	0.00000	0.00000	0.00014	0.00014	0.00014	0.00000	0.00000	0.00262	0.01158	0.00000	0.00000	1.00000
01/14/2009 09:38:00	0.97486	0.00056	0.00000	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00531	0.01885	0.00000	0.00000	1.00000
				Contamina	tion Correc	ted Desor	ption Gas (Compositic	on History					
					02	$_2$, N $_2$, and H	l ₂ Removed	k						
11/10/2008 20:30:00	0.90792	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.09208	0.00000	1.00000
11/11/2008 09:04:59	0.88249	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.11751	0.00000	1.00000
12/02/2008 08:39:00	0.99119	0.00839	0.00000	0.00000	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
01/14/2009 09:38:00	0.99900	0.00057	0.00000	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000

Sample 41680-5 Corrected Gas Composition vs. Desorbed Fraction

Desorbed Fraction	C ₁	C ₂	C ₃	iC₄	nC₄	iC₅	nC₅	C ₆	C ₇	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000														
0.0000	0.94153	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.05847	0.00000	1.00000
0.1214	0.90792	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.09208	0.00000	1.00000
0.2133	0.88249	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.11751	0.00000	1.00000
0.5236	0.99119	0.00839	0.00000	0.00000	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
0.6265	0.99900	0.00057	0.00000	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
1.0000	0.99900	0.00057	0.00000	0.00014	0.00014	0.00014	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
	Integrated Gas Composition													
	0.96075	0.00198	0.00000	0.00006	0.00009	0.00009	0.00003	0.00000	0.00000	0.00000	0.00000	0.03700	0.00000	1.00000


Date Time	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total		
mm/dd/yyyy hh:mm:ss	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac		
11/10/2008 20:30:00	0.00278	0.00000	0.00000	0.19465	0.80221	0.00028	0.00007	1.00000		
11/11/2008 09:04:59	0.00350	0.00000	0.00000	0.19441	0.80163	0.00047	0.00000	1.00000		
12/02/2008 08:39:00	0.97711	0.00827	0.00041	0.00262	0.01158	0.00000	0.00000	1.00000		
01/14/2009 09:38:00	0.97486	0.00056	0.00042	0.00531	0.01885	0.00000	0.00000	1.00000		
	Contamination Corrected Desorption Gas Composition History									
			O ₂ , N ₂ , and H ₂ R	emoved						
11/10/2008 20:30:00	0.90792	0.00000	0.00000	0.00000	0.00000	0.09208	0.00000	1.00000		
11/11/2008 09:04:59	0.88249	0.00000	0.00000	0.00000	0.00000	0.11751	0.00000	1.00000		
12/02/2008 08:39:00	0.99119	0.00839	0.00042	0.00000	0.00000	0.00000	0.00000	1.00000		
01/14/2009 09:38:00	0.99900	0.00057	0.00043	0.00000	0.00000	0.00000	0.00000	1.00000		

Sample 41680-5 Desorbed Gas Composition History (Lumped)

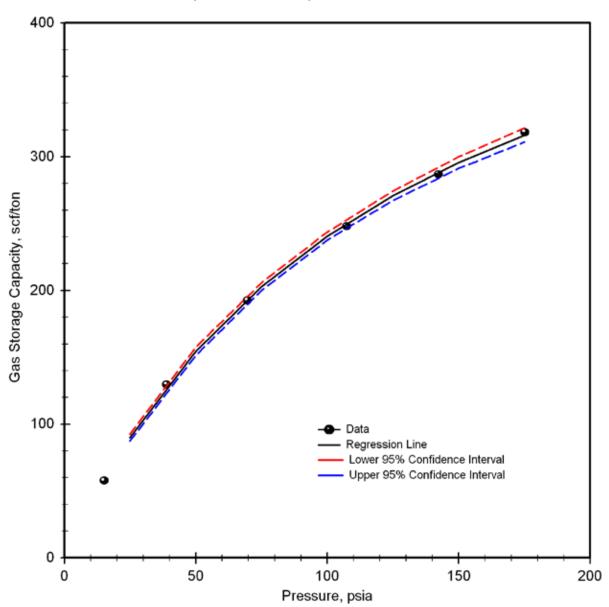
Sample 41680-5 Corrected Gas Composition vs. Desorbed Fraction (Lumped)

Desorbed Fraction	C ₁	C ₂	C ₃₊	O ₂	N ₂	CO ₂	H ₂	Total
vol. fraction	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac	mol frac
0.0000	0.94153	0.00000	0.00000	0.00000	0.00000	0.05847	0.00000	1.00000
0.1214	0.90792	0.00000	0.00000	0.00000	0.00000	0.09208	0.00000	1.00000
0.2133	0.88249	0.00000	0.00000	0.00000	0.00000	0.11751	0.00000	1.00000
0.5236	0.99119	0.00839	0.00042	0.00000	0.00000	0.00000	0.00000	1.00000
0.6265	0.99900	0.00057	0.00043	0.00000	0.00000	0.00000	0.00000	1.00000
1.0000	0.99900	0.00057	0.00043	0.00000	0.00000	0.00000	0.00000	1.00000
Integrated Gas Composition								
	0.96075	0.00198	0.00027	0.00000	0.00000	0.03700	0.00000	1.00000

Appendix IV

Souder, Miller & Associates Highway 151 34-4-39 MW #1 Fruitland Coal

Adsorption Isotherm Results

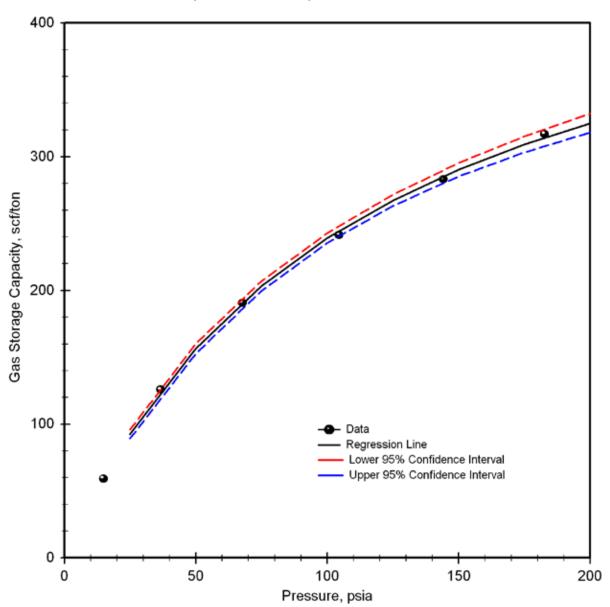

Parameter	Unit	Value						
Top Depth	ft	229.00						
Bottom Depth	ft	230.00						
Isotherm Parameters								
Measurement Gas	-	methane						
Measurement Temperature	°F	60.08						
In-Situ Sample Characterization								
Crushed Density	g/cm ³	1.340						
Moisture Holding Capacity	wt frac	0.0119						
Ash Content	wt frac	0.1362						
Volatile Matter Content	wt frac	0.2749						
Fixed Carbon Content	wt frac	0.5771						
Organic Content	wt frac	0.8450						
Sulfur Content	wt frac	0.0070						
Sulfur-in Ash Content	wt frac	0.0020						
Vitrinite Content	vol frac	0.920						
Inertinite Content	vol frac	0.064						
Liptinite Content	vol frac	0.017						
Rank Parar	neters							
Parr Corrected Volatile Matter Content, daf	wt frac	0.4368						
Parr Corrected Fixed Carbon Content	wt frac	0.5632						
Calorific Value, mmf	BTU/lbm	15,587						
Parr Corrected Calorific Value, mmf	BTU/lbm	15,633						
Langmuir Pa	rameters							
Number of Points	-	6						
Regression Coefficient	-	0.9996						
Langmuir Storage Capacity, daf	scf/ton	638.13						
Langmuir Storage Capacity, In-Situ	scf/ton	543.66						
Langmuir Storage Capacity Range, In-Situ	scf/ton	1.96						
Langmuir Pressure	psia	125.97						
Langmuir Pressure Range	psia	3.03						

Sample 41680-2 Coal Adsorption Isotherm Parameters

Sample 41680-2 Adsorption Isotherm Data

Pressure	Storage Capacity, in-situ
psia	scf/ton
15.056	57.958
38.840	129.783
69.568	192.604
107.294	248.129
142.236	286.951
175.162	318.396

Sample 41680-2 Adsorption Isotherm Data


Parameter	Unit	Value						
Top Depth	ft	271.60						
Bottom Depth	ft	272.30						
Isotherm Parameters								
Measurement Gas	-	methane						
Measurement Temperature	°F	60.08						
In-Situ Sample Characterization								
Crushed Density	g/cm ³	1.431						
Moisture Holding Capacity	wt frac	0.0140						
Ash Content	wt frac	0.1917						
Volatile Matter Content	wt frac	0.2515						
Fixed Carbon Content	wt frac	0.5428						
Organic Content	wt frac	0.7873						
Sulfur Content	wt frac	0.0070						
Sulfur-in Ash Content	wt frac	0.0014						
Vitrinite Content	vol frac	0.939						
Inertinite Content	vol frac	0.055						
Liptinite Content	vol frac	0.007						
Rank Para	neters							
Parr Corrected Volatile Matter Content, daf	wt frac	0.4358						
Parr Corrected Fixed Carbon Content	wt frac	0.5642						
Calorific Value, mmf	BTU/lbm	15,349						
Parr Corrected Calorific Value, mmf	BTU/lbm	15,461						
Langmuir Pa	rameters							
Number of Points	-	6						
Regression Coefficient	-	0.9995						
Langmuir Storage Capacity, daf	scf/ton	638.24						
Langmuir Storage Capacity, In-Situ	scf/ton	506.96						
Langmuir Storage Capacity Range, In-Situ	scf/ton	2.91						
Langmuir Pressure	psia	112.00						
Langmuir Pressure Range	psia	3.19						

Sample 41680-4 Coal Adsorption Isotherm Parameters

Sample 41680-4 Adsorption Isotherm Data

Pressure	Storage Capacity, in-situ
psia	scf/ton
14.798	59.370
36.578	126.023
67.650	190.829
104.451	241.719
144.039	283.243
182.599	317.028

Sample 41680-4 Adsorption Isotherm Data

APPENDIX G: SITE PHOTOGRAPHS

Photo 1: View of Fosset Gulch site before well pad construction.

Photo 2: View of Highway 151 site before well pad construction.

Photo 3: View of drilling operations at the Wagon Gulch site.

Photo 4: View of drilling operations at the Wagon Gulch site.

Photo 5: View of Blow-Out Preventer at the Wagon Gulch site.

Photo 6: View of core barrel for coal core retrieval at the Wagon Gulch site.

Photo 7: View of core barrel for coal core retrieval at the Wagon Gulch site.

Photo 8: View of core barrel sleeve at the Wagon Gulch site.

Photo 9: View of core sample at the Wagon Gulch Site.

Photo 10: View of core sample at the Wagon Gulch site.

Photo 11: View of core samples at the Fosset Gulch site.

Photo 12: View of core samples at the Fosset Gulch site.

Photo 13: View of 4.5" steel casing at the Wagon Gulch site

Photo 14: View of 4.5" steel casing installation at the Wagon Gulch site.

Photo 15: View of cementing operations at the Wagon Gulch site.

Photo 16: View of cementing operations at the Wagon Gulch site.

Photo 17: View of perforating operations at the Wagon Gulch site.

Photo 18: View of perforating operations at the Wagon Gulch site.

Photo 19: View of perforating tools at the Fosset Gulch site.

Photo 20: View of swabbing operations at the Wagon Gulch site.

Photo 21: View of telemetry system at the Highway 151 site.

Photo 22: View of telemetry system installation the Wagon Gulch site

Photo 23: View of the Wagon Gulch site after reclamation.

Photo 24: View of the Wagon Gulch site after reclamation.

Photo 25: View of the Fosset Gulch site after reclamation.

Photo 26: View of the Fosset Gulch site after reclamation.

Photo 27: View of the Highway 151 site after reclamation.

Photo 28: View of the Highway 151 site after reclamation.

APPENDIX H: OPERATIONS AND MAINTENANCE MANUAL

COLORADO OIL AND GAS CONSERVATION COMMISSION COAL BED METHANE MONITORING WELL OPERATION AND MAINTENANCE MANUAL ARCHULETA COUNTY, COLORADO

Souder, Miller & Associates • P.O. Box 2606 • Farmington, NM 87499-2606 612 East Murray Drive • Farmington, NM 87401-6624 • (505) 325-5667 • fax (505) 327-1496

TABLE OF CONTENTS

1.0	NOTIFICATIONS	2
2.0	SAFETY EQUIPMENT AND PRECAUTIONS	2
3.0	EQUIPMENT AND TOOLS	2
4.0	BLOWING DOWN THE MONITORING WELLS	3
5.0	WELL HEAD TRANSDUCER REMOVAL	3
6.0	DOWN HOLE TRANSDUCER REMOVAL	4
7.0	TUBING HEAD REMOVAL	4
8.0	REMOTE TERMINAL UNIT AND TRANSDUCER PROGRAMMING	4

Attachment: In-Situ, Inc. Rugged Reader Operator's Manual

1.0 NOTIFICATIONS

Colorado Oil and Gas Conservation Commission (COGCC) shall be notified prior to site entrance, blowing down wells, well head maintenance, remote terminal unit (RTU) and transducer maintenance for the coal bed methane (CBM) gas monitoring wells located at the Wagon Gulch, Fosset Gulch and Highway 151 well sites. Potential hazards to the environment and public health exist while performing maintenance on CBM wells and proper precautions should be taken.

2.0 SAFETY EQUIPMENT AND PRECAUTIONS

The following are required for entrance to CBM well sites:

- 1. Hard Hat
- 2. Steel Toe Boots
- 3. ANSI 75 rated safety glasses
- 4. Hearing Protection
- 5. Work Gloves
- 6. First Aid Kit
- 7. Fire Extinguisher

The following may be needed for specific tasks while working on CBM well sites:

- 1. Fire Retardant Clothing (FRC)
- 2. Atmospheric Testing Equipment

The following activities are prohibited while working on CBM wells sites:

- 1. No smoking or open flames
- 2. No drugs or alcohol
- 3. No firearms
- 4. No inappropriate behavior

3.0 EQUIPMENT AND TOOLS

The following list of equipment and tools may be needed for proper maintenance of CBM monitoring wells:

- 1. Pipe Wrenches (24" and 36")
- 2. Sledge hammers (2 pound and 7 pound)
- 3. 2 inch ball valve handle
- 4. 3 or 4 inch high pressure hoses
- 5. 4 inch union/coupler (National Pipe Thread, NPT)
- 6. 4 to 3 inch reducer (NPT)
- 7. Minimum of a 100 barrel capacity tank
- 8. Thread Seal
- 9. Teflon Tape

10. Hand Tools

4.0 BLOWING DOWN THE MONITORING WELLS

Prior to performing maintenance on CBM monitoring wells, gas and water pressures must be released from each monitoring well. *Near by property owners shall be notified prior to the blowing down of CBM wells as high noise levels may occur*. In order to release the gas and water pressure from a CBM monitoring well, the bull plug at the end of the 2 inch ball valve must be removed. A 24 inch pipe wrench can be used to remove the bull plug. After bull plug removal, the 2 inch ball valve can be opened. A ball valve handle must be used to open the 2 inch ball valve. Currently all handles have been removed from all the monitoring wells for safety purposes. Attach the handle to the ball valve and open the ball valve to release the gas and water pressure.

While removing the bull plug and prior to opening the ball valve, make sure that all site personnel are not in front of the ball valve orifice. If the ball valve is leaking, high gas and water pressures may exist and can cause serious injury or death. Personnel opening the ball valve shall stand behind the ball valve to open it and shall be wearing hearing protection, eye protection and gloves.

Once the 2 inch ball valve has been opened, allow sufficient time for the monitoring well to depressurize before continuing maintenance.

5.0 WELL HEAD TRANSDUCER REMOVAL

In order to perform maintenance or replacement on the surface well head pressure transducers, the 2 inch by 12 inch threaded nipple must be removed. A 24 inch pipe wrench can be used for removal of the 2 inch nipple. *Caution must be used while removal of the 2 inch nipple so as not to damage the pressure transducer or cable connections.*

Once the 2 inch by 12 inch nipple has been removed from the wellhead, slide the nipple along the transducer's communication cable to gain access to the cable connection and wellhead connection. Disconnect the communication cable from the transducer prior to removing the transducer from the wellhead. The cable connections have a twist locking mechanism. *Hand strength is sufficient for removal. Do not use tools for disconnecting the communication cable from the transducer as that damage may occur.*

Once the transducer's communication cable has been disconnected, slide the 2 inch nipple off of the cable. Next the pressure transducer can be removed from the wellhead. A crescent wrench can be used to remove the transducer from the threaded bull plug attached to the well head.

6.0 DOWN HOLE TRANSDUCER REMOVAL

The down hole pressure transducers at the Wagon Gulch, Fosset Gulch and Highway 151 sites are installed at different depths. Transducer cables are hung from a steel ring that has been secured within the tubing heads. The communication cables are attached to the steel ring by a carabiner. The carabiner must be detached from the steel ring before proceeding to remove the cable and transducer. The communication cable must have a secondary security device to prevent the transducer and cable from falling into the monitoring well while removing. A cable tied to a stationary object is recommended as a secondary security device.

The length of cable and transducer is heavy and may require multiple people to remove entire length.

7.0 TUBING HEAD REMOVAL

SMA recommends that a professional oil and gas wellhead servicing company be used for the removal of monitoring well tubing heads. The servicing company can provide or make arrangements for all the necessary equipment for water/gas control and tubing head removal.

8.0 REMOTE TERMINAL UNIT AND TRANSDUCER PROGRAMMING

The In-situ, Inc. Rugged Reader Operator's Manual is provided in this Appendix. Please refer to operator's manual for programming instructions.

RuggedReader[®] operator's MANUAL

August 2006

Information in this document is subject to change without notice. Copyright © 2006 by In-Situ Inc. All rights reserved. This document contains proprietary information which is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of In-Situ Inc. The information in this document is subject to change without notice. In-Situ Inc. has made a reasonable effort to be sure that the information contained herein is current and accurate as of the date of publication.

In-Situ Inc. makes no warranty of any kind with regard to this material, including, but not limited to, its fitness for a particular application. In-Situ will not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. In no event shall In-Situ Inc. be liable for any claim for direct, incidental, or consequential damages arising out of, or in connection with, the sale, manufacture, delivery, or use of any product.

In-Situ and the In-Situ logo, Win-Situ, TROLL, BaroTROLL, RuggedReader, and RuggedCable are trademarks or registered trademarks of In-Situ Inc. Microsoft, ActiveSync, Excel, Hotmail, MSN, Outlook, PowerPoint, Visual Studio, Windows, Windows Media, the Windows logo, and Windows Mobile are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Acrobat and Reader are registered trademarks of Adobe Systems Incorporated in the United States and/or other countries. Intel and XScale are registered trademarks of Intel Corporation in the United States and/or other countries. Intel and XScale are registered trademarks of Intel Corporation in the United States and/or other countries. Intel and XScale are registered trademarks of Intel Corporation in the United States and/or other countries. Intel and XScale are registered trademarks of Intel Corporation in the United States and/or other countries. By the trademarks of Juniper Systems, Inc. The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

🕲 In-Situ Inc.

Contents

1	INTRODUCTION	.7
	Windows Mobile® 5.0	7
	How to Use This Manual	7
	Conventions	8
	The Anatomy of the RuggedReader	9
	What We Provide	
	Accessories	
	Warranty	
	How to Contact Us	
	To Obtain Repair Service (U.S.)	
-	GETTING STARTED	
-	Step 1: Install the Battery Pack	
	Step 2: Charge the Battery Pack	
	Step 3: Calibrate the Touchscreen	
	Step 4: Install ActiveSync® on a Desktop Computer	
	Step 5: Create an ActiveSync Connection	
	Tips for Your First ActiveSync Connection	
	The Next Step	. 19
3	USING THE HARDWARE	20
	Buttons	. 20
	Power	. 23

	Suspending	23
	Powering Off	23
	Resetting the Device (Soft Reset)	24
	Restoring Factory Defaults (Hard Reset)	25
	Conserving Power	
	The Stylus	
	The Touchscreen	
	LED Signals	32
	Using Peripheral Devices	
	USB Devices	
	Removing the Top Cap	
	Installing a CF or SD Card	
	Reattaching the Top Cap	
	Working with Files on a Peripheral Device	
_		
4	BASIC OPERATIONS	
4	BASIC OPERATIONS	
4	The Today Screen	35
4	The Today Screen The Start Menu	35 36
4	The Today Screen The Start Menu Status Icons	35 36 37
4	The Today Screen The Start Menu Status Icons Soft Keys	35 36 37 37
4	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files	35 36 37 37 38
4	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files	35 36 37 37 38 39
4	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files Closing Running Programs	35 36 37 37 38 39 40
4	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files Closing Running Programs Switching between Running Programs	35 36 37 37 38 39 40 40
4	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files Closing Running Programs Switching between Running Programs Rotating the Screen	35 36 37 37 38 39 40 40 40
	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files Closing Running Programs Switching between Running Programs Rotating the Screen Backing up Data	35 36 37 37 38 39 40 40 40 41
	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files Closing Running Programs Switching between Running Programs Rotating the Screen Backing up Data USING ACTIVESYNC®	35 36 37 37 38 39 40 40 40 41
	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files Closing Running Programs Switching between Running Programs Rotating the Screen Backing up Data USING ACTIVESYNC® Re-establishing a Connection	35 36 37 37 38 39 40 40 40 41 41 42
	The Today Screen The Start Menu Status Icons Soft Keys Exploring Files Working with Files Closing Running Programs Switching between Running Programs Rotating the Screen Backing up Data USING ACTIVESYNC®	35 36 37 37 38 39 40 40 40 41 41 42 44

CONTENTS

Using Win-Situ® Mobile	6	USING IN-SITU SOFTWARE	
Connect the Hardware Launch the Software Connect to the Level TROLL Set the TROLL's Clock Add a Data Site Set up a Data Log Start the Log Download/View the Log Stop the Log Exit Win-Situ Mobile Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software			
Connect to the Level TROLL Set the TROLL'S Clock. Add a Data Site. Start the Log Download/View the Log Stop the Log Exit Win-Situ Mobile. Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL'S Clock. Calibrate Water Quality Sensors Read Parameters. Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		•	
Connect to the Level TROLL Set the TROLL'S Clock. Add a Data Site. Start the Log Download/View the Log Stop the Log Exit Win-Situ Mobile. Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL'S Clock. Calibrate Water Quality Sensors Read Parameters. Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Launch the Software	47
Set the TROLL'S Clock			
Set up a Data Log Start the Log Download/View the Log Stop the Log Exit Win-Situ Mobile Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software			
Start the Log Download/View the Log Stop the Log Exit Win-Situ Mobile Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Add a Data Site	49
Start the Log Download/View the Log Stop the Log Exit Win-Situ Mobile Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Set up a Data Log	50
Download/View the Log Stop the Log Exit Win-Situ Mobile Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method)			
Exit Win-Situ Mobile Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		•	
Using Pocket-Situ 4 Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Stop the Log	51
Connect the Hardware Launch the Software "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Exit Win-Situ Mobile	51
Launch the Software "Find" the TROLL		Using Pocket-Situ 4	52
 "Find" the TROLL Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software 		Connect the Hardware	52
Set the TROLL's Clock Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Launch the Software	52
Calibrate Water Quality Sensors Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		"Find" the TROLL	52
Read Parameters Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Set the TROLL's Clock	53
Log Data Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Calibrate Water Quality Sensors	53
Exit Pocket-Situ Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Read Parameters	53
Using TDG Logger Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Log Data	54
Transferring Files from the RuggedReader to a Desktop/Laptop PC Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Exit Pocket-Situ	54
Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Using TDG Logger	55
Using Win-Situ® Sync (Automatic Transfer) Using Microsoft ActiveSync (Manual Transfer) After the Transfer (either method) Reinstalling the In-Situ Software		Transferring Files from the RuggedReader to a Desktop/Laptop PC	57
After the Transfer (either method) Reinstalling the In-Situ Software			
Reinstalling the In-Situ Software		Using Microsoft ActiveSync (Manual Transfer)	58
5		After the Transfer (either method)	59
Installing from a CAB File		Reinstalling the In-Situ Software	59
		Installing from a CAB File	60

CONTENTS

7 CARE AND MAINTENANCE	61
Storing the RuggedReader and Battery Packs	
Protecting against Mechanical Shock	
Safely Using the Battery Pack	
Safely Using the Wall Charger	
Replacing the Battery Pack	
Using the RuggedReader in Extreme Temperatures	
Cleaning the RuggedReader	
Repairing the RuggedReader	
Disposing of the RuggedReader and Batteries	
Environmental Hazards	
8 TROUBLESHOOTING	
APPENDIX A: SPECIFICATIONS	
9-pin Serial Port Pinouts	74
APPENDIX B: CERTIFICATIONS & REGULATORY INFORM	ATION 75
Regulatory Information	75
Declaration of Conformity	
APPENDIX C: PROGRAMS & SETTINGS	
Applications in the Programs Menu	
Programs Installed by In-Situ Inc.	
Accessing Programs on the Getting Started CD	
Settings	

🕸 In-Situ Inc.

1 INTRODUCTION

The ultra-rugged RuggedReader[®]—rock solid and field ready in the most extreme environments—is your reliable field companion. Designed for Windows Mobile[®] 5.0, your RuggedReader features a wide variety of application software choices, including Win-Situ[®] Mobile, control software for In-Situ's Level TROLL[®], and Pocket-Situ 4 for In-Situ's MP TROLL[®] 9500, miniTROLL[®], and MP TROLL[®] 9000.

WINDOWS MOBILE® 5.0

The Windows Mobile 5.0 operating system, designed for mobile devices, provides familiar Microsoft programs like Outlook® Mobile. Many Windows applications are compatible with Windows Mobile. You can use Windows Mobile to access Word, Excel®, and PowerPoint® files on your mobile device, or you can use Windows Mobile to access your e-mail messages and contacts from your Microsoft Outlook account.

More information about Windows Mobile 5.0 can be found at http:// www.Microsoft.com/windowsmobile/5/default.mspx.

HOW TO USE THIS MANUAL

This operator's manual is designed as both a start-up guide and a permanent reference for the RuggedReader's features and applications.

SECTION 1: INTRODUCTION

Section 1: Introduction to the RuggedReader® and to In-Situ Inc. — Anatomy of the RuggedReader — Accessories — Warranty — Instrument Repair & Return Recommendations

Section 2: Getting Started — Installing & charging the battery pack — Installing Microsoft ActiveSync®

Section 3: Using the Hardware — Buttons — Power — Stylus — Touchscreen — CF and SD cards

Section 4: A quick overview of basic software operations in the Windows Mobile operating system

Section 5: Using ActiveSync®

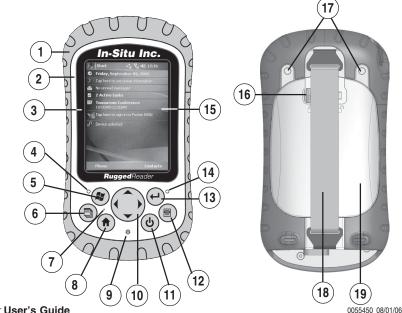
Section 6: Using In-Situ Software — Win-Situ Mobile — Pocket-Situ 4 — TDG Logger — Transferring data files from the RuggedReader to a desktop computer

Section 7: Care and Maintenance of the RuggedReader

Conventions

Throughout this operator's manual you will see the following symbols:

The check mark highlights a tip about a convenient feature of the RuggedReader or its software

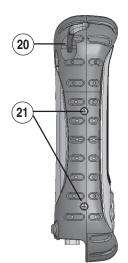


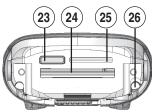
The exclamation point calls your attention to a requirement or important action that should not be overlooked

THE ANATOMY OF THE RUGGEDREADER

- 1 Elastomer overmold
- 2 Magnesium case front
- 3 Display bezel
- 4 Charge LED (page 32)
- 5 Start menu button (page 21)
- 6 Applications Manager button (page 21)
- 7 Microphone
- 8 Home button (page 21)
- 9 Speaker
- 10 Four-way directional button (page 21)

- **11** Power button (pages 23-24)
- 12 Context menu button (page 21)
- 13 Enter button (page 21)
- 14 Notification LED (p. 32)
- 15 Touchscreen/display (pages 30-31)
- 16 Battery door latch
- 17 Accessory attachment points
- 18 Hand strap
- 19 Battery door


RuggedReader User's Guide


20 Stylus

- 21 Main screws (do not remove)
- 22 Top cap screws (captive) (page 33)
- 23 Slot for future accessory
- **24** Compact Flash card slot (page 33)
- 25 Secure Digital I/O card slot (page 33)
- 26 Stylus slot
- 27 USB Client (mini B)
- 28 12V DC jack
- 29 9-pin serial port
- 30 USB Host (mini A)
- 31 Cable routing channel

Top view without top cap

Communications module

WHAT WE PROVIDE

Accessories:

- Battery
- Stylus
- USB communications cable
- End User License Agreement (EULA)
 Screen Protectors (2)
- Wall charger & 4 plugs
- 12V auto adapter
- Dashboard accessory pad

Installed In-Situ software:

- Win-Situ Mobile (Pocket-Situ 5), for use with Level TROLLs
- Pocket-Situ 4, for use with miniTROLLs, TROLL 9500s, and TROLL 9000s
- TDG Logger, for use with T506 Total Dissolved Gas probes

Reference Tools:

- A quick start guide
- Getting Started CD from Microsoft (installs ActiveSync®)
- In-Situ Software/Resource CD (includes user's guide)

Accessories

Accessory / Replacement Part	Catalog No.
12V Auto Charger Adapter	55410
Lithium-Ion Battery Pack	55420
USB Communication Cable	55430
Hand Strap	55440
Stylus	55460
Screen Protectors (2)	55470
CF Card, 512 MB	55480
CF Card, Bluetooth	55490
Dashboard Accessory Pad	59250

Warranty

In-Situ Inc. warrants that this product shall be free from defects in materials and workmanship for a period of <u>Two Years</u> when properly installed and operated in accordance with the instruction manuals provided by, or available through, In-Situ Inc., and when used within the design specifications for the product. The warranty period begins on the day the product is shipped to the customer or distributor and is non-transferable.

In-Situ Inc. agrees to repair, or, at its option, replace at no charge, components that have been proven to be defective during the warranty period, provided that the warranted product is shipped, postage prepaid, to In-Situ Inc.

These warranties do not apply to any product that has been damaged either by negligence, accident, acts of God, War, or misuse by any other person. Nor do these warranties apply to any product that has been repaired, altered, serviced, or modified by an unauthorized person.

HOW TO CONTACT US

Technical Support: 800 446 7488 Toll-free 24 hours a day in the U.S. and Canada

Address:

Phone:

Internet[.]

e-mail:

Fax:

In-Situ Inc. 221 E. Lincoln Ave. Fort Collins, CO 80524 USA 970 498 1500 970 498 1598 www.in-situ.com support@in-situ.com

IMPORTANT: Contact In-Situ (see next page) for a Return Materials Authorization (RMA) number and shipping instructions before shipping the device to In-Situ Inc.

SECTION 1: INTRODUCTION

TIP: To locate your device's serial number,

tap Start > Settings > System tab > System Config.

TIP: Please keep your RMA number for future reference.

To Obtain Repair Service (U.S.)

If you suspect that your RuggedReader is malfunctioning and repair is required, you can help assure efficient servicing by following these guidelines:

1. Call or e-mail In-Situ Technical Support (support@in-situ.com). Have the product model and serial number handy.

To locate the device serial number and other identification information:

- a. Tap Start > Settings.
- b. In the Settings window, tap the System tab.
- c. Scroll down and tap System Config.
- Be prepared to describe the problem, including how the RuggedReader was being used and conditions noted at the time of the malfunction.
- If Tech Support determines that service is needed, they will ask that your company pre-approve a specified dollar amount for repair charges. When the pre-approval is received, Tech Support will assign an RMA (Return Material Authorization) number.
- Carefully pack your RuggedReader in its original shipping box, if possible.
- 5. Mark the RMA number clearly on the outside of the box with a marker or label.
- 6. Send the package, shipping prepaid, to

In-Situ Inc. ATTN: Repairs 221 E. Lincoln Ave. Fort Collins, CO 80524 The warranty does not cover damage during transit. In-Situ recommends the customer insure all shipments. Warranty repairs will be shipped back prepaid.

Outside the U.S.

Contact your international In-Situ distributor for repair and service information.

2 GETTING STARTED

In-Situ Inc.

TIP: If you used the Quick Start guide to set up your RuggedReader, you completed Steps 1-5. This chapter repeats the installation instructions in the RuggedReader Quick Start guide. If you used the Quick Start guide to set up your RuggedReader, you completed Steps 1-5.

STEP 1: INSTALL THE BATTERY PACK

- Slowly unhook and lift up the bottom latch of the hand strap. CAUTION: Do not let the hand strap hook hit the display.
- 2. Press on the battery door and slide the latch to the right to unlock it.
- 3. Remove the battery door.
- 4. Insert the battery pack so battery contacts match up.

RugaedReader User's Guide

- Insert the tabs on the bottom of the battery door into the case slots. Make sure the door latch is all the way to the right and properly aligned. Then close the battery door.
- Press firmly on the battery door and slide the latch to the left to lock it.
- 7. Reattach the hand strap.

STEP 2: CHARGE THE BATTERY PACK

- 1. Mount the plug onto the wall charger (if it is not already assembled).
- 2. Plug the wall charger into an outlet.
- 3. Plug the other end of the wall charger into the DC jack on the RuggedReader. The device turns on after a few seconds, and a flashing red light appears to signal the device is charging.
- 4. Charging the RuggedReader for 4.5 hours charges it up to 95%. Let the device charge for 6 hours to get a full charge.

STEP 3: CALIBRATE THE TOUCHSCREEN

When you first power your RuggedReader, or after a device reset, you will be prompted to calibrate the touchscreen. Using the stylus, follow the instructions on the screen.

To protect the touchscreen, we recommend that you apply a screen protector. See Protecting the Touchscreen in Section 3.

here

STEP 4: INSTALL ActiveSync® ON A DESKTOP COMPUTER

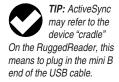
Windows Mobile 5.0 requires that you use ActiveSync 4.1 or greater. The Getting Started CD installs ActiveSync 4.1 on

your desktop computer.

1. Insert the Getting Started CD into your desktop computer.

The CD runs automatically.

The options presented will differ depending on whether ActiveSync is currently installed on your computer.


2. Follow the directions on the screen to install the latest version of ActiveSync on your desktop computer.

STEP 5: CREATE AN ActiveSync CONNECTION

Install ActiveSync on your desktop computer before creating a connection.

- Plug USB Client end (mini B) of the USB communications cable into your RuggedReader when instructed by ActiveSync.
- 2. Plug the USB Host end (full size A) of the USB communications cable into your desktop computer.
- 3. Establish an ActiveSync partnership by following the instructions on the desktop computer screen.

ActiveSync before attaching the USB cable to the desktop PC or to the RuggedReader.

TIP: Multiple

will not

connect multiple devices to your desktop computer,

connect each as a quest.

CAUTION:

zation partnership, be sure

to leave the "Files" option

Setup Wizard. A file in the

synchronization folder on

the desktop computer can

name on the

RuggedReader.

overwrite a file of the same

unchecked in the Svnc

When setting up

a full synchroni-

synchronize with ActiveSync on the same

desktop computer. To

RuggedReaders

Tips for Your First ActiveSync Connection

To use In-Situ's RuggedReader software, we recommend you set up a "Guest" connection in ActiveSync.

To connect as a "Guest." just click Cancel on the first page of the Sync Setup wizard. ActiveSync then recognizes your device as a Guest.

Setting up as a Guest creates a temporary relationship with a desktop

computer. Each time the device connects to the desktop, you need to set it up as a Guest by clicking Cancel at the first screen of the Sync Setup Wizard.

Synchronization of Pocket-Situ 4 or Win-Situ Mobile (Pocket-Situ 5) data files is handled by an In-Situ utility called "Win-Situ® Sync," which automates the transfer of data files from your RuggedReader to the Win-Situ working directory on your desktop PC. Even with a full synchronization partnership these files are not synchronized automati-

cally by ActiveSync. For information on these In-Situ programs, see Section 6.

The alternative to a Guest connection is a full synchronization partnership. You can set up Contacts, Calendar, E-mail, Tasks, etc. to automatically synchronize whenever ActiveSvnc makes a connection. Notes do not synchronize, and Files synchronize one way-from the desktop computer to the RuggedReader.

Welcome to the Pocket PC Sync

Setup Wizard To set up a sync relationship between this computer and your Pocket PC, click Next. If you click Cancel, you can still · Copy and move files between your Pocket PC and · Add and remove programs on your Pocket PC

THE NEXT STEP

You are now ready to use your RuggedReader.

- To find out about hardware features—buttons, touchscreen, stylus continue to Section 3
- ▶ For Windows Mobile software features, go to Section 4
- For details on Microsoft ActiveSync, check out Section 5
- ➤ To start using In-Situ's RuggedReader applications to talk to your In-Situ devices, turn to Section 6

🕸 In-Situ Inc.

3 USING THE HARDWARE

This chapter describes the hardware components of the RuggedReader:

- Buttons
- Power Management: suspending, powering off, and resetting the RuggedReader
- Stylus
- Touchscreen
- LEDs signals
- Peripheral Devices (CF and SD cards, USB drives)

BUTTONS

The following chart shows the names and functions of each button on the keypad.

Button	Name	Function
	Start menu button	Provides a menu of applications
	Applications Manager button	Lets you switch between or close running applications; allows you to view memory allocations
	Home button	Returns you to the Today screen
	Context menu button	Displays the context menu related to the item selected (similar to a right-click on a desktop computer)
	Enter button	Enters the selected soft key or option
٩	Power button	Turns the RuggedReader on and off, resets, suspends (see more details in the Power button section)
	Four-way directional button	Allows you to navigate

Customizing Button Functions

Each button performs a specific function. You can customize the function of the following four buttons to open programs or perform shortcuts:

- Start menu button (Button 1)
- Applications Manager button (Button 2)
- Home button (Button 3)
- Context menu button (Button 4)

To reassign a program or shortcut to a button:

- 1. Tap Start > Settings > Personal tab > Buttons. A list of buttons and their current assignments is displayed on the Program Buttons tab.
- 2. Tap the button you want to reassign.

- In the Assign a program box, tap the program or shortcut you want to assign to the button.
- 4. Tap OK.

 Select a butt 	on:
Button	Assignment
Button 1	<start menu=""></start>
Button 2	Applications Manager
Button 3	<today></today>
🖥 Button 4	<context menu=""></context>
<scroll left=""> <scroll right:<="" td=""><td>,</td></scroll></scroll>	,
<scroll up=""></scroll>	
<start menu<="" td=""><td>2</td></start>	2
<today> <start menu<="" td=""><td></td></start></today>	

assigned to the Enter button, power button, and Four-way directional button cannot be customized.

RuggedReader User's Guide

0055450 08/01/06

	TIP: If the device
	suspends while it
	is charging, the
flashing r	ed light
disappea	rs. However, the
device co	ntinues to charge.

TIP: The RuggedReader suspends

automatically after a specified period of time with no activity. To change this automatic timeout, tap Start > Settings > System tab > Power > Advanced tab.

TIP: The device cannot be powered off while

it is plugged into the wall charger.

POWER

The power button allows you to power on, suspend, power off, and reset the device. A series of keypad actions lets you restore factory defaults to the registry or to the whole device. Below are instructions for each action.

Suspending

Suspending the RuggedReader is different from powering it off:

- Suspending the device puts it to sleep, and when it is turned back on, the device remembers where it was. Some battery power is used.
- Powering off the device closes all programs and turns off all of the power. No battery power is used.

We recommend suspending your device if you want to resume your task or if you plan to use the device on a daily basis.

- 1. To suspend your device, press the power button briefly and release.
- 2. To resume the device from suspend mode, press the power button again.

Powering Off

Powering off ends all programs and removes power from all system components except for the real-time clock. Unlike suspend mode, the device resets when it is powered on again.

To preserve battery power, we recommend you power off the device if it will be left unused for two weeks or longer.

To power off the RuggedReader:

- 1. Save your open files and close any running programs.
- 2. Press (b) until the power button menu appears.
- 3. Tap Power Off.

The keypad backlight stays on for a few

seconds after the device shuts off. Until the keypad backlight turns off, the device cannot be powered on again.

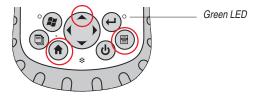
To power on your RuggedReader, hold down (b) until the green notification light appears. Introductory splash screens will be displayed, then the Today screen. This process takes about a minute.

Resetting the Device (Soft Reset)

Some programs require you to reset your device during installation. Follow the steps below to reset the RuggedReader:

- 1. Save open files and close any running programs.
- 2. Press (b) until the power button menu appears.
- 3. Choose Reset.

If your device is locked up, you can reset it without the power button menu. Just press the power button for 10 seconds or until the screen goes dark. After a few seconds, the device turns on again.



Restoring Factory Defaults (Hard Reset)

WARNING: Restoring the device to its original factory state will permanently erase data saved on the device, software installed by In-Situ Inc. (Win-Situ Mobile, Pocket-Situ 4, TDG Logger), any software you installed, and any changes you made to the device, including settings changes. Follow the steps below to restore the hard drive, settings, and icons to their original factory state on your device. WARNING! Restoring the device to its original factory state will permanently erase data saved on the device, any software you installed, and any changes you made to the device, including settings changes.

To restore the device to its original factory state, follow these steps:

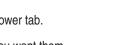
- Reset the device from the power button menu or by holding down the power button () until the display goes dark.
- 2. When the green LED light appears on the front of the RuggedReader, simultaneously press and hold the following buttons for several seconds: the Home button, the up arrow on the Four-way directional button, and the Context menu button.

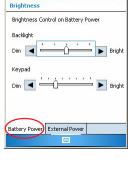
3. Hold the buttons until the RuggedReader splash screen appears and then disappears. Factory settings are restored automatically.

Conserving Power

The RuggedReader has several settings that let you save battery power.

Backlight


To dim or turn off the display and keypad backlights:


- 1. Tap Start > Settings > System tab > Brightness.
- 2. Select the Battery Power tab.
- Drag the backlight slider slightly to the left to dim the backlight, or all the way to the left to turn it off. If the backlight does not turn off completely, tap on the arrow to the left of the Backlight slider.
- 4. Tap OK.

Adjusting the Backlight Timer

By default, the display and keypad backlights turn off after one minute of inactivity. You can adjust the time when the backlight turns off:

- 1. Tap Start > Settings > System tab > Backlight.
- 2. Select the Battery Power tab.
- 3. Set the options as you want them.
- 4. Tap OK.

Im # € 8:42 ok

Start

Automatic Suspend

By default, the RuggedReader will suspend automatically after three minutes of inactivity when on battery power.

To adjust the time when the device suspends, follow these steps:

- 1. Tap Start > Settings > System tab > Power.
- 2. Select the Advanced tab.
- 3. Adjust the device timeout as desired.
- 4. Tap OK.

On battery power: Turn off device if used for	not 3 minutes
On external power Turn off device if used for	not 5 minutes

THE STYLUS

Like the left button on a desktop computer mouse, the stylus is a tool that lets you select items and enter data. Like the right button, the stylus lets you perform shortcuts like cutting and pasting. Instructions for these tasks are listed in the chart below.

The stylus is stored in an open slot at the top of the device. A hole in the end allows you to attach a lanyard.

To do this	Follow these steps
Select an item	Tap once
Enter data	See Entering Information on the following page
Open an item or file	Tap the item or file
Open a context menu for an item	Tap and hold the item. The context menu appears.
Cut or copy	1. Tap and hold 2. Select Cut or Copy from the context menu
Paste	 Tap and hold the area where you want to paste Select Paste from the context menu
Drag and drop	 Tap the item(s) Drag the item(s) to the destination Lift up the stylus
Select multiple items	Drag the stylus over the items

Entering Information

You have several options for entering information into your RuggedReader using the stylus.

On-screen Keyboard utility (the default input method)

Letter Recognizer—recognizes character strokes and gestures

Block Recognizer—recognizes letters from single strokes

Transcriber—recognizes cursive, print, or mixed handwriting

When you are ready to enter text, you can switch from the default input method (keyboard) by following these steps:

- On the bottom center of the screen, tap the arrow next to the input method icon
 If the arrow is not displayed, tap the input method icon, then tap the arrow.
- The input method menu appears, as shown here. Tap the input method you want from the list of options.
- 3. Using the selected input method, enter your text.

🖰 All Fol	ders 🗸	Name
I	Ontions	
123 1 2 Tab 9 4	Options Block Recogniz • Keyboard	zer - = -

method, go to Start > Settings > Input and choose the input method from the Input window.

THE TOUCHSCREEN

Protecting the Touchscreen

The touchscreen is sealed to protect your device against water and dust. Protect your touchscreen from impact, pressure, or abrasive substances that could damage it. To further protect the touchscreen, apply one of the adhesive screen protectors that came with your RuggedReader. We recommend that you apply a new screen protector every 30 days. Extra screen protectors are available from In-Situ Inc. (catalog no. 55470).

To apply a screen protector, follow these steps:

- 1. Make sure the RuggedReader screen is free of oils and dirt. You can wipe it with a microfiber cloth.
- 2. Peel back the paper liner from the screen protector, exposing approximately one inch.
- Align bottom corners of the screen protector with the RuggedReader screen, sticky side down.
- 4. Smooth the screen protector while peeling back the liner, working out air bubbles as you go. Continue smoothing until the paper liner is removed.

TIP: Some air bubbles may still be visible, but

they fade away in a short time. You can use a credit card to gently push out any excess air.

Calibrating the Touchscreen

If the touchscreen is not responding accurately to stylus taps, try calibrating it manually:

1. Tap Start > Settings > System tab.

2. Scroll down and tap on the Screen icon.

- In the Screen Settings window, select the Align screen button.
- 4. Follow the directions on the display to calibrate the touchscreen.
- 5. After you calibrate the touchscreen, the Screen window appears again. Click OK to exit the screen.

LED SIGNALS

The RuggedReader signals events and processes using LEDs.

Charge LED (Red)

This red light appears to the left of the Start menu button on the keypad.

Flashing : battery is currently charging Solid : wall charger is connected but battery is fully charged

When the device is suspended or powered off, the charge LED does not appear.

Notification LED (Green)

The green LED is located to the right of the Enter button on the keypad. It appears briefly when you power on the unit after the device is reset or restored to factory defaults.

USING PERIPHERAL DEVICES

The RuggedReader accepts several peripheral devices.

- The USB Host (mini A) accepts devices like USB flash drives and keyboards.
- The Compact Flash (CF) and Secure Digital (SD) card slots accept memory cards and SDIO cards, such as GPS, modem, and Bluetooth cards.

USB Devices

To install a USB device, plug the mini end of a USB communications cable into the USB Host (labeled A on your device). You may need to use a USB mini-to-full size adapter.

TIP: To be compatible with Windows Mobile

5.0, some USB serial devices require drivers. Refer to your USB device's manual or contact the manufacturer to determine compatibility.

SECTION 3: USING THE HARDWARE

CAUTION: When the top cap is removed, the RuggedReader is not sealed. Avoid exposing the device to moisture when the top cap is removed.

TIP: After removing a card,

wait at least 6 seconds before inserting the same or another card. The RuggedReader needs this time to properly identify and use the newly inserted card. If a card is reinserted too quickly, the device may need to reset. To minimize this problem, close all programs before changing or reinserting a card.

Removing the Top Cap

The removable top cap protects the RuggedReader and storage cards. To remove the top cap:

- 1. Remove the stylus.
- Unscrew the top screws until you can slide the top cap off. The screws remain attached to the top cap.
- 3. Pull off the top cap.

Installing a CF or SD Card

Remove the top cap as above and insert the card. The system should automatically detect and use the card. If the card is not recognized, try the following:

- Install an appropriate driver.
- Consult the user's guide that came with the card.

Reattaching the Top Cap

- 1. Make sure the hand strap is attached to its top latch.
- 2. Place the top cap over the case. Be sure the tabs are slotted into the sides of the case.
- 3. Use a screwdriver to turn the screws until they are firmly in place.

Note: Once the top cap rests against the magnesium case front, the screws become harder to turn. Apply an extra $\frac{1}{4}$ to $\frac{1}{2}$ turn to properly seal the top cap.

CF card slot

Working with Files on a Peripheral Device

You can run programs located on a peripheral device, copy files from a peripheral device onto your RuggedReader, and back up files from the RuggedReader onto a peripheral device. Use File Explorer to find, run, open, and copy these files as you would other files on the RuggedReader. See Exploring Files in Section 4.

Tip: To access a CF or SD card in File Explorer, be sure to go all the way to the top (My Device) level:

- 1. Tap Start > Programs > File Explorer.
- If My Device does not already appear as the current directory, tap on the arrow next to the directory that appears, then select My Device from the drop-down menu.

File Explorer at My Device Level

4 BASIC OPERATIONS

This section covers things you need to know to perform everyday tasks on your RuggedReader.

THE TODAY SCREEN

The Today screen is the default screen you see when your device powers on. From the Today screen you can view or select

- Today's date
- Owner information
- Messages
- Tasks

🕅 In-Situ Inc.

Upcoming appointments

The Today screen allows you to lock or unlock your device. Locking the device disables your screen for easy cleaning.

- To lock the device, simply tap on the words "Device unlocked."
- To unlock the device, tap on the word "Unlock" on the two screens that appear.

TIP: To access the Start menu, tap the Start

menu icon **figistant** in the top left corner of the screen, or press the Start menu

THE START MENU

The Start menu is the main access point to all programs, files, and settings in Windows Mobile. A description of each Start menu option follows.

- Today. The default RuggedReader display
- Calendar. Appointments and events
- Contacts. Contact information for your colleagues

- Field PC Tutorial. Describes basic procedures (e.g., replacing batteries) for easy reference
- Microsoft Internet Explorer. Internet browser
- Messaging. This e-mail client allows you to send and receive e-mail from Microsoft Outlook using ActiveSync on your desktop computer. With a direct Internet connection, you can adjust Messaging to send email directly from the RuggedReader
- Windows Media Player. Plays audio and video files
- **Running programs.** If a program is running, it is listed on the Start menu. For example, in the picture above, Notes and PowerPoint Mobile are running. Tap on the program name to open the application
- **Programs.** Opens the Programs menu window, where you can view and access installed programs. To run a program, tap on it. For a list of the Programs installed on your RuggedReader, see Appendix C
- **Settings.** Displays three settings tabs: Personal, System, and Connections. For the location of specific settings, see the table in Appendix C. To change your settings, tap on the setting you want to change, adjust the setting controls, tap OK

 Help. Windows Mobile help is context-sensitive—the help screen information is directly related to what you are doing on the device. For some programs, you can open the program first, then tap Start > Help

STATUS ICONS

Status icons on the top line show the status of operations.

lcon	Name	Function
0	Charge indicator, or	Shows device is charging
	Battery capacity	Tap to view remaining power
4	Speaker	Tap to control volume
Ð	Applications Manager	Tap to switch or close programs
	ActiveSync Connection	Shows connection status

For an additional list of icons and functions, Tap Start > Help, select *Overview of the Today screen*, tap *What do those status icons indicate?*

SOFT KEYS

These context-sensitive keys appear as words, buttons, or tabs on the menu bar. Tap on these keys to perform actions or open menus. Here you see soft keys on the Today screen.

EXPLORING FILES

Use File Explorer to explore files stored on the RuggedReader or on a peripheral device:

- 1. Tap Start > Programs > File Explorer. File Explorer launches.
- 2. The current directory appears on the top line. To browse a different directory, do one of the following:
 - Tap the arrow next to the directory name, select the one you want from the drop-down list, or
 - Tap the "Up" soft key to go up a level.

My Device is the top-level directory on the RuggedReader (the device drive) and allows you to explore all files, including those stored on a properly installed CF or SD card.

3. Navigate the file directory by tapping on the folders and files you want.

File Explorer

Working with Files

Locate the file you want in File Explorer, as described on the previous page.

- To run a program, tap it once.
- To manipulate a file—copy, cut, delete, rename—do one of the following:
 - Use the "right-click" context menu: hold the stylus on a file until a pop-up menu appears, then tap the action you want, or
 - Use the "Menu" soft key: select the file, tap the "Menu" soft key at the bottom of the screen, tap Edit, tap an action.
- To manipulate multiple files, drag the stylus over the files. Once selected, use the context menu or the "Menu" soft key to choose an option.
- To paste a copied file or files, first navigate to the destination folder (My Device, CF card, SD card, My Documents, etc.). Then do one of the following:
 - Tap and hold the stylus on the white space below the existing files until the pop-up menu appears, select Paste, or
 - Tap the folder, tap the "Menu" soft key, tap Edit > Paste.

CLOSING RUNNING PROGRAMS

To free memory and allow the device to run faster, close programs that are not being used:

1. Tap on the Applications Manager icon 📵 at the top of the screen or

press the Applications Manager button

- 2. Select the program you want to close.
- 3. Tap Stop. Or close all running programs by tapping Stop All.

SWITCHING BETWEEN RUNNING PROGRAMS

1. Tap on the Applications Manager icon 📳 or press the Applications

Manager button (

- 2. Select the program you want to switch to.
- 3. Tap Activate. The program comes to the forefront.

ROTATING THE SCREEN

The RuggedReader can show information in portrait or landscape view. To change the orientation:

- 1. Select Start > Settings > System tab > Screen.
- 2. Choose from three screen orientations:

Portrait, Landscape (right-handed), or Landscape (left-handed).

The buttons automatically adjust for the screen orientation.

BACKING UP DATA

Your RuggedReader's non-volatile flash memory is designed to protect your data. However, it is still a good idea to back up your work regularly by saving information to a desktop computer or to a Compact Flash (CF) or Secure Digital (SD) card.

Backing up to a Desktop Computer

Use ActiveSync on the desktop computer. Follow the steps in Section 5 under the heading Transferring Files To & From the RuggedReader.

Backing up to a CF or SD card

Use File Explorer on the RuggedReader. See the steps earlier in this section.

5 USING ActiveSync[®]

The Getting Started section of this manual explained how to create an ActiveSync connection between your RuggedReader and your desktop computer. This section describes these ActiveSync tasks:

Reconnecting

In-Situ Inc.

- Exploring the RuggedReader from a desktop computer
- Transferring files to and from the RuggedReader

RE-ESTABLISHING A CONNECTION

To re-establish an ActiveSync connection, follow these steps:

- 1. If you plan to charge the RuggedReader while it is connected in ActiveSync, plug the wall charger into the RuggedReader now.
- 2. Plug the USB Client end (mini B) of the USB communications cable into your RuggedReader.
- Plug the USB Host end (full size A) into your desktop computer.
- ActiveSvnc automatically detects the device.

TIP: Microsoft ActiveSvnc version 4.1 or

later is required to connect to the RuggedReader. This is supplied on the Getting Started CD. See installation instructions in Section 2 of this manual.

TIP: If your device has trouble

connecting, check firewall settings, remove laptop from docking station if attached, check the Microsoft website for Windows Mobile/Active Sync issues.

- a. If you have not connected before or connected as a Guest, the Pocket PC Sync Setup Wizard is displayed. Do one of the following:
 - To connect as a Guest (recommended), click Cancel. You are now connected as a Guest.
 - To set up a full synchronizing partnership, click Next and select the items to synchronize (DO NOT INCLUDE Files and Notes)

b. If you created a full synchronizing partnership the first time you connected, ActiveSync synchronizes the items you selected.

A guest connection is a temporary relationship with a desktop computer. Each time the device connects to the desktop, you need to set it up as a guest by cancelling the Pocket PC Sync Setup Wizard.

If Win-Situ Sync is installed on the desktop PC, it may launch automatically when ActiveSync detects the connection. You can disable this automatic launch if you want. See Using Win-Situ Sync in Section 6.

EXPLORING THE RUGGEDREADER FROM THE DESKTOP COMPUTER

You can explore and manipulate files on the RuggedReader from the desktop computer using ActiveSync. To explore the RuggedReader, follow these steps:

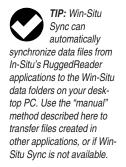
1. Connect the RuggedReader to the desktop and re-establish an ActiveSync Guest connection or partnership.

😣 Microsoft ActiveSync	
Eile View Iools Help	
💮 Sync 🧭 Schedule 📡 Explore	
Guest	
Connected	C
	Show Details 🛠

Once connected, the Rugged

Reader acts like a new drive called "Mobile Device" on the desktop computer.

2. To access the new "Mobile Device" drive (RuggedReader) from the desktop computer, click Tools > Explore Device in the ActiveSync window on your desktop computer.


A list of folders appears, similar to File Explorer.

Double-click on My Windows-Mobile Based Device to see the folders on your RuggedReader.

From the list of folders, you can cut, copy, rename, and delete files, and you can transfer files to the desktop computer. See the following page for details.

TRANSFERRING FILES TO & FROM THE RUGGEDREADER You can copy or move files between the RuggedReader and a desktop

computer using ActiveSync. File transfer is done <u>from the desktop</u> <u>computer side</u>.

To transfer files from the RuggedReader to the desktop computer:

- 1. Connect the RuggedReader to the desktop and re-establish an ActiveSync Guest connection or partnership.
- In the ActiveSync window on your desktop computer, click the Explore icon on the toolbar or select Explore Device from the ActiveSync Tools menu.

- 3. On the desktop computer, open My Computer or Windows Explorer.
- In the ActiveSync window, navigate to the file(s) or folder(s) you want to copy or move, select them, right-click, and select Copy or Cut from the pop-up menu.
- 5. In My Computer or Windows Explorer on the desktop computer, navigate to the folder where you want to place the files, right-click on a blank area of the folder and select Paste from the pop-up menu.

To transfer files **to** the RuggedReader **from** the desktop computer, follow steps 1 through 3. Then

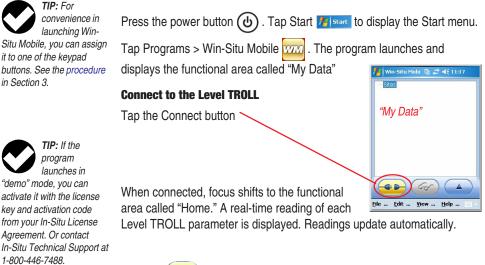
- In Step 4, navigate to and select files on the desktop computer,
- In Step 5, switch to the ActiveSync window, navigate to the folder where you want to put the files, drag or paste onto the RuggedReader.

6 USING IN-SITU SOFTWARE

Control software for In-Situ instruments is pre-installed, licensed, and ready to run on your new RuggedReader.

For this Instrument	Use this Program
Level TROLL®	Win-Situ® Mobile (formerly Pocket-Situ 5)
Multi-Parameter TROLL® 9500, Multi-Parameter TROLL® 9000, miniTROLL®	Pocket-Situ 4
T506 Total Dissolved Gas probe	TDG Logger

USING WIN-SITU® MOBILE

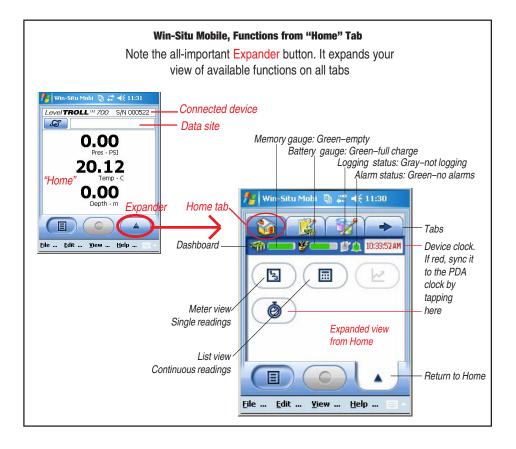

In-Situ Inc.

Win-Situ Mobile communicates with Level TROLLs. A brief overview of the software is presented here. If you need help, refer to the Win-Situ Mobile Quick Start included with your RuggedReader.

Connect the Hardware

Connect the Level TROLL to the RuggedReader's 9-pin serial port (see the RuggedReader Quick Start guide).

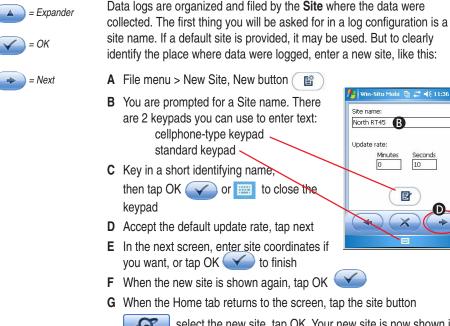
Launch the Software



= Device is not connected

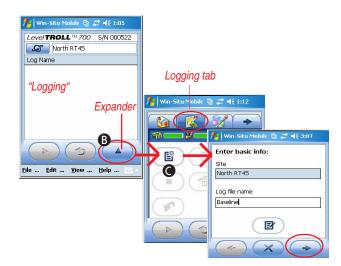
= Device is connected

The following page introduces the buttons and functions in the Win-Situ Mobile Home screen.


Iware I TROLL to the Ru

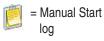
Set the TROLL's Clock

Set the Level TROLL clock before logging: From Home, tap this sequence: $\frown \rightarrow \odot \rightarrow \odot \rightarrow \checkmark \rightarrow \land$


Add a Data Site

Set up a Data Log

- **A** Tap View menu > Logging to go to the Logging tab.
- B At the Logging tap, tap the Expander button
- C In the Expander, tap the New button (■). The logging setup wizard starts. Follow the steps in the wizard, tapping Next → to continue in each screen. For help on the prompts, see the Win-Situ Mobile Quick Start included with your RuggedReader.


At the end of the Logging Setup Wizard, a summary of the log setup is shown. Tap OK is to write the log to the Level TROLL.

SECTION 6: IN-SITU SOFTWARE

Start the Log

A Scheduled log starts at its programmed time.

To start a Manual log: Tap View menu > Logging, tap the log, tap Start.

You can safely disconnect from the RuggedReader now.

Download/View the Log

Tap View menu > Logging, tap the log, tap the Expander, tap Down-

To view the data, select Yes at the end of the download. In load My Data tab, tap View (

Start

Stop the Log

Exit Win-Situ Mobile

When you're ready to exit Win-Situ Mobile, tap File menu > Exit.

Running log

USING POCKET-SITU 4

If you've used Win-Situ® 4 to communicate with your TROLL 9500, miniTROLL, or TROLL 9000, you already know how to run Pocket-Situ! If you need help, refer to the Win-Situ 4/Pocket-Situ 4 user's guide on the In-Situ Software/Resource CD. A brief overview is given here.

Connect the Hardware

Connect the instrument to the RuggedReader's 9-pin serial port (see the RuggedReader Quick Start guide).

Launch the Software

Press the power button () on the RuggedReader. Tap Start 12 seet to display the Start menu. Tap Programs > Pocket-Situ 4

On your first connection, follow the Connection Wizard to set up the COM port. Select a **Direct** connection to **One** device on **COM1** at **19200** baud.

"Find" the TROLL

- A Tap the COM port.
- **B** Tap **Find**. Pocket-Situ connects: First, the TROLL appears in the Navigation tree. Then Pocket-Situ retrieves device information. This can take a moment for an MP TROLL.

After the connection is made, the TROLL is shown in the Navigation tree with all device information.

If you are prompted to upgrade the device firmware, do so.

launches in "demo" mode, you can activate it with the license key and activation code from your In-Situ License Agreement. Or contact In-Situ Technical Support at 1-800-446-7488.

TIP: If the program

Set the TROLL's Clock

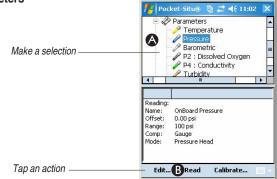
Select the TROLL in the tree and tap **Edit**, then **Clock** to synchronize the device clock to the RuggedReader clock.

Calibrate Water Quality Sensors

- A Select Parameters
- B Tap QikCal

Read Parameters

single reading:


- A Select any parameter
- B Tap Read

Continuous readings (profiling):

- A Select Parameters
- B Tap Profiler

d 🗗	ata Folo n-Line 4502	nse™ Wiz der : \Bui (1) : COM 25 : Troll arameter	lt-in St 41-192 9000	200		
₹ Par	ameter T	ests III	lame	1	Re	▶ adin
Pres Baro P2 : P4 : Turt	perature sure Dissolve Conduct bidity sery Volta	:d Oxyger tivity age				
•	6	III OikCal				

Decket City D. 12 of 11.01

Log Data

First, set up a test:

- A Tap Tests
- B Tap Add
- C Follow the Wizard

When finished, the test appears in the Navigation tree.

 Pocket-Stuß
 2.**
 ≤ 10:55
 ×

 Image: Data Folder:
 \Built-in Storage\
 >

 Image: Data Folder:
 Image: Data Folder:
 >

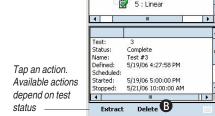
 Image

🛃 1 : Linear 🥃 2 : Linear

4 : Linear

â

ⓑ 📰 🛋€ 11:00


To start, stop, extract (download/view), or delete a test

A Tap a test

B Tap an action Tap a test

Exit Pocket-Situ

When you're ready to exit Pocket-Situ:

Scroll to the top of the Navigation tree, tap Home

Tap Exit

s in the	
	Add
d/view), or delet	e a test
	Pocket-Situ®

USING TDG LOGGER

This application can display and log total dissolved gas and temperature readings from In-Situ's T506 TDG probe.

- 1. Connect the T506 to the RuggedReader's 9-pin serial port.
- 2. On the RuggedReader, tap Start > Programs > TDG Logger.

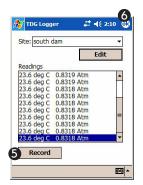
The TDG Logger application will launch, and in a moment device readings will be displayed. Allow a few minutes for the readings to stabilize.

To record (log) readings, you must first specify a site. The Record button is dimmed out (unavailable) until a site is entered.

To enter a site:

- 1. Tap the down arrow beside the site box.
- 2. Select <New>.

RuggedReader User's Guide


3. Tap to put the cursor in the Site Name box.

4. Tap the keyboard symbol and enter a site name.

Tap OK when finished.

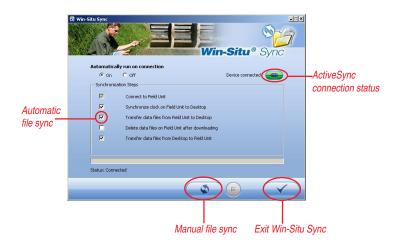
- 5. Tap the Record button to log readings.
- Output will be logged until you tap OK to exit TDG Logger, or disconnect the probe.

Readings will be logged to a .txt file on the RuggedReader (Built-In Storage \ TDGLogger) with the same name as the site. For the example here, use the File Explorer to navigate to My Device \ Built-In Storage \ TDGLogger \ south dam.txt.

TRANSFERRING FILES FROM THE RUGGEDREADER TO A DESKTOP/LAPTOP PC

Insure the following are installed on your desktop/laptop PC:

- Microsoft ActiveSync
- Win-Situ 5 for Level TROLL, and/or
- Win-Situ 4 for TROLL 9500, TROLL 9000, miniTROLL


Using Win-Situ® Sync (Automatic Transfer)

Win-Situ Sync can do the following on every ActiveSync connection (this is the default), or manually any time it is launched:

- Pull log data from Win-Situ Mobile on the RuggedReader to Win-Situ 5 on the desktop
- Pull log data from Pocket-Situ 4 on the RuggedReader to Win-Situ 4 on the desktop
- Pull log data from TDG Logger on the RuggedReader to MyDocuments \TDGLogger on the desktop
- Optionally delete these files from the RuggedReader after the transfer
- · Synchronize the RuggedReader time with the PC
- Push selected data files from Win-Situ 5 to Win-Situ Mobile
- Push selected Low Flow and data files from Win-Situ 4 to Pocket-Situ 4
- Install Win-Situ Sync from the In-Situ website at www.in-situ.com (click on Downloads), or from the In-Situ Software/Resource CD.
- When installed, the program will launch on ActiveSync connection. If the utility does not start automatically, briefly disconnect and then reconnect the USB cable. ActiveSync starts, and Win-Situ Sync begins to synchronize.

ActiveSync may be used to manually transfer the files. See the following page. Application defaults are as shown below (you can change them). Progress is tracked as the steps are completed.

Using Microsoft ActiveSync (Manual Transfer)

If Win-Situ Sync is not available, ActiveSync can be used to transfer files manually from the RuggedReader to the desktop. Follow the procedure in Section 5, Transferring Files To & From the RuggedReader.

After the Transfer (either method)

To view the data, launch Win-Situ 5 or Win-Situ 4 on the desktop.

In the data area, navigate to and select the log file or test file.

To export to spreadsheet format, select File menu > Export to CSV or Export to Excel.

REINSTALLING THE IN-SITU SOFTWARE

If you need to re-install the In-Situ software, follow these steps. Software may be installed from the In-Situ Software/Resource CD or the Downloads section of the In-Situ website at www.in-situ.com.

- 1. Do one of the following:
 - Insert the In-Situ Software/Resource CD in the CD drive of your desktop/laptop computer. (If the menu does not display automatically, choose Run from the Windows Start menu and type D:\ISISoftwareCD.html, where D is your CD-ROM drive letter.) Select Win-Situ Mobile or Pocket-Situ 4. Click on Setup. Follow the instructions to install the desktop utility, Win-Situ Software Manager, to your local hard drive. OR
 - Go to www.in-situ.com, click on Downloads, then on Software. Right-click on the Win-Situ Mobile or Pocket-Situ 4 link and select "Save Target As..." to download the desktop utility, Win-Situ Software Manager. Double-click the exe file to install the utility.
- When prompted, launch the Software Manager utility. (You can also launch it from the Windows Start menu > Programs > In-Situ Inc folder.)
- Connect to the RuggedReader via ActiveSync (if not already connected).

TIP: If possible, we recommend you re-establish an ActiveSync connection before downloading software. This simplifies installation. The Software Manager utility displays the available and current versions of software and the status of each.

Application	CAB Version	PDA Version	PDA Status	
Pocket-Situ 4 Pocket-Situ 5	4.56.5.0 5.0.0.11	4.55.3.0 5.0.0.11	Down Level Up-To-Date	
tatus: Connected				

Select the software to add to the RuggedReader and press the "Install" button. The selected software will be installed on the RuggedReader.

Installing from a CAB File

You can install Win-Situ Mobile or Pocket-Situ 4 onto the RuggedReader without an installation utility if you have the application's install file on your desktop/laptop computer as a "CAB" (a form of compressed application).

- 1. On the desktop: Connect in ActiveSync and drag the CAB into any folder on the RuggedReader. (See the procedure Transferring Files To & From the RuggedReader in Section 5.)
- 2. On the RuggedReader: Use File Explorer to navigate to the CAB file and tap to run it. (See Exploring Files in Section 4.) This installs the application.

The CAB file remains on the RuggedReader for re-installation of the application, if needed.

software launches in "demo" mode after reinstallation, you can activate it with the License Key and Activation Code from the In-Situ License Aareement shipped with your RuggedReader. Or contact In-Situ Technical Support at 1-800-446-7488.

🕸 In-Situ Inc.

7 CARE AND MAINTENANCE

STORING THE RUGGEDREADER AND BATTERY PACKS

Storage Temperature Range

The RuggedReader can be stored at temperatures between -22° F and 140° F (-30° C to 60° C). If possible, store your RuggedReader indoors. Doing so helps protect your device from extreme temperatures and helps it run efficiently at startup.

Storing for Less than Two Weeks

If you plan to store your device for less than two weeks, suspend the device by following these steps:

- 1. As a precaution, back up your data onto a desktop computer or an external storage device such as a CF or SD card.
- 2. Leave the battery pack in the device.
- If you plan to store the device longer than a few days, it is a good idea to leave the device connected to the wall charger to make sure the battery pack is fully charged.
- 4. Suspend the device (press the power button briefly and release).

TIP: The device cannot be

powered off while

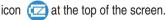
it is plugged into the wall

charger.

Storing for More than Two Weeks

To store the device safely for longer than two weeks, follow these steps:

- 1. Back up your data.
- 2. Tap the Applications Manager icon () to close all running programs.
- 3. Charge the battery pack to full capacity (100%).
- 4. Unplug the wall charger.
- Press the power button (b) until the power button menu appears.
- 6. Select Power Off from the menu.
- 7. Place the RuggedReader in a safe, dry place.



Taking the RuggedReader out of Extended Storage

The battery pack discharges slightly during extended storage periods. When you are ready to use your RuggedReader again, follow these steps so your battery pack runs efficiently:

- 1. Plug the RuggedReader into a charger.
- 2. Charge the battery pack.

You can check the battery power status by tapping on the battery

RugaedReader User's Guide

62

PROTECTING AGAINST MECHANICAL SHOCK

The RuggedReader is designed for protection against mechanical shock. It can be dropped from up to five feet onto concrete. Shock protection is guaranteed only when the top cap and main piece are securely in place.

SAFELY USING THE BATTERY PACK

- Use only battery packs approved for use with this device.
- Do not store or leave your device or battery pack near a heat source such as a radiator, fireplace, stove, electric heater, or other heat-generating appliance or otherwise expose it to temperatures in excess of 140° F (60° C).
- Do not try to open the battery pack.
- Do not carry a battery pack in your pocket, purse, or other container where metal objects (such as car keys or paper clips) could shortcircuit the battery pack terminals.
- Charge the battery pack only in the RuggedReader.
- Charge the battery pack in temperatures between 32°F and 95°F (0° C and 32° C).
- Keep the battery pack contacts clean. If they get dirty wipe them off with a soft cloth.
- Dispose of the battery pack properly. See Disposing of the RuggedReader and Batteries.

SAFELY USING THE WALL CHARGER

- Use only wall chargers intended for the RuggedReader. Using any other external power source can damage your product and voids your warranty.
- Wall chargers are designed for indoor use only. Avoid using the wall charger in wet, outdoor areas.
- Unplug the wall charger from the power outlet when it is not being used to charge the device.

Use only the AC adapter shipped with your RuggedReader. Damage caused by the use of thirdparty converters is not covered by the warranty. CAUTION: The

device only stays on for

about five seconds without a

power source. Always suspend your device before replacing the battery pack.

REPLACING THE BATTERY PACK

To replace the battery pack, follow these steps:

- 1. Close all running programs.
- 2. Suspend the device (press the power button briefly and release).
- Slowly unhook and lift up the bottom hand strap latch. CAUTION: Do not let the hand strap hook hit the display.

4. Press on the battery door about 1/4" beneath the door latch and slide the door latch to the right.

5. Remove the battery door.

The door may make a noise while it is being removed, caused by the door scraping against the battery. The sound is normal and no damage is done when you hear this sound.

- 6. Remove the old battery pack.
- 7. Make sure the battery contacts of the replacement battery pack are clean and dry.

SECTION 7: CARE AND MAINTENANCE

8. Insert the replacement battery pack, lining up the battery contacts with the RuggedReader contacts.

- Insert the tabs on the bottom of the battery door into the case slots. Close the battery door, making sure the door latch is in the unlock position as the door meets the case.
- 10. With the door latch in the unlock position, press on the battery door just below the door latch and slide the latch to the left to lock it.
- 11. Reattach the hand strap.

Note: If you remove the battery from your device and the device is still attached to the wall charger, the battery icon still appears on the display. When the battery is replaced, charging resumes.

For instructions on charging a battery, see Step 2 in Section 2. For guidelines on caring for your battery pack, see Safely Using the Battery Pack earlier in this section.

USING THE RUGGEDREADER IN EXTREME TEMPERATURES

The RuggedReader operates from -22° F to 122° F (-30° C to 50° C). To help your device function properly, store it device indoors when possible.

Other tips:

- If the RuggedReader is exposed to temperatures below 14° F (-10°C), the device may slow down or its display backlight may become dim to reduce the load on the battery power.
- Extremely low or high temperatures may prevent the battery pack from charging. Charge the battery pack in temperatures between 32°F and 95°F (0° C and 32° C).

CLEANING THE RUGGEDREADER

CAUTION: Long exposure to the following may damage your device:

- · pine oil
- · oil-based paint
- · automotive brake cleaner
- · isopropyl alcohol
- · carburetor cleaner

If the device is exposed to one of these, wipe it off with a mild cleaning solution. After exposure to a salt water environment, rinse in clean water and dry.

Touchscreen

To clean the touchscreen, follow these steps:

- 1. Press the power button briefly to suspend the device.
- 2. If you applied a protector to the touchscreen, carefully remove it.

Always make sure the top cap is on and the screws are fitted tightly before you begin cleaning your RuggedReader.

TIP: Try to avoid prolonged direct exposure to salt

water, mud, or debris. Rinse the Rugged Reader in clean running water, shake or wipe to remove moisture, especially from the connectors. Note that the battery door may trap water or dirt.

- Apply water or a mild cleaning solution such as Windex or 409 to a microfiber cloth and gently wipe off the touchscreen. Other approved cleaners include Citrus Wonder and Citrus All Purpose Cleaner. CAUTION: Do not use tissues, paper towels, or harsh cleaning agents to clean the touchscreen.
- If you used a cleaning solution, rinse the touchscreen with water and dry it with a microfiber cloth.
- 5. Press the power button to resume the device.

Case Overmolding

Clean the rubber-like overmolding that surrounds the case with a cloth and a mild cleaning solution like 409 or Citrus Wonder. Rinse with water and wipe dry.

Communications Module

This is the area housing the USB port, DC jack, and serial port. To clean the communications module, run it under a faucet. Use a soft toothbrush or toothpick to clean out any remaining dirt. Shake or blot to dry.

Speaker and Microphone

If debris gets in the speaker or microphone, use a soft bristle brush to remove it. Do not insert any object into the speaker or microphone holes.

Stylus Slot

Rinse the stylus slot with water. Shake to remove the excess.

Display Bezel

If the edge under the bezel gets dirty, use a microfiber cloth to remove the debris. Do not remove the bezel.

REPAIRING THE RUGGEDREADER

If the RuggedReader is in need of repair, contact In-Situ Inc. for a Return Materials Authorization (RMA) number as described in Section 1. Do not attempt to service the device yourself. This action voids the warranty.

DISPOSING OF THE RUGGEDREADER AND BATTERIES

Do not dismantle your RuggedReader. To recycle your RuggedReader, return it to your distributor.

The lithium-ion battery packs for your RuggedReader are recyclable. Avoid placing them in the trash or the municipal waste system.

To find the nearest battery recycling center in the USA, visit the Rechargeable Battery Recycling Corporation's website at www.rbrc.org/call2recycle/index.html or call 1-800-8-battery.

ENVIRONMENTAL HAZARDS

The RuggedReader contains no mercury or cadmium.

🕸 In-Situ Inc.

8 TROUBLESHOOTING

Answers to issues not addressed here may be available through on-device help or the Windows Mobile website from Microsoft at www.Microsoft.com/ mobile. If you cannot find answers to your questions through these methods, contact In-Situ Inc. as described in Section 1.

Problem

The touchscreen does not respond accurately to stylus taps.

Solutions

- Try recalibrating the touchscreen. (See Calibrating the Touchscreen in Section 3.)
- If the device is not responding to stylus taps at all and you are on the Today screen, look to see if the device is locked. To unlock the device, press the "Unlock" soft key on the screen.
- If the device is unlocked but the stylus continues to respond inaccurately, close all open programs and reset the device. (Press () until the power button menu appears, choose Reset.)

Problem

During calibration, the screen does not respond to stylus strokes or does not complete the calibration process.

Solutions

Check to see if there is something stuck underneath the bezel. Use a microfiber cloth to remove any excess debris. Also check to see if there is damage or wear on any area of the touchscreen. In case of damage, contact In-Situ Inc.

Problem

The RuggedReader runs slowly.

Solutions

It is possible that you have too many programs running. Try closing any programs you are not using. To view and close running programs:

- 1. Tap on the Applications Manager icon (
- Tap on the Running Programs tab in the Applications Manager window.
- 3. Select a program and tap Stop. This closes the program.

Problem

My RuggedReader quickly drops its ActiveSync connection to my desktop computer.

Solutions

Firewall programs sometimes cause ActiveSync connection problems. In these cases, the firewall sees the RuggedReader as a strange and possibly hostile computer and prevents the device from connecting to the desktop computer. To allow the mobile device to connect to your desktop computer, follow these steps:

- 1. Use the serial cable to connect your device to the desktop computer. Follow the ActiveSync wizard instructions.
- 2. If your firewall application brings up a warning message asking whether you want to allow a connection, check the option to allow the connection and click "Yes." Note: If the warning message above does not appear when you try to connect to the desktop computer but the device is still being dropped, contact your system administrator.

For other ActiveSync issues, visit www.Microsoft.com/Windowsmobile/ help/ActiveSync/default.mspx.

Problem

The RuggedReader locks up.

Solution

To reset the device, press and hold the power button (b) for 10 seconds or until the screen goes dark. The device turns on again after a few seconds.

🖏 In-Situ Inc.

APPENDIX A: SPECIFICATIONS

Operating System	Microsoft® Windows Mobile® 5.0
Processor	Intel® XScale® PXA270, 300 MHz
Viemory	64 MB low-power RAM
Storage	Internal solid-state 128 MB Flash
Display	3.5" (89 mm) QVGA active matrix color TFT transflective (outdoor) viewable) LCD with LED backlight; 240 x 320 pixels
Touchscreen	Sealed, resistive, pressure sensitive
CF and SD Card Slots	Compact Flash (Type I or Type II), Secure Digital (SD or SDIO); CF card slot provides 3.3 volts; user accessible, sealed
Keyboard	Four-way directional button, standard key functions, LED backlit keys
Physical	6.5" length x 3.5" wide x 1.7" thick (165 x 89 x 43 mm), 17 oz (482 g); magnesium case with elastomer overmold
Operating Temperature	-22° to 122° F (-30° to 50° C)
Storage Temperature	-22° to 140° F (-30° to 60° C)
P67	Sealed rating, waterproof and dustproof
MIL-STD-810F	Water, humidity, sand and dust, vibration, altitude, shock, high temperature, low temperature, temperature shock
Shock Absorbency	Multiple drops onto concrete from 5 ft (1.5 m) through temperatures ranging from -22 to 122° F (-30 to 50° C)

APPENDIX A: SPECIFICATIONS

Batteries	Intelligent, rechargeable Li-Ion battery pack, 14 W-hr (nom.), operates for more than 20 hours on one charge, charges in 3 to 5 hours, internal circuitry sealed against moisture when battery is removed, change without tools
Communications Module	9-pin D-sub connector, USB Host (Mini A), USB Client (Mini B), 12 VDC jack for power input and battery charging; modular; field replaceable
Wireless Communication options	Bluetooth-supported with CF or SD Bluetooth card, Wi-Fi supported, wireless cellular modem
Internal Clock	Battery-backed real time clock keeps time and date when battery is removed
Development Environment	SDK for Windows Mobile for Embedded Visual C++ version 4.0 and Visual Studio 2005
Enunciators	External power/charge LED and notification LED; other enunciators on system tray
Standard Accessories	Rechargeable Li-Ion battery, wall charger (universal voltage, output 12V, 0.84A max.), USB sync cable, captured full-size stylus, hand strap, screen protectors, quick start guide, dashboard accessory pad, Microsoft Getting Started CD, In- Situ Software/Resource CD
Certifications	FCC Class A, European CE Mark
Software Included	Microsoft Internet Explorer® Mobile, Microsoft Office Mobile (Word Mobile, Excel® Mobile, PowerPoint® Mobile), Microsoft Outlook® Mobile (Inbox, Calendar, Contacts, Instant Messag- ing, Tasks, Notes, Spell Checker), Microsoft ActiveSync® 4.0 for desktop computer, Terminal Services Client, Microsoft Win- dows Media Player 10 Mobile, Calculator, games, Pictures and Videos (image and video viewer), Voice Recorder, Handwriting Recognition, Win-Situ® Mobile, Pocket-Situ 4, TDG Logger
Puggod Poodor Lloor's Guida	

9-PIN SERIAL PORT PINOUTS

Pin #	Description
1	Data Carrier Detect (DCD) Input
2	Receive Data (RCD) Input
3	Transmit Data (TXD) Output
4	Data Terminal Ready (DTR) Output
5	Ground (GND)
6	Data Set Ready (DSR) Input
7	Request To Send (RTS) Output
8	Clear To Send (CTS) Input
9	Ring Indicator (RI) Input

🕸 In-Situ Inc.

APPENDIX B: CERTIFICATIONS & REGULATORY INFORMATION

REGULATORY INFORMATION

U.S.A.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is used in a commercial or residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not used in accordance with the user's guide, may cause harmful interference to radio communication. Operation of this equipment is subject to the following two conditions:

- 1. The device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and EN 450 14 Manufacturer's Name: Juniper Systems, Inc. Manufacturer's Address: 1132 West 1700 North Logan, UT 84321 USA

Declares, under our sole responsibility, that the product:

Product Name:	Archer Field PC
Model Number:	1.01
Product Options:	ALL

Conforms to the following Product Specifications:

- Emissions Testing EN 55022
- Immunity Testing EN 55024
- Electrostatic Discharge Immunity (IEC 61000-4-2)
- Radiated Immunity (IEC 61000-4-3)
- Electrical Fast Transients (EFT) Immunity (IEC 61000-4-4)
- Surge Immunity (IEC 61000-4-5)
- Conducted Immunity (IEC 61000-4-6)
- Power Frequency Magnetic Field Immunity (IEC 61000-4-8)
- Power Quality (dips and sags) (IEC 61000-4-11)

CAUTION: Only approved accessories may be used with this equipment. In general, all cables must be high quality, shielded, correctly terminated, and normally restricted to two meters in length. AC adapters approved for this product employ special provisions to avoid radio interference and should not be altered or substituted. Unapproved modifications or operations beyond or in conflict with these instructions for use may void authorization by the authorities to operate the equipment.

🕸 In-Situ Inc.

APPENDIX C: PROGRAMS & SETTINGS

APPLICATIONS IN THE PROGRAMS MENU

The Programs menu lists applications installed on your RuggedReader. To access the Programs menu, tap Start > Programs. Applications in the Programs menu are described below in the order they appear.

Games. Bubble Breaker and Solitaire.

ActiveSync. Synchronizes your RuggedReader with a desktop or laptop computer. You can also use ActiveSync to explore your RuggedReader and synchronize your contacts, calendar, e-mail, and more.

Calculator. Simulates a calculator.

Download Agent. Automates the process of downloading RuggedReader software updates from the Internet directly to your RuggedReader. If you are connected through ActiveSync to a PC with an Internet connection or if you are connected to the Internet through a modem card such as a dial-up, Ethernet, Wi-Fi, cellular, or Bluetooth card, Download Agent automatically displays available updates to the RuggedReader.

TIP: Many programs provide on-device help.

To use it, open the program, then tap Start > Help.

- Excel Mobile. Lets you view and create charts. Compatible with Microsoft Excel— open and edit an Excel chart from your desktop computer using Excel Mobile on your RuggedReader.
- File Explorer. Lets you view, expand, and collapse the RuggedReader directory folders so you can locate files.
- Modem Link. Allows you to connect your RuggedReader to the Internet or computer network through Compact Flash (CF) and Secure Digital (SD) adapters (e.g., 56K dial-up modem or Ethernet adapters).
- Notes. Lets you create personal notes or record voice clips. If you don't see the Recording toolbar, tap Menu > View Recording Toolbar.
- Pictures & Videos. Lets you preview a picture or video without opening it.
- **Pocket MSN.** Gives you quick access to your MSN Hotmail Inbox and your MSN Messenger account.
- Pocket-Situ 4. Installed by In-Situ Inc.
- **PowerPoint Mobile.** Lets you view or rehearse PowerPoint presentations built on a desktop computer.
- Search. Searches for files or programs on the RuggedReader.
- Tasks. Stores and tracks new and existing tasks.
- **Terminal Services Client.** Lets you log on to a PC running Terminal Services or Remote Desktop and use all of the programs available on that PC from your mobile device.
- TDG Logger. Installed by In-Situ Inc.
- Win-Situ Mobile. Installed by In-Situ Inc.

Word Mobile. Creates and edits documents with graphics while maintaining document formatting. Compatible with Microsoft Word—open and edit a Word file from your desktop computer using Word Mobile.

Programs Installed by In-Situ Inc.

- Pocket-Situ 4. Control software for MP TROLL 9500s, miniTROLLs, and MP TROLL 9000s.
- **TDG Logger.** Displays and logs readings from In-Situ's T506 Total Dissolved Gas probe.

Win-Situ Mobile. Control software for Level TROLLs.

ACCESSING PROGRAMS ON THE GETTING STARTED CD

In addition to installing ActiveSync, the Getting Started CD that came with your RuggedReader provides links to purchase additional programs from Microsoft. If you wish to take advantage of these, insert the Getting Started CD into your desktop computer, select "Add new programs to my device," and follow the instructions. For further help, visit Microsoft's website, www.Microsoft.com/mobile.

SETTINGS

To access settings, tap Start > Settings. The Settings window appears, showing three menu tabs: Personal settings, System settings, and Connections settings. The table below shows the location of specific settings.

To change settings on your device: Choose one of the tabs at the bottom of the Settings screen, tap on the setting you want to change, adjust the setting controls and tap OK.

APPENDIX C: PROGRAMS & SETTINGS

Settings

	Personal	System	Connections
Setting	settings	settings	settings
About		Х	
Backlight		Х	
Beam			Х
Bluetooth			Х
Buttons	Х		
Brightness		Х	
Certificates		Х	
Clock & Alarms		Х	
Connections			Х
Error Reporting		Х	
Input	Х		
Lock	Х		
Memory		Х	
Menus	Х		
MSN options	Х		
Network cards			Х
Owner Info	Х		
Power		Х	
Regional Settings		Х	
Remove Programs		Х	
Screen		Х	
Sounds & Notifications	Х		
Today	Х		

🔅 In-Situ Inc.

Index

A

AC adapter, 16, 63 Accessories, 11 ActiveSync connecting, 17 guest connection, 18, 43 installing on desktop PC, 17 partnership, 18 transferring files, 45 troubleshooting, 71 Applications. *See* Programs

В

Backing up data, 41 Backlight dimming, 26 keypad, 24, 26 timer, 26 turning off, 26 Battery pack, 63 charging, 16 disposal, of, 68 installing, 15–16 replacing, 64–65 Buttons, 9, 21 customizing, 22 power button, 23–26

С

CF card, 32–34 exploring files, 38 Charge LED, 16, 23, 32 Cleaning, 66–67 Closing programs, 40 Copying files, 39 from desktop computer, 45 to desktop computer, 41, 45

D

Declaration of Conformity, 76 Deleting files, 39 Device reset, 24

E

Exploring files, 38–39

F

Factory defaults, restoring, 25

File explorer, 38–39

G

Green LED, 32

Η

Hard reset, 25 Help, on-device, 37

L

Icons, status, 37
In-Situ software, 46–60 installing, 59–60
Pocket-Situ 4, 52–54
TDG Logger, 55–56
Win-Situ Mobile, 46–51
Win-Situ Sync, 57–58

Κ

Keypad, 9 backlight, 24, 26 buttons, 21

INDEX

L

Landscape view, 40 LED charge LED, 16, 23, 32 notification LED, 32 Lock device, 35 Lock-up, 24, 71

Ν

Notification LED, 32

Ρ

Peripherals. 32–34 Pocket-Situ 4, 52–54 Portrait view, 40 Power button, 23–26 Power button menu, 24 Powering off, 23–24 suspending, 23, 61, 64 Powering on after powering off, 24 after suspending. 23 Product specifications, 72-74 Programs closing, 40, 70 currently running, 36 launching, 36 on Programs menu, 77-79 on Start menu, 36-37 Pocket-Situ 4. 52–54 TDG Logger, 55–56 Win-Situ Mobile, 46-51

R

Recording, 78 Red LED, 16, 23, 32 Regulatory information, 75 Renaming files, 39 Repair service, 13, 68 Reset hard, 25 if device is locked up, 24, 71 soft, 24 RMA, 13

S

Screen. See also Touchscreen rotating, 40 Screen protector, applying, 30 SD card. 32-34 exploring files, 38 Serial number, 13 Serial port pinouts, 74 Settings, 36, 79 changing, 36, 79 location of. 80 Soft keys, 37 Soft reset. 24 Specifications, 72-74 Start menu, 36-37 Status icons, 37 Storage, 61 less than 2 weeks. 61 more than 2 weeks, 62 temperature, 61

Storage cards, 32–34 Stylus, 28–29 Suspending, 23, 61, 64 automatic suspend, 27–28

Т

TDG Logger, 55–56 Text, entering, 29 Timeout, adjusting, 27–28 Today screen, 35 Top cap, removing, 33 Touchscreen calibrating, 31 cleaning, 66–67 protecting, 30 troubleshooting, 69–70

U

Unlock device, 35 USB devices, 32

V

Voice Recorder, 78

W

Wall charger, 16, 63 Warranty, 12 Win-Situ Mobile, 46–51 Win-Situ Sync, 18, 43, 45, 57– 58

RuggedReader Operator's Manual