

January 3, 2012

Mr. Edgar Ethington Radiation Management Unit Radiation Control Program Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South Denver, CO 80203

RE: Response to Quality Assurance/Quality Control Issues with Isotech Laboratory Data for the Laramie Energy II, 2008 – 2010 Production Monitoring Reports

Dear Mr. Ethington,

This letter is a response to a September 1, 2010 letter from Jennifer T. Opila that followed the review of a report entitled Laramie Energy II, LLC Tier II Gas Wells Quarterly Production Monitoring Report for the Furr 16-22D and Furr 16-22B Rulison Field Garfield County Colorado December 2009 and submitted in June 2010, and subsequent letters pertaining to the Quality Assurance/Quality Control (QA/QC) documentation. The reports were received by your department and were subsequently reviewed and compared with the requirements of the approved Rulison Sampling and Analysis Plan (RSAP). The requested QA/QC information is being submitted as a Summary Table for the data from 2008 to 2010.

The letters noted that the required quality control documentation for radiometric instrument standard performance, spike sample results, and field QC were missing from the reports. The above-cited report included a *Data Verification and Validation Report* prepared by Diane Short & Associates that had pointed out Quality Assurance/Quality Control problems with the analysis of tritium by Isotech and carbon-14 (¹⁴C) by the Illinois Geological Survey and Beta Analytic.

Olsson requested that Isotech provide the information soon after the receipt of the September 1, 2010 letter, but did not begin to receive the information until the end of August 2011, and did not receive the rest until October 2011. This information was provided to Diane Short & Associates to review once it was received. The *Radiochemistry Data Quality Review Report – Addenda* report is attached along with the information provided by Isotech.

Diane Short & Associates prepared a revised *Radiochemistry Data Quality Review Report Addenda* based on a review of the additional information. A copy of the revised report along with the requested information received from Isotech laboratories, and the Illinois Geological Survey are attached. Isotech's reports do not indicate that they subcontracted the ¹⁴C analysis out to another laboratory, nor which laboratory was subcontracted. In telephone conversations with Isotech personnel they had indicated that the reason for the lag between when the samples were submitted to when the results were reported was due to subcontracting a portion of the work but this is not made clear in the Isotech laboratory reports. Isotech personnel indicated that Beta Analytic in Miami, Florida was subcontracted to perform the ¹⁴C analysis. However it appears that the Illinois Geological Survey was actually subcontracted to perform ¹⁴C gas analysis for Isotech. Olsson will request that Isotech include subcontract laboratory information with future analytical reports. Information to demonstrate the data reliability will also be requested from the subcontracted laboratory as well as from Isotech.

Isotech provided information on radiometric instrument standard performance, which was given to Diane Short & Associates for their review. According to the information provided by the Illinois Geological Survey, spikes are not performed on the ¹⁴C analysis. In the report prepared by Diane Short & Associates, under the Matrix Spike Section, it is noted that "*Spikes are often not amenable to radiochemical analyses as long as there is some accounting for accuracy.*"

Field QC has been conducted per the frequency specified within the current version of the approved RSAP. Field QC has included field blanks and field duplicates which were identified in the individual reports submitted to the Colorado Oil and Gas Conservation Commission and CDPHE HMWMD Radiation Management Unit. Natural gas samples were collected into evacuated LP tanks through a regulator and filling station from the individual gas well separator units.

Equipment blanks were not collected since produced water samples were previously collected directly into laboratory provided containers from the dump line valve on the individual natural gas well separator units. This was done to minimize sample handling and reduce the potential for cross contamination. However, these produced water samples included a separate layer of natural gas condensate which presented problems for the laboratories performing the analyses. Future produced water samples will be collected using a dedicated 5-gallon capacity bucket with a bottom valve to enable the condensate to be discarded to alleviate the problems.

The required QA/QC documentation, including chain-of-custody documents from Olsson to Isotech, and from Isotech to the subcontracted laboratory, are included in a Summary Table along with the individual data packages. Olsson will continue to work with Isotech to improve. Please contact me at 303.237.2072 if you have any comments or concerns.

Sincerely,

Olsson Associates, Inc.

James W. Hix

James W. Hix Senior Project Geologist

Attachments

Cc: Wayne Bankert – Laramie Energy II, LLC; Jennifer T. Opila – CDPHE; Alex Fischer – COGCC; Chris Canfield – COGCC; Jim Rada – Garfield County Public Health; Kirby Wynn – Garfield County Oil & Gas Liaison

Laramie Energy II LLC Rulison Field QA/QC Documentation 2008-2010 Olsson Associates, Inc. Golden, CO January 2012

TABLES

TABLE 1

Laramie Energy II - Furr Lease Rulison Tier II Wells Jacks Pocket - Garfield County Colorado October 2010

			Surfa	ace Locatio	n									
WELL	PAD	QTR/QTR	SEC	TWP	RNG	Elevation	TOTAL DEPTH (FT.)	FIRST PRODUCTION DATE	4th Quarter 2008	1st Quarter 2009	2nd Quarter 2009	3rd Quarter 2009	4th Quarter 2009	October 2010
Furr A11-15B	Furr A-11	NE SW	15	7S	95W	6,428	7,690	9/27/08	B (11/13/08)	N/A	N/A	N/A	N/A	N/A
Furr A11-15D	Furr A-11	NE SW	15	7S	95W	6,428	7,684	10/7/08	B (11/13/08)	N/A	N/A	N/A	N/A	N/A
Furr Hagen 6-22B	F-1	SW NE	22	7S	95W	6,657	8,225	10/28/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr Hagen 6-22D	F-1	SW NE	22	7S	95W	6,657	8,225	10/10/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 7-22B	F-1	SW NE	22	7S	95W	6,695	8,077	10/20/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 7-22D	F-1	SW NE	22	7S	95W	6,696	8,110	10/21/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 10-22B	F-1	SW NE	22	7S	95W	6,698	8,130	10/25/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 9-22B	F-2	SE SE	22	7S	95W	7,119	8,820	11/3/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 9-22D	F-2	SE SE	22	7S	95W	7,117	8,720	11/11/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 16-22B	F-2	SE SE	22	7S	95W	7,118	8,520	11/3/08	B (12/17/08)	P (NS)	P (6/24/09)	P (10/01/09)	P (12/16/09)	P (10/07/10)
Furr 16-22D	F-2	SE SE	22	7S	95W	7,115	8,540	11/11/08	B (12/17/08)	P (4/14/09)	P (6/24/09) D	P (10/01/09)	P (12/16/09)	P (10/07/10)
Furr 10-22D	F-3	SW SE	22	7S	95W	7,130	8,606	11/17/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 15-22B	F-3	SW SE	22	7S	95W	7,131	9,172	11/17/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 15-22D	F-3	SW SE	22	7S	95W	7,123	8,476	11/17/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 22-09A	F-4	SW SE	22	7S	95W	6,984	8,388	7/7/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-09C	F-4	SW SE	22	7S	95W	6,987	8,235	7/1/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-10A	F-4	SW SE	22	7S	95W	6,991	8,460	7/29/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-10C	F-4	SW SE	22	7S	95W	6,985	8,306	7/16/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-15A	F-4	SW SE	22	7S	95W	6,988	8,177	7/13/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-15C	F-4	SW SE	22	7S	95W	6,991	8,115	7/13/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-16A	F-4	SW SE	22	7S	95W	6,985	8,255	7/6/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)

Note: Rows shaded in gray indicate wells that were sampled on October 7, 2010. NS - Not Sampled N/A - Not Applicable B - Baseline Sampling (One Time) P - Production Sampling of the Closest Tier II Wells

TABLE 1A Isotech Gas Sample Analytical Results Laramie Energy II - Furr Lease Rulison Tier II Wells Jacks Pocket - Garfield County Colorado

Isotech Report Information													
			Date Isotech	laataah	Isotech	¹⁴ C Subcontracted	FIRST	4th Quarter	1 of Quarter	and Quarter	and Quarter	4th Quarter	Octobor
WELL	Date Sampled	PAD	Samples	Job #	Date	Laboratory	DATE	2008	2009	2009	2009	2009	2010
Furr A11-15B	11/13/2008	Furr A-11	11/14/08	10619	1/14/2009	ILGS	9/27/08	B (11/13/08)	N/A	N/A	N/A	N/A	N/A
Furr A11-15D	11/13/2008	Furr A-11	11/14/2008	10619	1/14/2009	ILGS	10/7/08	B (11/13/08)	N/A	N/A	N/A	N/A	N/A
Furr Hagen 6-22B	12/17/2008	F-1	12/22/08	10796	3/2/2009	ILGS	10/28/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr Hagen 6-22D	12/17/2008	F-1	12/22/08	10796	3/2/2009	ILGS	10/10/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 7-22B	12/17/2008	F-1	12/22/08	10796	3/2/2009	ILGS	10/20/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 7-22D	12/17/2008	F-1	12/22/2008	10796	3/2/2009	ILGS	10/21/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 10-22B	12/17/2008	F-1	12/22/08	10796	3/2/2009	ILGS	10/25/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 9-22B	12/17/2008	F-2	12/22/08	10796	3/2/2009	ILGS	11/3/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 9-22D	12/17/2008	F-2	12/22/08	10796	3/2/2009	ILGS	11/11/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 16-22B	(Multiple Dates)	F-2	(Multiple Dates)	(See each Qtr)			11/3/08	B (12/17/08) Isotech Job# 10796	P (NS)	P (6/24/09) Isotech Job# 11610	P (10/01/09) Isotech Job# 12055	P (12/16/09) Isotech Job# 12367	P (10/07/10) Isotech Job #13942
Furr 16-22D	(Multiple Dates)	F-2	(Multiple Dates)	(See each Qtr)			11/11/08	B (12/17/08) Isotech Job# 10796	P (4/14/09) Isotech Job# 11299	P (6/24/09) Isotech Job# 11610	P (10/01/09) Isotech Job# 12055	P (12/16/09) Isotech Job# 12367	P (10/07/10) Isotech Job #13942
Furr 10-22D	12/17/2008	F-3	12/22/08	10796	3/2/2009	ILGS	11/17/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 15-22B	12/17/2008	F-3	12/22/2008	10796	3/2/2009	ILGS	11/17/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 15-22D	12/17/2008	F-3	12/22/08	10796	3/2/2009	ILGS	11/17/08	B (12/17/08)	N/A	N/A	N/A	N/A	N/A
Furr 22-09A	10/7/2010	F-4	10/13/10	13942	12/7/2010	Beta	7/7/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-09C	10/7/2010	F-4	10/13/2010	13942	12/7/2010	Beta	7/1/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-10A	10/7/2010	F-4	10/13/10	13942	12/7/2010	Beta	7/29/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-10C	10/7/2010	F-4	10/13/10	13942	12/7/2010	Beta	7/16/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-15A	10/7/2010	F-4	10/13/10	13942	12/7/2010	Beta	7/13/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-15C	10/7/2010	F-4	10/13/10	13942	12/7/2010	Beta	7/13/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)
Furr 22-16A	10/7/2010	F-4	10/13/10	13942	12/7/2010	Beta	7/6/10	N/A	N/A	N/A	N/A	N/A	B (10/07/10)

NS - Not Sampled

N/A - Not Applicable

ILGS - Illinois Geological Survey

Beta - Beta Analytic Laboratory in Miami, FL

B - Baseline Sampling (One Time)

P - Production Sampling of the Closest Tier II Wells

(Multiple Dates): Since the Furr 16-22B and Furr 16-22D wells are the closest gas wells to Project Rulison, they have been sampled multiple times. Isotech issued reports on 05/29/09 (Job# 11299); 08/11/09 (Job#11610); 11/11/09 (Job# 12055); 1/29/10 (Job #12367), and 12/7/10 (13942).

TABLE 2

GAS SAMPLE DATA Rulison Area Well Monitoring Furr 16-22B and Furr 16-22D Wells Natural Gas Samples - Laramie Energy II - Rulison Field, Garfield County, Colorado

	Sample			Isotech	Sample	Date	со	H₂S	He	H ₂	Ar	O ₂	CO ₂	N ₂	C ₁	C ₂	C_2H_4	C ₃	iC₄	nC₄	iC₅	nC₅	C ₆ +	¹⁴ C ₁	Std. Dev.	Tritium	Std. Dev.	Total BTU	Specific Gravity
Well Name/ No.	Source	Latitude/	Longitude	Lab No.	Name	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	рМС	(±)	TU	(±)	calc	calc
Furr 16-22B	Separator	39.41662	-107.97507	152400	Furr 16-22B	12/17/2008	ND	ND	0.0029	0.0036	ND	ND	2.97	0.029	89.26	5.12	ND	1.50	0.335	0.322	0.139	0.0981	0.220	< 0.4	N/A	< 10.0	N/A	1076	0.642
				N/A		4/14/2009	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
				165099		6/24/2009	ND	ND	0.0033	0.0029	ND	0.0324	3.00	0.17	89.76	4.86	ND	1.35	0.278	0.248	0.0969	0.0640	0.133	< 0.5	N/A	< 10.0	N/A	1061	0.634
				172338		10/1/2009	ND	ND	0.0030	0.0026	NA	0.006*	3.58	0.056	88.86	5.04	ND	1.47	0.340	0.292	0.0830	0.0574	0.211	< 0.4	N/A	< 10.0	NA	1065	0.644
				176955		12/16/2009	ND	ND	0.0029	0.0027	ND	0.027	3.60	0.14	89.25	4.97	ND	1.19	0.253	0.190	0.102	0.0773	0.192	< 0.5	N/A	< 10.0	N/A	1055	0.640
				196345		10/7/2010	ND	ND	0.0023	0.0026	ND	ND	2.93	0.078	89.77	4.92	ND	1.33	0.289	0.269	0.116	0.0813	0.214	1.2	0.1	< 10.0	N/A	1068	0.636
Furr 16-22D	Separator	39.416623	-107.97512	152398	Furr 16-22D	12/17/2008	ND	ND	0.0029	0.0033	ND	0.0060	3.25	0.053	88.76	5.35	ND	1.52	0.337	0.307	0.128	0.0895	0.192	< 0.8	N/A	< 10.0	N/A	1073	0.644
				160503		4/14/2009	ND	ND	0.0029	0.0042	ND	0.0098	3.39	0.086	88.87	5.24	ND	1.45	0.309	0.278	0.117	0.0789	0.167	0.5	0.1	< 10.0	N/A	1066	0.643
				165100		6/24/2009	ND	ND	0.0038	0.0040	ND	0.0272	2.88	0.16	89.50	5.15	ND	1.43	0.296	0.261	0.0094	0.0656	0.121	< 0.4	N/A	< 11.7	N/A	1066	0.636
				172337		10/1/2009	ND	ND	0.0028	0.0033	NA	0.008*	3.69	0.050	88.42	5.35	ND	1.50	0.314	0.270	0.105	0.0716	0.218	0.4	0.1	< 10.0	N/A	1067	0.647
				176954		12/16/2009	ND	ND	0.0031	0.0029	ND	0.034	3.58	0.16	88.54	5.31	ND	1.45	0.312	0.257	0.110	0.0774	0.164	< 0.4	N/A	< 10.0	N/A	1063	0.645
				196341		10/7/2010	ND	ND	0.0023	0.0032	ND	ND	2.71	0.07	88.54	5.09	ND	1.43	0.307	0.290	0.118	0.0826	0.180	< 0.7	N/A	< 10.0	N/A	1073	0.636
22-9-16	Separator	39.416623	-107.97512	165101	22-9-16 (Duplicate)	6/24/2009	ND	ND	0.0033	0.0040	ND	0.0144	3.36	0.10	89.07	5.17	ND	1.42	0.297	0.263	0.101	0.0666	0.133	< 0.5	N/A	< 12.8	N/A	1063	0.640
Furr 16-22X	Separator	39.417	-107.9751	196342	Furr 16-22D (Duplicate)	10/7/2010	ND	ND	0.0026	0.0030	ND	ND	2.72	0.07	89.75	5.07	ND	1.32	0.305	0.288	0.118	0.0825	0.184	1	0.2	< 10.0	N/A	1073	0.636

Note: Shaded rows present the analytical data for the samples collected on October 7, 2010 which are discussed in this report. The table presents the data as compared to the results for samples collected previously from these wells.

¹⁴ C ₁ - Carbon 14	Carbon-14 (14C) Detection Limit is 1.0 pMC. Isotopic composition of carbon is relative to the Vienna Peedee Belemnite (VPDB).	
Tritium	Tritium (³ H) Detection Limit 10.0 TU. Isotopic composition of hydrogen is relative to Vienna Standard Mean Ocean Water (VSMOW).	Gas Component:
		CO - Carbon Monoxide
Std. Dev./ (±)	Standard Deviation (±) Uncertainty	H ₂ S - Hydrogen Sulfide
		He - Helium
Chemical compositions are nor	nalized to 100%. Mol. % is approximately equal to vol.% Chemical analysis based on standards accurate to within 2%.	H ₂ - Hydrogen
		Ar - Argon
Table presents Second Quarter	2009 (06/24/09), Third Quarter 2009 (10/1/09), and Fourth Quarter 2009 (12/16/09) analytical results for the Furr 16-22B and the Furr 16-22D wells,	O ₂ - Oxygen
and Fourth Quarter 2010 (10/7/	10) laboratory	CO ₂ - Carbon Dioxide
and also First Quarter 2009 res	ults for the Furr 16-22D (04/14/09) and the baseline results obtained for the Furr 16-22B and Furr 16-22D (12/17/08).	N ₂ - Nitrogen
* Isotech did not analyze Argon	separately, but reported combined results for Oxygen and Argon for the analysis of the 10/01/09 samples.	C ₁ - Methane
		C ₂ - Ethane
Acronyms:		C ₂ H ₄ . Ethylene
pMC - Percent Modern Carbon.		C ₃ - Propane
TU - Tritium Units (One TU is e	quivalent to 3.19 pCi/L of water)	iC ₄ - Iso-Butane
< - Not Detected (ND) (Above L	aboratory Method Detection Limit)	nC ₄ - N-Butane
Std. Dev. (±) - Standard Deviati	on	iC ₅ - Iso-Pentane
BTU - British Thermal Units (cu	. Ft. dry calcuated at 60°F and 14.7 psia)	nC ₅ - n-Pentane
calc - calculated value		C ₆ + - Hexanes+

N/A - not applicable NA - not analyzed

ND - not detected

NS - not sampled (Furr 16-22B shut in on 04/14/09)

TABLE 2A

GAS SAMPLE DATA Rulison Area Well Monitoring Seven New Wells Sampled 10/7/10 Natural Gas Samples - Laramie Energy II - Rulison Field, Garfield County, Colorado

	Sample			Isotech	Sample	Date	СО	H ₂ S	He	H ₂	Ar	O ₂	CO2	N ₂	C ₁	C ₂	C ₂ H ₄	C ₃	iC ₄	nC ₄	iC₅	nC ₅	C ₆ +	¹⁴ C ₁	Std. Dev.	Tritium	Std. Dev.	Total BTU	Specific Gravity
Well Name/ No.	Source	Latitude/	Longitude	Lab No.	Name	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	pMC	(±)	TU	(±)	calc	calculation
Furr 22-15A	Separator	39.417899	-107.9795527	196336	Furr 22-15A	10/7/2010	ND	ND	0.0025	0.0037	ND	ND	3.16	0.083	89.18	5.28	ND	1.39	0.297	0.261	0.108	0.0721	0.162	<0.7	N/A	<11.8	N/A	1067	0.639
Furr 22-15C	Separator	39.4179	-107.97946	196337	Furr 22-15C	10/7/2010	ND	ND	0.0026	0.0030	ND	ND	2.92	0.075	89.14	5.33	ND	1.51	0.329	0.305	0.124	0.0841	0.175	<0.9	N/A	<10.0	N/A	1075	0.640
Furr 22-09A	Separator	39.4179	-107.97917	196338	Furr 22-09A	10/7/2010	ND	ND	0.0027	0.0026	ND	ND	2.71	0.10	90.31	4.83	ND	1.24	0.263	0.233	0.0958	0.0637	0.153	0.8	0.1	<10.0	N/A	1063	0.630
Furr 22-10A	Separator	39.4179	-107.97939	196339	Furr 22-10A	10/7/2010	ND	ND	0.0022	0.0025	ND	ND	2.62	0.086	90.12	5.06	ND	1.26	0.280	0.236	0.100	0.0679	0.167	<0.7	N/A	<10.0	N/A	1068	0.631
Furr 22-10C	Separator	39.4179	-107.97931	196340	Furr 22-10C	10/7/2010	ND	ND	0.0026	0.0046	ND	ND	2.47	0.068	90.28	4.99	ND	1.32	0.277	0.252	0.103	0.0704	0.161	<0.7	N/A	<10.0	N/A	1070	0.630
Furr 22-09C	Separator	39.4179	-107.9791	196343	Furr 22-09C	10/7/2010	ND	ND	0.0024	0.0023	ND	ND	2.89	0.10	89.3	5.12	ND	1.51	0.326	0.309	0.128	0.0873	0.228	<0.9	N/A	< 10.0	NA	1076	0.641
Furr 22-16A	Separator	39.4179	-107.97896	196344	Furr 22-16A	10/7/2010	ND	ND	0.0022	0.0034	ND	ND	2.98	0.065	89.05	5.27	ND	1.53	0.331	0.312	0.128	0.0885	0.241	<0.7	N/A	<11.2	N/A	1077	0.643

NOTES:

¹⁴C₁ - Carbon 14 Tritium Carbon-14 (14C)Detection Limit is 1.0 pMC. Isotopic composition of carbon is relative to the Vienna Peedee Belemnite (VPDB).Tritium (³H)Detection Limit 10.0 TU. Isotopic composition of hydrogen is relative to Vienna Standard Mean Ocean Water (VSMOW)

Std. Dev./ (±) Standard Deviation (±) Uncertainty

Chemical compositions are normalized to 100%. Mol. % is approximately equal to vol.% Chemical analysis based on standards accurate to within 2%. Table presents **Fourth Quarter 2010** (10/7/10) laboratory analytical results for seven wells, not including the Furr 16-22B and the Furr 16-22D wells.

Acronyms:

pMC - Percent Modern Carbon. TU - Tritium Units (One TU is equivalent to 3.19 pCi/L of water) < - Not Detected (ND) (Above Laboratory Method Detection Limit) Std. Dev. (±) - Standard Deviation BTU - British Thermal Units (cu. Ft. dry calcuated at 60°F and 14.7 psia) calc - calculated value N/A - not applicable NA - not analyzed ND - not detected

Gas Component: CO - Carbon Monoxide H₂S - Hydrogen Sulfide He - Helium H₂ - Hydrogen Ar - Argon O₂ - Oxygen CO₂ - Carbon Dioxide N₂ - Nitrogen C1 - Methane C₂ - Ethane C₂H₄ Ethylene C₃ - Propane iC₄ - Iso-Butane nC₄ - N-Butane iC₅ - Iso-Pentane nC₅ - n-Pentane C₆+ - Hexanes+

TABLE 3

TRITIUM ANALYTICAL RESULTS FOR PRODUCED WATER SAMPLES Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II, Rulison Field, Garfield County, Colorado

Well Name/Number	Sample Source	Latitude	Longitude	QTR/ QTR	Section	Township	Range	P.M.	SAMPLE ID	LAB Number	DATE SAMPLED	TIME SAMPLED	Laboratory	Tritium (TU)	Tritium (pCi/L) calculated
Furr 16-22B	Separator	39.41669	-107.97507	SE SE	22	7S	95W	6th	Furr 16-22B		12/17/2008	12:54	ISO	< 10.8	< 34.5
											4/14/2009	NS	ISO	NS	NS
											6/24/2009	11:55	ISO	< 13.7	< 43.7
											10/1/2009	11:30	ISO	< 10.0	< 31.9
											12/16/2009	13:00	ISO	< 10.0	< 31.9
										196345	10/7/2010	15:00	ISO	< 10.0	< 31.9
Furr 16-22D	Separator	39.416623	-107.97512	SE SE	22	7S	95W	6th	Furr 16-22D		12/17/2008	12:13	ISO	< 10.0	< 31.9
											4/14/2009	11:00	ISO	< 10.0	< 31.9
											6/24/2009	11:40	ISO	< 12.0	< 38.3
											10/1/2009	11:40	ISO	< 10.0	< 31.9
											12/16/2009	12:55	ISO	< 10.0	< 31.9
										196341	10/7/2010	14:30	ISO	< 10.0	< 31.9
22-9-16 (Furr 16-22D Duplicate)	Separator	39.416623	-107.97512	SE SE	22	7S	95W	6th	22-9-16		6/24/2009	12:50	ISO	< 10.5	< 33.5
Field Blank	NA	NA	NA	SE SE	22	7S	95W	6th	Blank		6/24/2009	12:05	ISO	54 ± 3.8	173.22 ± 12.1
Furr 16-22X (Furr 16-22D Duplicate)	Separator	39.416623	-107.97512	SE SE	22	7S	95W	6th	Furr 16-22X	196342	10/7/2010	14:30	ISO	< 10.0	< 31.9

Note: Shaded rows present the results for samples collected on October 7, 2010 as presented in this report. The table also presents the results from previous sampling events for these gas wells.

Tritium (3H) Detection Limit 10.0 TU. Isotopic composition of hydrogen is relative to Vienna Standard Mean Ocean Water (VSMOW).

Abbreviations:

ISO - Isotech Laboratories, Inc. of Champaign, Illinois

TU - Tritium Units (One TU is equivalent to 3.19 pCi/L of water) Note: Isotech reported the tritium results in TU and Olsson Associates converted to equivalent picocuries per liter. pCi/L - picocuries per liter

< - Result is less than the method detection limit

NS - Not Sampled (Furr 16-22B was shut-in and the separator did not yield sufficient water volume to enable sample collection in April 14, 2009.)

TABLE 3A

TRITIUM ANALYTICAL RESULTS FOR PRODUCED WATER SAMPLES Seven New Tier II Wells Sampled 10/7/10 Laramie Energy II, Rulison Field, Garfield County, Colorado

Well Name/Number	Sample Source	Latitude	Longitude	SAMPLE ID	LAB Number	DATE SAMPLED	TIME SAMPLED	Laboratory	Tritium (TU)	Tritium (pCi/L) calculated
Furr 22-15A	Separator	39.4179	-107.9796	Furr 22-15A	196336	10/7/2010	13:55	ISO	< 10.0	<31.9
Furr 22-15C	Separator	39.4179	-107.9795	Furr 22-15C	196337	10/7/2010	13:40	ISO	< 10.0	<31.9
Furr 22-09A	Separator	39.4179	-107.9792	Furr 22-09A	196338	10/7/2010	13:50	ISO	< 10.0	<31.9
Furr 22-10A	Separator	39.4179	-107.9794	Furr 22-10A	196339	10/7/2010	13:55	ISO	< 10.0	<31.9
Furr 22-10C	Separator	39.4179	-107.9793	Furr 22-10C	1963340	10/7/2010	14:00	ISO	< 10.0	<31.9
Furr 22-09C	Separator	39.4179	-107.9791	Furr 22-09C	196343	10/7/2010	14:35	ISO	< 10.0	<31.9
Furr 22-16A	Separator	39.4179	-107.979	Furr 22-16A	196344	10/7/2010	14:40	ISO	< 10.6	<33.8

Note: Table presents the results for samples collected on October 7, 2010 as presented in this report.

Tritium (3H) Detection Limit 10.0 TU. Isotopic composition of hydrogen is relative to Vienna Standard Mean Ocean Water (VSMOW).

Abbreviations:

ISO - Isotech Laboratories, Inc. of Champaign, Illinois

TU - Tritium Units (One TU is equivalent to 3.19 pCi/L of water) Note: Isotech reported the tritium results in TU and Olsson Associates converted to equivalent picocuries per liter. pCi/L - picocuries per liter

< - Result is less than the method detection limit

ATTACHMENT A

Diane Short & Associates Radiochemistry Data Quality Review Report Addenda

DIANE SHORT & ASSOCIATES, INC.____

1978 S. Garrison St. # 114 Lakewood CO 80227 303:271-9642 Fax 988-4027 dsa7cbc@eazy.net

RADIOCHEMISTRY DATA QUALITY REVIEW REPORT- Addenda Tritium Analysis in Gas and Water by LSC Carbon-14 Analysis in Gas by LSC

SDG: <u>IsoTech 10619</u>, <u>10796</u>, <u>10797</u>, <u>11289</u>, <u>11299</u>, <u>11602</u>, <u>11610</u>, <u>12055</u>, <u>12367</u>, <u>12373</u>, <u>(Report revised to reflect additional IsoTech information Received October 2011)</u>

PROJECT: Garfield County CO, Rulison Project for Olsson Assoc. Golden CO

LABORATORY: <u>IsoTech Laboratories</u>, <u>Champaign</u>, <u>Illinois for Tritium in water and gas</u> and <u>C-14 in gas</u> (<u>C-14 analysis subcontracted to Beta Analytic</u>, <u>Miami</u>, <u>Florida and to the Illinois</u> <u>Geologic Survey</u> (<u>ILGS</u>).

SAMPLE MATRIX: <u>Water and Gas</u> SAMPLING DATE (Mo/Yr): <u>Various Months, 2008 through 2010</u>

NO.SAMPLES: See prior reports

ANALYSES REQUESTED: LSC for water, Combustion/LSC for Gas

SAMPLE NUMBERS: <u>See previous reports</u>

DATA REVIEWER: John Huntington

QA REVIEWER: Diane Short & Associates, Inc. ___INITIALS/DATE: ___11/11/2011

Telephone Logs included Yes____ No <u>__X</u>___

Contractual Violations Yes____ No <u>X</u>____

The project Quality Assurance Project Plan (QAPP), the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, 2004, the laboratory Standard Operating Procedure (SOP), and the EPA Radiochemistry Methods (current updates) have been referenced by the reviewer to perform this data validation review. The review includes evaluation of calibration, holding times and QC for all samples and a 10% review of the calculation algorithms. General comments regarding the data/ analytical quality are part of the review when raw data are submitted. The EPA qualifiers have been expanded to include a descriptor code and value to define QC violations and their values, per the approval of the project Manager.

I. DELIVERABLES

1. All deliverables were present as specified in the Statement of Work (SOW) or in the project contract.

Yes ____ No_X__

This is an addendum to the above noted reports. It is a summary of re-submitted data from IsoTech that was requested by the client per the comments made in these previous reports.

The reviewer notes to the client that IsoTech subcontracts part of the work but does not make it clear in the reports which part is subcontracted, when the samples or materials from sample prep were shipped to the other lab, associated chains of custody, or what methods are used for the subcontracted analyses. The reviewer recommends that the information should be provided in the reports. We were only able to determine where samples were analyzed from the interlab COC documents.

The standard reports from IsoTech include no QC. From the chain of custody documentation and from the data provided by IsoTech, it is apparent that tritium analysis has been conducted by IsoTech, and C-14 analysis has been subcontracted to Beta Analytic and the Illinois Geologic Survey (ILGS). In October of 2011, IsoTech provided all of the raw data for the tritium work. Some raw data for Beta Analytic samples associated with SDG 13942 was provided previously and has been discussed in the validation report for that SDG. No raw data has been provided for the ILGS C-14 work.

Per the level of review performed, the data package requirements have now been met for the Beta Analytic subcontracted work and for the IsoTech tritium analyses. The entity conducting the analysis is reputable.

The information subsequently provided by IsoTech includes a QA plan with summaries of the analytical and prep procedures used at IsoTech, a calculation spreadsheet, sample reports of tritium analysis for water samples, sample reports of tritium and C-14 analysis of gas samples, and general QA documents from Beta Analytic including ISO 17025 certifications. Additionally, in October of 2011, IsoTech provided a more complete data package for tritium analysis, including raw count data, efficiency determination, NIST standards analysis, background correction data, and calculation data sheets showing the detailed calculation of results for each sample. These have been used to update this report.

No bench sheets, Chain of Custody (COC) documents, counting raw data, or calibration data were provided originally. A Beta Analytic interlab calibration study was provided for C-14. Subsequent to this, Chain of Custody documents were provided for this project by IsoTech along with COC documentation for previous projects conducted. The prior COCs will be reviewed and discussed separately. This report includes only the review of the COCs associated with the referenced SDG.

An e-mail chain was included which describes the procedure followed at Beta for LSC work. This appears to specify the protocol for C-14 analysis, and the included spreadsheet appears to be associated with C-14 analysis for the gas, which is performed by LSC.

In addition, we have information in an e-mail from Dr. Hong Wang of ILGS as follows: *I checked my record. The ISGS 6604 was counted in Quantulus 1220 on 1/22/2010 for 56 hours. The standard used for this sample was measured on 1/04/2010 for about 70 hours. The measured activity value of the standards is 9.121 +/- 0.033 and its background value is 0.292 +/-0.008 on about 70 hours counting data. The and 6605 was counted using Packard 2200 on 1/22/2010 for 30 hours. The standard used for this sample was measured on 10/23/2008 for about 50 hours. The measured activity value of this standard is 8.743 +/-0.023. the background values is 1.996 +/-0.026. We don't have spike testing for 14C dating analysis.*

This does provide some information about the protocols used and the nature of the results for two samples. It is noted, that the exact samples referenced is not defined only the standard verification for the time period associated with the client samples. It has been inferred that this information, therefore, that calibration for client samples is complete. The data package remains incomplete for the C-14 samples subcontracted to ILGS.

II. ANALYTICAL REPORT FORMS

1. The Analytical Report or Data Sheets are present and complete for all requested analyses. Yes _____ No____ NA_X___ See prior reports

2. Holding Times
A. The contract holding times were met for all analyses.
Yes _____ No____ NA _X__
See prior reports

B. Samples were properly preserved, or applicable preservative was used. Yes _____ No____ NA _X___ See prior reports

3. Chains of Custody (COC)

A. Chains of Custody (COC) were reviewed and all fields were complete, signatures were present and cross outs were clean and initialed.

Yes ____ No __X__

No chain of custody documents were received originally for the samples sent to IsoTech, nor the samples subcontracted from IsoTech to other laboratories. After a conference with the laboratory and specific requests by the client, IsoTech provided the chain of custody documents required. IsoTech has used both Beta Analytic and the Illinois Geologic Survey (ILGS).

10619: The COC to IsoTech was properly signed and executed. Samples were sent on 11/13/2008 and received on 11/14/2008.

The C-14 samples were subcontracted to the Illinois Geologic Survey (ILGS). The form COC does not show this, but shows the samples being sent to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were provided to the ILGS on 12/11/2008.

10796: The COC to IsoTech was properly signed and executed. Samples were sent on 12/18/2008

and received on 12/22/2008.

The C-14 samples were subcontracted to the Illinois Geologic Survey (ILGS). The form COC does show this and also shows the samples being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were provided to the ILGS on several dates; 1/8/2009, 1/20/2009, and 1/23/2009.

10797: The COC to IsoTech was properly signed and executed. Samples were sent on 12/18/2008 and received on 12/22/2008. Only tritium analysis was requested, so subcontracting was not required.

11289: The COC to IsoTech was properly signed and executed. Samples were sent on 4/14/2009 and received on 4/15/2009. Only tritium analysis was requested, so subcontracting was not required.

11299: The COC to IsoTech was properly signed and executed. Samples were sent on 4/14/2009 and received on 4/16/2009.

The C-14 sample was subcontracted to the Illinois Geologic Survey (ILGS). The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. The sample was submitted to ILGS on 4/22/2009.

11602: The COC to IsoTech was properly signed and executed. Samples were sent on 6/24/2009 and received on 6/26/2009. <u>Both C-14 and tritium analysis were requested, but we have not received a COC for shipment to Beta Analytic or ILGS.</u>

11610: The COC to IsoTech was properly signed and executed. Samples were sent on 6/242009 and received on 6/29/2009.

The C-14 samples were subcontracted to the ILGS. The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were submitted on 7/20/2009 and 7/27/2009.

12055: The COC to IsoTech was properly signed and executed. Samples were sent on 10/1/2009 and received on 10/2/2009.

The C-14 samples were subcontracted to the ILGS. The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were submitted on 10/12/2009.

12367: The COC to IsoTech was properly signed and executed. Samples were sent on 12/16/2009 and received on 12/21/2009.

The C-14 samples were subcontracted to the ILGS. The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were submitted on 1/8/2010. No receipt or relinquishment times are shown on the form.

12373: The COC to IsoTech was properly signed and executed. Samples were sent on 12/16/2009

and received on 12/21/2009.

Samples were submitted for both tritium and C-14 analysis, but we do not have COCs for shipment to either Beta or ILGS.

III. CALIBRATION AND STANDARDIZATION

1. Daily counting efficiency (Base Efficiency) for all methods was achieved. Yes X_ No_ NA____

2. The calibration data include a plot of the counting efficiency obtained versus the various weights of salts spiked with a known DPM of the standard; The "best fit" curve or a computer fit equation with the estimated standard deviation meet the method calibration criteria. At least one complete self-absorption curve exists for one detector per array and the efficiency for the standard curve of \geq 3 standards agree within 95% confidence level.

Yes X____No____NA ____

The calibration data for the IsoTech tritium LSC analyses was received in October of 2011 and includes data for the samples noted from 2008 through 2011. Initial calibration for LSC analysis consists of acceptable efficiency and background data, which was provided in the October submittal. Decay correction of the standards was performed as required for tritium analysis.

Separate data packages from IsoTech were received for all tritium analyses for the SDGs listed in this report. These included calibrations, count data, and calculations for all samples.

3. Reliability of the daily QC check standards are within a 2 to 3 sigma control limit of the mean count of long term counting

Yes X_No_NA_

Data including the QC check standard results was received for IsoTech Laboratories in October of 2011 and includes data from 2008 forward.

4. The most recent background count duration is at least as long as the sample duration and this background total is within 99% confidence level or 2 to 3 sigma of the average of the last ten background checks on that detector.

Yes X No NA

Data for IsoTech Laboratories was received in October of 2011 and includes data from 2008 forward.

5. The attenuation was with the (beta x r2) limits as appropriate to the method. Yes __X__ No ___ NA__

6. There is documentation to verify that the standards are NIST traceable or the equivalent. Yes _X___ No___ NA____

The data provided by IsoTech Laboratories provide standard data for the NIST standard. A certificate for this standard was provided on request.

7. Quench factors were reported and noted as acceptable.

Yes X__ No___ NA___

IsoTech provides efficiency results and the data from which efficiency is calculated. The efficiency is reasonable for the known behavior of tritium.

IV. DETECTION AND REPORTING LIMITS

1. Minimal detection concentrations (MDC) with efficiencies were established for all analytes every six months or whenever a significant background or instrument response is expected (e.g., detector change).

Yes ____X___No _____NA_____

2. The laboratory reported the results with uncertainties that included all uncertainties associated with the preparation and analytical procedures.

Yes X_ No_

Tritium and C-14: Uncertainties are not included in the reports from IsoTech laboratories for the gas samples or for tritium analysis except for results above the reporting limit. This has only occurred for C-14 analysis in gas.

The IsoTech data submitted in October of 2011 does include the uncertainties for all results, for both samples and for QC and includes data from 2008 forward.

V. MATRIX SPIKE

1. Matrix spike (MS) was analyzed for every analysis performed and for every 20 samples or for every matrix whichever is more frequent.

Yes No X_

No MS/MSDs have been provided for any of the analyses in this set. Spikes are often not amenable to radiochemical analyses as long as there is some accounting for accuracy.

2. The MS percent recoveries were within the limits defined in the contract or a guidance limit of 75-125%.

Yes ____ No ____ NA _X_

3. The samples used for qualification are client samples. Yes _____ No _____ NA _X_

VI. MATRIX DUPLICATE

1. The matrix spike duplicate relative percent difference of the percent recoveries were within the limits defined in the contract or the CLP 20% for water and 35% for soil, or \pm RL for results < 5 x RL (+ 2x RL for soils).

Yes _____ No __X___ NA____

Matrix duplicates, not matrix spike duplicates, were analyzed.

IsoTech: IsoTech has provided duplicate results for tritium analysis indicating that they are for SDGs 12367 and 12373. However, the samples used are not identified as client samples. The

results appear to be in control, but their significance is not clear since we do not know their origin. Duplicate precision cannot be evaluated for these analyses.

B. Or met the Duplicate Error Ratio (DER) criteria calculations which account for the 2 sigma efficiency values. DER limit is 1. Yes No NA X

VII. LABORATORY CONTROL SAMPLE

1. Laboratory Control Sample (LCS) was analyzed for every analysis performed and for every 20 samples or for every matrix, whichever is more frequent

Yes <u>No X</u>

For the analysis of tritium in water and gas by IsoTech, standards were re-run per method requirements but there are no LCS's indicated nor second-source standards with each run. Per EPA Method 906.0, no LCS is clearly defined and no further action is required.

For Beta Analytic, data were provided from the Fifth International Radiocarbon Intercalibration Study, which constitutes results for second source standards through 2009, but does not represent a batch-by-batch check. This does appear to fulfill the Beta SOP for C-14 analysis and no further action is taken. If an LCS-type standard is run with Beta analyses, it is requested that it be submitted with the associated reports to the client.

IsoTech data provided in October of 2011 for all SDGs referenced by this report includes NIST standards run with each sample run and includes data from 2008 forward. These are all in control. For Beta Analytic such data is available only for SDG 13942, which is covered by a separate report.

Because the data received per the client request appear to meet method requirements, no qualifiers are required.

2. The LCS %R for each analyte (background corrected) met the established control limits or the method limits of 75-125%. Yes No NA X

3. The LCSD %R for each analyte (background corrected) met the established control limits or the method limits of 75-125%. Yes _____ No _____ NA___X___ LCSDs are not reported.

4. The duplicate relative percent difference of the percent recoveries were within the limits. Yes _____ No _____ NA_X_

VIII. BLANKS

1. Low-level activities of isotopes were reported for laboratory preparation blanks and met the MDC or background CPM criteria

OLRLScVariousDates-Isotech Page 7 of 12

Yes X__ No____

IsoTech: Blanks are present in each run of samples and are within acceptance windows.

2. The cross talk summary was acceptable and indicated no interferences Yes ____ No____ NA_X_

IX. CHEMICAL YIELD SUMMARY

Chemical Yield (Tracer) Summary was analyzed to monitor the accuracy of percent samples recoveries and the percent recoveries were within the control limits. Yes _____ No ____ NA __X__

X. FIELD QC

A. If Field duplicates or Performance Check Compounds were identified, they met the RPD or % recovery criteria for the project. Guidelines of 35% RPD for water were used unless the reported results are < 5 x Reporting Limit (RL) in which case 2 x RL difference is acceptable. Yes ____ No____ NA ___X___ Field duplicates have not been identified.

B. For low level data, the following DER calculations can be applied.

The Normalized Absolute Difference for isotopes with activities $\leq 5X$ the MDC is considered for data validation rather than the Relative Percent Difference (RPD). If the NAD calculated is 1.96 < x > 3.29 the results for all samples have been qualified JD# where # represents the NAD calculated. If the NAD calculated were greater than 3.29 the results would be rejected. If the results are less than 1.96 no qualification has been made. Where results are greater than 5X the MDC the RPD is considered for data validation.

Yes___No___NA__X_

XI. CALCULATIONS

The calculation algorithm has been checked for 10% of the submitted data packages and accuracy of the reported results is verified.

Yes X____ No _____ NA____

The calculations for the samples are provided in detail as printouts of the spreadsheets used. The calculations can be followed step-by step to reach the final result, both for counts and counting error calculations.

XII. OVERALL ASSESSMENT OF THE CASE

The data are considered fully useable for project purposes with consideration of the qualifications or comments.

Deliverables

This is an addendum to the above noted reports. It is a summary of re-submitted data from IsoTech that was requested by the client per the comments made in these previous reports.

The reviewer notes to the client that IsoTech subcontracts part of the work but does not make it

clear in the reports which part is subcontracted, when the samples or materials from sample prep were shipped to the other lab, associated chains of custody, or what methods are used for the subcontracted analyses. The reviewer recommends that the information should be provided in the reports. We were only able to determine where samples were analyzed from the interlab COC documents.

The standard reports from IsoTech include no QC. From the chain of custody documentation and from the data provided by IsoTech, it is apparent that tritium analysis has been conducted by IsoTech, and C-14 analysis has been subcontracted to Beta Analytic and the Illinois Geologic Survey (ILGS). In October of 2011, IsoTech provided all of the raw data for the tritium work. Some raw data for Beta Analytic samples associated with SDG 13942 was provided previously and has been discussed in the validation report for that SDG. No raw data has been provided for the ILGS C-14 work.

Per the level of review performed, the data package requirements have now been met for the Beta Analytic subcontracted work and for the IsoTech tritium analyses. The entity conducting the analysis is reputable.

The information subsequently provided by IsoTech includes a QA plan with summaries of the analytical and prep procedures used at IsoTech, a calculation spreadsheet, sample reports of tritium analysis for water samples, sample reports of tritium and C-14 analysis of gas samples, and general QA documents from Beta Analytic including ISO 17025 certifications. Additionally, in October of 2011, IsoTech provided a more complete data package for tritium analysis, including raw count data, efficiency determination, NIST standards analysis, background correction data, and calculation data sheets showing the detailed calculation of results for each sample. These have been used to update this report.

No bench sheets, Chain of Custody (COC) documents, counting raw data, or calibration data were provided originally. A Beta Analytic interlab calibration study was provided for C-14. Subsequent to this, Chain of Custody documents were provided for this project by IsoTech along with COC documentation for previous projects conducted. The prior COCs will be reviewed and discussed separately. This report includes only the review of the COCs associated with the referenced SDG.

An e-mail chain was included which describes the procedure followed at Beta for LSC work. This appears to specify the protocol for C-14 analysis, and the included spreadsheet appears to be associated with C-14 analysis for the gas, which is performed by LSC.

In addition, we have information in an e-mail from Dr. Hong Wang of ILGS as follows: *I checked my record. The ISGS 6604 was counted in Quantulus 1220 on 1/22/2010 for 56 hours. The standard used for this sample was measured on 1/04/2010 for about 70 hours. The measured activity value of the standards is 9.121 +/- 0.033 and its background value is 0.292 +/-0.008 on about 70 hours counting data. The and 6605 was counted using Packard 2200 on 1/22/2010 for 30 hours. The standard used for this sample was measured on 10/23/2008 for about 50 hours. The measured activity value of this standard is 8.743 +/-0.023. the background values is 1.996 +/-0.026. We don't have spike testing for 14C dating analysis.* This does provide some information about the protocols used and the nature of the results for two samples. It is noted, that the exact samples referenced is not defined only the standard verification for the time period associated with the client samples. It has been inferred that this information, therefore, that calibration for client samples is complete. The data package remains incomplete for the C-14 samples subcontracted to ILGS.

Chain of Custody

No chain of custody documents were received originally for the samples sent to IsoTech, nor the samples subcontracted from IsoTech to other laboratories. After a conference with the laboratory and specific requests by the client, IsoTech provided the chain of custody documents required. IsoTech has used both Beta Analytic and the Illinois Geologic Survey (ILGS).

10619: The COC to IsoTech was properly signed and executed. Samples were sent on 11/13/2008 and received on 11/14/2008.

The C-14 samples were subcontracted to the Illinois Geologic Survey (ILGS). The form COC does not show this, but shows the samples being sent to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were provided to the ILGS on 12/11/2008.

10796: The COC to IsoTech was properly signed and executed. Samples were sent on 12/18/2008 and received on 12/22/2008.

The C-14 samples were subcontracted to the Illinois Geologic Survey (ILGS). The form COC does show this and also shows the samples being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were provided to the ILGS on several dates; 1/8/2009, 1/20/2009, and 1/23/2009.

10797: The COC to IsoTech was properly signed and executed. Samples were sent on 12/18/2008 and received on 12/22/2008. Only tritium analysis was requested, so subcontracting was not required.

11289: The COC to IsoTech was properly signed and executed. Samples were sent on 4/14/2009 and received on 4/15/2009. Only tritium analysis was requested, so subcontracting was not required.

11299: The COC to IsoTech was properly signed and executed. Samples were sent on 4/14/2009 and received on 4/16/2009.

The C-14 sample was subcontracted to the Illinois Geologic Survey (ILGS). The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. The sample was submitted to ILGS on 4/22/2009.

11602: The COC to IsoTech was properly signed and executed. Samples were sent on 6/24/2009 and received on 6/26/2009. Both C-14 and tritium analysis was requested, but we have not received a COC for shipment to Beta Analytic or ILGS.

11610: The COC to IsoTech was properly signed and executed. Samples were sent on 6/242009 and received on 6/29/2009.

The C-14 samples were subcontracted to the ILGS. The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were submitted on 7/20/2009 and 7/27/2009.

12055: The COC to IsoTech was properly signed and executed. Samples were sent on 10/1/2009 and received on 10/2/2009.

The C-14 samples were subcontracted to the ILGS. The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were submitted on 10/12/2009.

12367: The COC to IsoTech was properly signed and executed. Samples were sent on 12/16/2009 and received on 12/21/2009.

The C-14 samples were subcontracted to the ILGS. The form COC does show this and also shows the sample being provided to Hong Wang, who is the Director of that Laboratory. The COC is properly executed and signed. Samples were submitted on 1/8/2010. No receipt or relinquishment times are shown on the form.

12373: The COC to IsoTech was properly signed and executed. Samples were sent on 12/16/2009 and received on 12/21/2009.

Samples were submitted for both tritium and C-14 analysis, but we do not have COCs for shipment to either Beta or ILGS.

Detection and Reporting Limits:

The calibration data for the IsoTech tritium LSC analyses was received in October of 2011. Initial calibration for LSC analysis consists of acceptable efficiency and background data, which was provided in the October submittal. Decay correction of the standards was performed as required for tritium analysis.

Separate data packages from IsoTech were received for all tritium analyses for the SDGs listed in this report. These included calibrations, count data, and calculations for all samples.

Matrix Duplicates

Matrix duplicates, not matrix spike duplicates, were analyzed which is acceptable for the methods.

IsoTech: IsoTech has provided duplicate results for tritium analysis indicating that they are for SDGs 12367 and 12373. However, the samples used are not identified as client samples. The results appear to be in control, but their significance is not clear since we do not know their origin. Duplicate precision cannot be evaluated for these analyses.

There is no indication of field duplicates and field precision cannot be evaluated.

LCS

For the analysis of tritium in water and gas by IsoTech, standards were re-run per method requirements but there are no LCS's indicated nor second-source standards with each run. Per

EPA Method 906.0, no LCS is clearly defined and no further action is required.

For Beta Analytic, data were provided from the Fifth International Radiocarbon Intercalibration Study, which constitutes results for second source standards through 2009, but does not represent a batch-by-batch check. This does appear to fulfill the Beta SOP for C-14 analysis and no further action is taken. If an LCS-type standard is run with Beta analyses, it is requested that it be submitted with the associated reports to the client.

IsoTech data provided in October of 2011 for all SDGs referenced by this report includes NIST standards run with each sample run and includes data from 2008 forward. These are all in control. For Beta Analytic such data is available only for SDG 13942, which is covered by a separate report.

Because the data received per the client request appear to meet method requirements, no qualifiers are required.

ATTACHMENT B

Isotech Quality Assurance Plan May 2009

QUALITY ASSURANCE PLAN

for

Isotech Laboratories, Inc. 1308 Parkland Court Champaign, IL 61821

Revised May 21, 2009

President and Laboratory Director

Date

Laboratory Manager and QA/QC Officer

Date

GENERAL QA/QC PROCEDURES	3
1. SAMPLES	3
1.1 Sampling Procedures	3
1.2 Sample Containers	3
1.3 Sample Custody	3
2. INSTRUCTIONS AND PROCEDURES	3
2.1 Instrument Operation Procedures	3
2.2 Analytical Procedures	3
3. CALIBRATION AND STANDARDIZATION	4
3.1 Calibration Procedure and Frequency	4
3.2 Method Validation	4
3.3 Check/Reference Samples	4
3.4 Standards	4
3.5 Duplicate Samples	4
3.6 Specific Routine Procedures to Assess Performance	4
3.7 External Quality Control Checks	5
4. ANALYSES AND ANALYTICAL RESULTS	5
4.1 Data Reduction and Reporting	5
4.2 Hard Copy and Electronic Data Deliverables	5
4.3 Documentation	6
4.4 Hard Copy Data Files and Storage	6
5. MAINTENANCE AND REPAIR	6
5.1 Instruments	6
5.2 Other Equipment	6
6. REVIEW	7
6.1 Analytical Review	7
6.2 Standard Operating Procedures (SOP's):	7
7 OA/OC PROBLEM REPORTING	7
7.1 Responsibilities	7
9 SUDCONTDACT DOLICY	7
	/
APPENDICES: ANALYTICAL PROCEDURES	9
I. Sample Preparation Procedures for Stable Isotope Analyses	9
A. Procedures for Stable Isotope Analysis of Water Samples	9
1. δ^{13} C (Carbon Isotope Analysis) of Dissolved Inorganic Carbon (DIC)	9
2. δD (Hydrogen Isotope Analysis) and $\delta^{18}O$ (Oxygen Isotope Analysis) of H ₂ O	10
3. δ^{15} N and δ^{18} O (Nitrates)	11
B. Procedures for Stable Isotope Analysis of Gas Samples	11
1. δ ¹³ C and δD (Carbon and Hydrogen Isotope Analysis) for Hydrocarbon Gases, C	offline Prep
Systems	11
2. δ ¹³ C (Carbon Isotope Analysis) of CO ₂ , Offline Prep Method	13
3. GC-C-IRMS systems, δ^{13} C, δ D, and δ^{13} N	13
U. Procedures for Stable Isotope Analysis of Organic Solids and Liquids	14
II. Sample Preparation Procedures for Radiogenic Isotope Analyses	15
A. Procedures for Radiogenic Isotope Analysis of Gases	16

1. ¹⁴ C (Radiocarbon) and ³ H (Tritium) in CH ₄ (Methane) by Radiometric Analysis	16
2. ¹⁴ C (Radiocarbon) in CO ₂ by Radiometric Analysis	17
3. ¹⁴ C (Radiocarbon) in CH ₄ and CO ₂ by Accelerator Mass Spectrometry (AMS)	18
B. Procedures for Radiogenic Isotope Analysis of Water	19
1. ¹⁴ C (Radiocarbon) in dissolved inorganic carbon (DIC) by Accelerator Mass Spectrome	etry (AMS)
	19
2. ³ H (Tritium) in H ₂ O	19
III. Dual Inlet Mass Spectrometric Analysis	21
A. Measurement of ¹³ C/ ¹² C and ¹⁸ O/ ¹⁶ O in CO ₂	21
B. Measurement of ² H/ ¹ H (Deuterium/Hydrogen) in H ₂	22
IV. Gas Chromatographic Analysis of Gases	24
A. Analysis of hydrocarbons	24
B. Analysis of fixed gases	25
V. Radiocarbon Analysis of Prepared Samples	27

GENERAL QA/QC PROCEDURES

1. SAMPLES

1.1 Sampling Procedures It is the responsibility of the person collecting a sample to follow a sound sampling procedure. This will ensure that the sample collected is representative of the whole. Unless employees of Isotech do the sample collection, the entire responsibility for sample collection resides with the client. However, we at Isotech in addition to being available for sample collection, will provide advice on sampling methods, sample storage procedures, and sample size requirements.

1.2 Sample Containers Sample containers should be matched in size, type and condition to the anticipated analysis that will give best representation of the source, while preserving the sample integrity prior to analysis. Unless sample containers are provided by Isotech, the responsibility for adequate containers resides with the client. Again, in addition to being able to provide appropriate sample containers, shipping cartons and shipping instructions, Isotech will provide advice on sample containers/cartons and shipping procedures.

1.3 Sample Custody A completed "Chain of Custody" record is the responsibility of the client and, if required, should be submitted with the samples. Isotech will provide a "Chain of Custody/Request for Analysis" form if needed. Isotech assumes full responsibility for all samples received and stored for analysis at our laboratory. If any samples are removed from Isotech for additional analysis at other laboratories, a "Chain of Custody" form will be completed. All samples received for analysis are assigned a unique, non-duplicated laboratory number which is used as an identifier for each analysis performed.

2. INSTRUCTIONS AND PROCEDURES

2.1 Instrument Operation Procedures Analyses performed with manufactured analysis instruments are carried out by the methods either specified or recommended by the manufacturer of the instrument as identified in the instrument manual or provided by on-site training through the manufacturer's service technicians. Much of the operation of these instruments is controlled by personal computers utilizing software written and licensed by the manufacturers.

2.2 Analytical Procedures The analytical procedures used routinely at Isotech are described in written standard operating procedures (SOP's) for each analysis. Additional procedures may be used, as needed, in the process of satisfying a client's specific analysis requirements. These procedures will either follow published analytical methods, or methods developed at Isotech for a specific analysis. If the Isotech developed procedure becomes routine, then a standard operating procedure is written. All procedures are reviewed and approved by the laboratory supervisors. Various procedural tests and verifications performed are recorded in bound maintenance log books.

3. CALIBRATION AND STANDARDIZATION

3.1 Calibration Procedure and Frequency Depending on the analytical technique, instruments used for quantitative analyses are either calibrated at the beginning of every operating period or the calibration is checked by using a reference sample or a calibration standard. The instrument calibration is also checked at appropriate intervals during analyses. Specific instruments that form components of a sample preparation system are calibrated using duplicate sample analysis as well as analysis of a reference sample at appropriate intervals. Records of calibration results are kept in laboratory notebooks or other secure medium (see Documentation).

- **3.2 Method Validation** Analytical methods are validated by one or more of the following techniques:
 - 3.2.1 check or reference samples are analyzed and the results are compared with the internal documented or external certified (primary and secondary standards) values,
 - 3.2.2 results from the candidate method are compared with those from another method known to be applicable and reliable, or
 - 3.2.2 spiked samples and surrogate samples are analyzed and the method results are compared with the known concentrations.

3.3 Check/Reference Samples A check/reference sample is re-analyzed approximately every tenth analysis. This, in essence, results in a test of the method. Check/reference samples are chosen which have been analyzed many times over a period of years with consistent results.

3.4 Standards Primary standards are obtained from the International Atomic Energy Agency, Vienna, Austria, and certified by NIST (National Institute of Standards and Technology, formerly U.S. National Bureau of Standards) or directly from NIST. Secondary standards are obtained from commercially available sources recognized in the industry. Internal Reference standards are prepared by direct calibration against primary and secondary standards.

3.5 Duplicate Samples Duplicate analyses are performed approximately every tenth analysis. This duplicate sample analysis is performed approximately five analyses after the check/reference sample analysis is performed. Therefore, for a particular analysis procedure, a test of the method is performed every five analyses. This assures that at least 20% of all analyses are for maintaining QA/QC.

3.6 Specific Routine Procedures to Assess Performance Standard reference samples, chosen to match the submitted samples as closely as possible, in conjunction with duplicate samples and check samples, provide a matrix for performance evaluation. Control charts of replicate analytical data for reference samples are kept for each analytical method practiced routinely. Control charts are used to check the performance of an instrument and/or analytical technique.

Control charts for replicate samples are kept as tables and/or graphs. Graphs are displayed on the wall and data is plotted when measured to see if it falls within a predetermined acceptable range and to monitor for long term changes or trends. If a problem is detected with the reference sample, then the problem is first addressed by checking the integrity of the sample itself. Other reference samples are analyzed to determine if the problem persists. If reference sample integrity is verified, further diagnostic testing is carried out until the cause of the discrepancy is identified.

Isotech willingly participates in round-robin testing whenever the opportunity arises and recently participated in a hydrogen isotope study sponsored by the Finnigan Corporation. Cross-checks with the Illinois State Geological Survey are carried out frequently. Three natural gas standards set up by the International Atomic Energy Agency (IAEA) and now maintained by NIST are periodically analyzed. A supply of these standards is maintained and clients are encouraged to include one of these standards as a sample to be analyzed. Instrument calibration is carried out whenever analysis of internal standards and check samples suggests a potential problem.

3.7 External Quality Control Checks Blind duplicates, check samples, blanks, and spiked samples may be submitted by the client, and this practice is encouraged.

4. ANALYSES AND ANALYTICAL RESULTS

4.1 Data Reduction and Reporting Calculations made in reducing raw data to reportable form are verified (preferably by a second person) before reporting the results to the client. If a computer program is used to perform calculations, the accuracy of the input data is verified by comparison with the raw data. In all cases where computer programs are used to make the calculations, the person making the calculations verifies that the proper program is used. Data reduction and calculation is performed automatically by the computers which control the instruments. Reported results are verified relative to the computer printouts. This verification involves copying the value from the printout to a report format and is generally performed by the same person who performed the analyses.

4.2 Hard Copy and Electronic Data Deliverables Normally, final data is emailed to clients as an Excel workbook file, and also a PDF version of the data. Depending on the sample type, hard copy reports can be either a single page per sample, or can be in tabular format with multiple samples per page. Hard copy reports are mailed to clients, unless clients indicate that the email versions are sufficient for their needs. Upon request, CD's will be submitted to clients in addition to the hard copy reports. Also, appropriate graphs will be provided upon request. Compositional analyses for natural gas samples are normalized to 100% when the Analysis Report is generated. Upon request a QA/QC report containing results for all check samples and duplicates as well as copies of raw data can be provided at additional cost.

4.3 Documentation All laboratory notes, observations, calibrations, manual calculations, and any other pertinent information are kept in bound laboratory notebooks or other secure recording medium. Computer programs used for data storage, retrieval, and calculations, which are developed within Isotech Laboratories, Inc., are documented well enough that someone not intimately familiar with the program development, but who is familiar with the programming language, can understand the operation of the program. Printed and dated copies of the current version and each previous version (insofar as possible) of the program are kept in the developer's files. These copies remain at and are the property of Isotech, should the developer leave employment of Isotech Laboratories, Inc. Electronic backup copies of currently-used computer programs are securely kept by the program's developer or principal user. Computer software provided by the instrument manufacturers that reduces raw data and calculates results have been checked by doing the calculations manually. Backup copies of analyses databases are made periodically. The frequency of making backup copies depends on the frequency of updating the database, but the minimum frequency for making backup copies is weekly. All laboratory notebooks, data, computer programs, computerized databases, and any other means of recording data, observations, calculations, and other pertinent information developed at or on behalf of Isotech, remain the property of Isotech Laboratories, Inc., unless otherwise designated by the Board of Directors of Isotech Laboratories. Inc.

4.4 Hard Copy Data Files and Storage All pertinent paperwork associated with each batch of samples is stored in the client files. Typical paperwork can include chain of custody records, client analysis requests, email communication to/from clients regarding samples, final data, and cover letter mailed to client with final data. Data files are kept indefinitely unless clients request that we dispose of them.

5. MAINTENANCE AND REPAIR

5.1 Instruments Each instrument or machine used to produce quantitative analysis results, or leading up to their production, undergoes periodic preventive maintenance according to manufacturer's instructions, or some established preventive maintenance schedule. Preventive maintenance may be done by laboratory personnel, manufacturer's representative, or a qualified third-party contractor, depending on the abilities of the laboratory operator and the complexity of the equipment. Records of repairs and preventive maintenance are kept by the appropriate laboratory personnel in files or notebooks. Records of equipment problems and solutions are kept in files or notebooks. The analyst is the person best qualified to recognize when the instrument or machine they operate is in need of repair, or the method they practice is in need of corrective action. They are aided in this monitoring by control charts. Corrective action is needed when predetermined limits for data acceptability are exceeded. Analysts are also to use their experience and scientific judgment in deciding when corrective action is needed.

5.2 Other Equipment Other laboratory equipment such as vacuum pumps, ovens, test meters and non-instruments such as glassware are maintained by Isotech personnel. In most cases this is performed by the same person who utilizes the equipment for analysis. Visual checks backed

by mechanical and electronic gauges provide constant maintenance checks directly to the operators.

6. REVIEW

6.1 Analytical Review At the time of each analysis or sample preparation, the staff chemist performing the analysis reports anomalies to the Laboratory Manager, who is the primary QA/QC officer. Staff chemists are all trained on a variety of techniques and work closely together. Constant communication between staff members results in most problems being addressed when they occur. Unusual problems are brought to the attention of the Laboratory Director. Whenever possible, a sample that is questionable for any reason is re-analyzed to verify results, regardless of when the sample was analyzed initially. This means that more than 10% of samples will be duplicates if the data appears to be unusual in any way.

Before final reports are printed, data is checked to verify that the final data agrees with the raw printouts, and raw percentages for compositional analyses are checked to ensure that all components are identified. Reproducibility of duplicate isotopic samples is compared to stated precision limits. Analytical data is reviewed for anomalies by both the QA/QC Officer and the Laboratory Director prior to reporting.

6.2 Standard Operating Procedures (SOP's): These procedures are developed from specific analytical methods for operating specified equipment and supplies to obtain high quality data reflective of each sample analyzed. In addition to revisions due to procedural or equipment changes these SOP's are reviewed by the Laboratory Manager annually.

7. QA/QC PROBLEM REPORTING

7.1 Responsibilities QA/QC is the responsibility of every person who collects or analyzes samples. If any Isotech Laboratories, Inc. employee observes any QA/QC problem, that employee will discuss the problem with the analyst, QA/QC officer, or Isotech Laboratories, Inc. Board Member. No negative action will be ever be brought against nor will accrue to any staff member who reports QA/QC problems.

8. SUBCONTRACT POLICY

Samples for analysis of ¹⁴C (radiocarbon) are converted to purified carbon dioxide and then submitted to an established radiocarbon dating laboratory for the final analysis. When analyses are requested for which Isotech does not have either the necessary equipment or expertise to provide high quality results, these analyses too may, with the knowledge of the client, be submitted to a subcontract laboratory. Only established, reputable laboratories which maintain strict QA/QC control are utilized. All samples are prepared and packaged using techniques that have been recommended or approved by the subcontract laboratory. Analysis of reference

samples and standards is the responsibility of the subcontract laboratory. Duplicate analyses of samples submitted to a subcontract laboratory should be requested by the client and will be charged as regular samples.

APPENDICES: ANALYTICAL PROCEDURES

I. Sample Preparation Procedures for Stable Isotope Analyses

A. Procedures for Stable Isotope Analysis of Water Samples

1. δ¹³C (Carbon Isotope Analysis) of Dissolved Inorganic Carbon (DIC)

Equipment and Supplies

Vacuum pumps and gauges Glass and metal vacuum system Dry ice Isopropyl alcohol Liquid nitrogen Phosphoric acid Gas-Oxygen torch

<u>Method/Procedure</u> The δ^{13} C of DIC is determined by injecting up to 20 ml of sample water into an evacuated 60 ml serum bottle containing 2 ml of 85% phosphoric acid and a magnetic spin bar. Sample size is determined based on alkalinity, which is measured by titration with 0.1N HCl.

The sample is stirred for a minimum of 15 minutes and then connected to the vacuum system via a needle port. The hypodermic needle is embedded into the stopper and the air within the needle port is evacuated. The needle is then inserted completely through the stopper. The CO_2 generated is liberated from the water and transferred through a trap cooled in a dry-ice/isopropyl-alcohol mixture (for H₂O removal) to a U-trap which is cooled in liquid nitrogen. The sample is constantly stirred to ensure that all CO_2 is liberated from the water. All residual gases are pumped away through the vacuum system. The CO_2 is transferred into a Pyrex cold finger for yield determination by placing a Dewar of dry ice slush on the U-trap to liberate the CO_2 and placing a Dewar of liquid nitrogen on the cold finger to collect the CO_2 . The sample is sealed into the cold finger and the liquid nitrogen Dewar is removed to allow the sample to sublimate. The yield is calculated from the pressure reading on a digital manometer connected to the cold finger.

The CO₂ is then collected in $\frac{1}{4}$ " OD Pyrex tubing by transferring the purified CO₂ into the seal tube with liquid nitrogen. The tube is fused shut with a gas-oxygen torch and tagged with a piece of label tape for mass spectrometric analysis.

Maintenance The system is thoroughly evacuated between samples. Vials are washed and dried.

Replication At a minimum, every tenth analysis is a replicate.

<u>Calculation</u> Calculations are performed by the software on the IRMS (Isotope Ratio Mass Spectrometer) at the time of final analysis.

<u>Documentation</u> All procedural tests and verifications performed are recorded in bound maintenance log books. All sample data including the date prepared with analyst identification are recorded on laboratory log sheets and in bound log books.

2. δD (Hydrogen Isotope Analysis) and $\delta^{18}O$ (Oxygen Isotope Analysis) of H₂O

Equipment

3mL syringes0.2 micron syringe filters2mL glass vials with septum capsPicarro CRDS (cavity ringdown spectrometer) model L1102-i fitted with a Leap autosampler

Method/Procedure

Water samples are individually filtered into 2mL vials with 0.2 micron syringe filters. If samples are high salinity brines, they should be vacuum distilled prior to loading. The vials are then loaded onto trays which are installed on the autosampler. Samples are analyzed by the CRDS in replicate in accordance with the manufacturer's recommendation.

<u>Reference Sample</u> Two reference water samples are used to verify accuracy and reproducibility. These reference waters are analyzed approximately every tenth analysis. Performance is also periodically checked by direct analysis of primary reference standards obtained from IAEA or NIST.

Replication

At a minimum, every tenth sample analysis is a replicate.

Calculation

Calculations are performed by the software on the CRDS at the time of analysis.

Documentation

All procedural tests, sample preparations and verifications performed are recorded in bound maintenance log books. All final data including the date prepared with analyst identification in bound log books.

3. δ^{15} N and δ^{18} O (Nitrates)

Equipment and Supplies

Filter paper Glass filtration apparatus 1N HCl BaCl₂ Borosilicate glass balls Hot Plate Cation exchange resin Anion exchange resin 1N HBr Ag₂O DI Water Flasks Stirbars Glass funnel Freezer Oven Freeze-dryer Teflon beakers

<u>Method/Procedure</u> Nitrate is extracted from groundwater samples and converted into AgNO₃ using ion-exchange techniques. Samples are filtered and pH adjusted to 1-3 using 1N HCl boiled to final volume of 250 ml. BaCl₂ is added to remove dissolved sulfates. The sample is poured into seperatory funnels and passed through a pretreated cation exchange column. The sample is then passed through the anion column, where nitrate is held within the column. 1N HBr is added, and the eluate collected, diluted with 20mL DI water, and Ag₂O is added. The sample is filtered, frozen in a Teflon beaker, and placed in a freeze drying vacuum oven until only the AgNO₃ crystals remain. The crystals are then analyzed using for 15N using an EA and isotope ratio mass spectrometer (IRMS) and the 18O values measured using a TCEA-IRMS.

B. Procedures for Stable Isotope Analysis of Gas Samples

1. $\delta^{13}C$ and δD (Carbon and Hydrogen Isotope Analysis) for Hydrocarbon Gases, Offline Prep Systems

Equipment and Supplies

3 SRI 8610C Gas chromatographs Evacuated transfer system Copper oxide combustion furnace Dry ice Isopropyl alcohol Liquid nitrogen Electronic manometer Electronic vacuum gauge Helium Oxygen Gas-oxygen torch

<u>Method/Procedure</u> The determination of carbon and hydrogen isotopic ratios for hydrocarbons in gas mixtures (e.g. natural gas) requires a sample preparation system capable of first separating the individual hydrocarbons and then quantitatively converting them into carbon dioxide (CO_2) and water for mass-spectrometric analysis. There are 2 systems utilized for processing natural gases. The systems employed are helium purged flow systems consisting of two major units.

The first unit consists of sample injection syringes, SRI 8610C gas chromatographs, a personal computer, and several flow-control valves. This configuration separates the hydrocarbon of interest from the sample and channels it into the combustion-collection unit. The second unit is the combined combustion-collection unit which includes quartz combustion tubes filled with cupric oxide (CuO), and vacuum lines. This system converts the hydrocarbon of interest into CO_2 and water, which are then collected and purified for isotopic analysis.

Samples can be analyzed from a variety of different sampling containers such as high-pressure cylinders, gas bags, or vacutainers. The sample is expanded into the injection syringes which have been pre-set to the desired volume, and adjusted to atmospheric pressure. Once the sample is loaded into the injection syringe, the separation is automated by both a personal computer and on-board computers within the gas chromatographs. Once a run is initiated, the GC software controls valves to the injection syringes, and controls the valves to the separation columns.

The sample hydrocarbon is flowed through a copper oxide combustion furnace set at 850° C utilizing helium as the carrier gas. On the downstream side of the furnace, both the carbon dioxide and the water of combustion are collected in a liquid nitrogen-cooled trap. Once the entire sample has been collected, the helium carrier gas is evacuated. The carbon dioxide is then transferred into a cold finger attached to a digital manometer for yield measurement by placing a dewar of dry ice slush on the collection trap to liberate the CO₂ while maintaining the water in the collection trap. Once all of the CO₂ has been collected in a cold finger is closed and the liquid nitrogen is removed to allow the CO₂ to sublimate for yield determination.

The water of combustion is then transferred into a 12-inch length of $\frac{1}{4}$ " OD Pyrex tubing that has been sealed at one end and contains a weighed quantity of zinc turnings. The zinc is prepared by evacuating and heating to 400°C for at least 5 minutes while open to vacuum Once the sample water has been completely transferred into the sample tube and frozen with liquid nitrogen, the sample tube is sealed off with a torch for later mass spectrometric analysis.
After the water has been sealed off, the pressure reading on an electronic pressure gauge connected to the coldfinger is used to calculate the yield of CO_2 , and this is recorded in the lab notebook. The CO_2 is then transferred into $\frac{1}{4}$ " OD Pyrex tubing and sealed with a torch for later mass spectrometric analysis.

<u>Maintenance</u> The packed columns used for GC separation are backflushed after every sample and serviced when the peak separation decreases. This service consists of baking at manufacturer's recommended temperature and time. During the heating and cooling process, O₂ is flowed through the copper oxide combustion furnaces to regenerate the CuO. This conditioning process is completed each day samples are analyzed. The transfer/collection system is thoroughly evacuated between samples. Valve o-ring seals within the evacuated transfer system are replaced as required.

<u>Reference Samples</u> The system is tested by analyzing a reference sample every tenth analysis performed.

<u>Replication</u> A duplicate analysis of one of the samples is performed approximately every tenth analysis. This duplicate analysis is performed approximately five analyses after the reference sample analysis is performed. Therefore, a test of the system operation is performed every five analyses.

<u>Calculation</u> The expected yield is calculated form the injection volume and the hydrocarbon concentration

<u>Documentation</u> All procedural tests, sample preparations and verifications performed are recorded in bound maintenance log books. All final data including the date prepared with analyst identification are recorded on laboratory log sheets and/or in bound log books. Digital copies of all chromatograms are stored and backed up regularly.

2. δ^{13} C (Carbon Isotope Analysis) of CO₂, Offline Prep Method

<u>Method/Procedure</u> Preparation of samples for measurement of the δ^{13} C of CO₂ is performed on the same system as the hydrocarbons. The procedure is identical to that for the hydrocarbons, with two exceptions. First, CO₂ does not pass through a combustion furnace; gas is channeled directly from the GC outlet to the collection trap. Second, there is no water of combustion. Therefore, the collection/purification system is slightly smaller as it has only one sample tube, and all steps related to collecting the water of combustion are omitted.

3. GC-C-IRMS systems, δ^{13} C, δ D, and δ^{15} N

Equipment and Supplies

HP6890 GC interfaced to ThermoFinnigan Delta Plus Advantage HP6890 interfaced to Thermo Electron Delta V Plus HP 6890 interfaced to Thermo Scientific Delta V Plus

CTC Analytical GC PAL autosampler

Method/Procedure

GC-C-IRMS systems, also referred to as "online" or "continuous flow", consist of an Agilent 6890 GC combustion unit and Finnegan GCCIII interfaced with a mass spectrometer (Delta V Plus or Delta Plus Advantage), and are used to analyze the carbon isotopic value of hydrocarbon components in gas samples. Samples are injected into the HP6890 split/splitless injector either manually, or using customized GC PAL auto-samplers. The hydrocarbon components are separated by the GC column in the HP6890, and each individual component slated for isotopic analysis is combusted in a combustion furnace supplied by the instrument manufacturer. The resultant CO₂ is introduced directly into the mass spectrometer, and Finnegan's Isodat software is utilized for peak detection and quantification.

Hydrogen isotopic values for methane are completed using the same system, but the gas is channeled through a high-temperature pyrolysis furnace instead of through the combustion furnace. The pyrolysis furnace converts methane into H_2 and carbon, and the H_2 gas is introduced directly into the mass spectrometer.

Nitrogen isotopic data for elemental nitrogen (N_2) is generated using the same system, with one key difference: the temperature on the combustion reactor is reduced so that the N_2 is not oxidized.

Maintenance

Septa on the GC inlet system are replaced daily when the system is operational. Pyrolysis and combustion tubes are replaced as needed. Combustion tubes are oxidized daily during analysis sequences.

Reference Samples

Reference gases are analyzed at the start of each analysis sequence, and then at least 10% of all analyses during a sequence are check samples.

Replication

At least 10% of client samples are analyzed in duplicate.

C. Procedures for Stable Isotope Analysis of Organic Solids and Liquids

Equipment and Supplies

Carlo Erba Elemental Analyzer connected to a Finnigan Delta S Mass Spectrometer ThermoElectron TCEA interfaced to a Thermo Electron Delta V Plus Mass Spectrometer Elementar EL Vario III interfaced to a Thermo Scientific Delta V Plus Mass Spectrometer

<u>Method/Procedure</u> The determination of carbon, nitrogen, oxygen, hydrogen, and sulfur isotopic ratios for organic solids and liquids is accomplished by combustion or pyrolysis of the materials for mass-spectrometric analysis. The systems employed are standard elemental analyzers with carousel auto samplers, connected to isotope ratio mass spectrometers through an interface supplied by the manufacturer. The combustion products of interest from the elemental analyzers are: carbon dioxide (CO₂) for carbon isotope analysis, N₂ for nitrogen isotope analysis, and sulfur dioxide (SO₂) for sulfurn isotope analysis. Oxygen and hydrogen isotopic ratios are analyzed on the TCEA, which converts hydrogen from the organic materials to H₂ gas for hydrogen isotopic measurements, and oxygen within the organic materials is converted to carbon monoxide (CO) for oxygen isotope analysis. This system in its entirety was purchased expressly for analysis of these samples.

Samples are weighed on a Mettler balance and loaded into a standard EA tin capsule for carbon, nitrogen, or sulfur isotopic analysis, or into a silver capsule for oxygen or hydrogen isotopic analysis. Once the samples are loaded into the EA, a run is started and all instrument control is done by software provided by the MS manufacturer. Samples are combusted as per normal EA operating procedures, and the $CO_2 N_2$, and SO_2 are separated by the EA. Similarly, the pyrolysis products H2 and CO from the TCEA are separated within the instrument. The vents of the EA and the TCEA are connected to the mass spectrometers via the interface, where a small portion of the EA or TCEA output flows directly into the MS. The MS measures the isotopic value of the component of interest (CO_2 , N_2 , SO_2 , CO, or H_2) and the final isotopic value is generated by software provided by the manufacturer.

<u>Maintenance</u> Ash is removed from the top of the combustion column in the EA or the top of the pyrolysis reactor in the TCEA as directed by the manufacturer, or when peak tailing becomes apparent. Combustion and reduction furnaces in the EA are replaced at appropriate intervals as outlined by the dealer, or when peak shape deteriorates. The TCEA contains glassy carbon, which is periodically replaced.

<u>Reference Samples</u> The systems are tested by analyzing at least one reference at least once per batch of 25 samples loaded into the auto sampler. A blank is also run at the start of each batch.

Replication Approximately 10% of all samples analyzed are replicates.

<u>Documentation</u> All final data including the date analyzed are recorded on laboratory log sheets and/or in bound log books. Digital copies of chromatograms are stored and backed up regularly.

II. Sample Preparation Procedures for Radiogenic Isotope Analyses

A. Procedures for Radiogenic Isotope Analysis of Gases

1. ¹⁴C (Radiocarbon) and ³H (Tritium) in CH₄ (Methane) by Radiometric Analysis

Equipment

Peristaltic pump Flow meters Gas regulators Vacuum gauge Molecular sieve trap High temperature tube furnaces Quartz combustion chamber Vacuum traps and gauges Vacuum pumps Mercury manometer

Method/Procedure

1.1 Methane Combustion

The system used for tritium (³H) analysis of methane and for radiocarbon (¹⁴C) analysis of methane consists of a peristaltic pump, a CO_2 removal unit, and a sample combustion/collection flow unit. The CO_2 removal unit includes a trap filled with molecular sieve and an ascarite backup trap. The combustion/collection unit is composed of a tube furnace, an inner and an outer quartz combustion tube which are interconnected through an orifice located at the tip of inner tube, a flow control valve, and a series of gas purification and collection traps. The system is attached to a vacuum manifold.

The molecular sieve is baked and evacuated to 350° C before each use to ensure that all absorbed gases are removed from the trap. After the molecular sieve is cooled to room temperature, the system is first evacuated, and then pressurized with argon. Oxygen is then introduced into the outer combustion tube which is partly filled with cupric oxide (CuO) and placed in a tube furnace preheated to 850° C. After the flow is established, the gas sample enters the system through a flow control valve (if the sample is above atmospheric pressure) or is pumped in slowly by a peristaltic pump (if the sample is at or below atmospheric pressure). CO₂ associated with the sample is absorbed by the molecular sieve and removed from the sample quantitatively. Methane in the sample is then carried by argon through the inner combustion tube and ignited at the tip of the tube where oxygen is supplied.

The water of combustion is collected in a trap immediately after the combustion furnace. This collection trap is heated under vacuum prior to each analysis to ensure that there is no cross-contamination between samples. To collect the sample water, the trap is immersed in a dry ice/isopropanol bath. Once the entire sample has been combusted, the frozen water of combustion is melted and transferred to a glass vial to await tritium analysis. The CO₂ formed by combustion is collected in two liquid nitrogen cooled traps, measured volumetrically, and transferred into a storage cylinder. Storage cylinders are effectively leak-tested during each use by evacuation prior to transferring the sample CO₂. Each cylinder is tagged with sample identification and is forwarded to a subcontractor for ¹⁴C analysis along with a chain-of-custody form.

If the yield of CO_2 is less than one liter, the sample is diluted to approximately one liter with ¹⁴C free CO_2 prepared from the combustion of natural gas. The dilution gas has been analyzed to verify that it is ¹⁴C free, and found to be statistically indistinguishable from background. The volume of the sample and the volume of the dilution gas are precisely measured with a mercury manometer. The dilution factor measured is used in the final calculation of the ¹⁴C activity.

1.2 Tritium Analysis

The water of combustion from methane samples is ready to be analyzed in the liquid scintillation (LS) spectrometer. There is no pre-treatment necessary for the sample, as it is essentially distilled water when it is collected.

The scintillation counting vials are prepared by pipetting 10 ml of commercial scintillation cocktail into a 20 ml plastic vial and then weighing to ± 1 mg. The sample is then pipetted or poured into the counting vial and the vial is re-weighed. If the amount of sample is less than 10ml, then tritium-free water is added to bring the total volume of water to about 10ml. Details of the tritium analysis procedure are given later in this document.

<u>Maintenance</u> After each sample, the molecular sieve is baked and evacuated at 350°C. The vacuum system is thoroughly evacuated to remove all residual gas and water vapor after each sample. The water trapping system is disassembled and thoroughly dried and evacuated after each sample.

<u>Calibration/Standardization</u> Gas storage volumes have been calibrated using known quantities of carbon dioxide gas. No further standardization of this system is necessary. Calibration and standardization of the final ¹⁴C analysis is performed by the subcontracted laboratory.

<u>Replication and Reference Samples</u> Replicate or reference sample analysis for these analyses are performed only when requested and supported by the client.

<u>Calculation</u> Yields are calculated by comparing the volume of CO_2 generated and the weight of the water collected to the amount expected based on the amount of CO_2 collected. ¹⁴C concentrations are determined by the subcontracted laboratory and corrected for isotope fractionation by Isotech's database program.

2. ¹⁴C (Radiocarbon) in CO₂ by Radiometric Analysis

Equipment

Same as for ¹⁴C of CH₄

<u>Method/Procedure</u> After the CO₂ from methane has been collected as described in the previous section, the expansion cylinder and the collection traps are evacuated. The argon carrier gas trapped in the molecular sieve is evacuated and then a tube heater is placed on the molecular sieve trap. The trap is heated to 350°C to liberate the sample CO₂ from the molecular sieve. The CO₂ is then transferred via a shunt to the CO₂ collection system. The CO₂ is collected in a liquid nitrogen-cooled trap. Once the sample has been transferred into the collection traps, the sample yield is measured and the sample is transferred into a storage cylinder using the same method as for methane. The purified CO₂ is then submitted to a subcontract laboratory for radiometric analysis of ¹⁴C.

3. ¹⁴C (Radiocarbon) in CH4 and CO₂ by Accelerator Mass Spectrometry (AMS)

Equipment: Same as for δ^{13} C of CO₂ and δ^{13} C of Hydrocarbons.

Method/Procedure:

The same method is employed for sample preparation as for δ^{13} C of either CH₄ or CO₂. Once the purified CO₂ has been sealed into Pyrex tubing, the tube is tagged with a piece of label tape and sent to the subcontractor along with a chain of custody form for ¹⁴C analysis. When there is only enough material available for one sample preparation, the δ^{13} C is first determined by MS analysis. Then the sample is frozen back out of the MS with liquid nitrogen and sealed into the same Pyrex tubing before shipment to the subcontractor. A longer sample tube is used on the initial sample preparation to ensure that there is sufficient tube available for sealing after MS analysis. The sealed sample is then submitted to a subcontract laboratory for ¹⁴C determination by accelerator mass spectrometry.

B. Procedures for Radiogenic Isotope Analysis of Water

1. ¹⁴C (Radiocarbon) in dissolved inorganic carbon (DIC) by Accelerator Mass Spectrometry (AMS)

Equipment Same as for δ^{13} C of DIC.

Method/Procedure

The same method is used as for δ^{13} C of DIC. Once the purified CO₂ has been sealed into Pyrex tubing, the tube is tagged with a piece of label tape and sent to the subcontractor, along with a chain of custody form, for ¹⁴C analysis. When there is only enough material available for one sample preparation, the δ^{13} C is first determined by MS analysis. Then the sample is frozen back out of the MS with liquid nitrogen and sealed into the same Pyrex tubing before shipment to the subcontractor. A longer sample tube is used on the initial sample preparation to ensure that there is sufficient tube available for sealing after MS analysis. The sealed sample is then submitted to a subcontract laboratory for ¹⁴C determination by accelerator mass spectrometry.

2. ³H (Tritium) in H₂O

Equipment **Equipment**

Vacuum pumps and gauges Distillation column Electrolytic enrichment cells Electrolysis power source and cooling system Liquid scintillation counting system Assorted chemicals and glassware Dry ice/ isopropyl alcohol Drying oven

<u>Method/Procedure--Direct Counting of Higher Tritium Content Water (greater than 15 TU).</u> Approximately 15ml of the water sample is treated with 0.1 M KMnO₄ at 70°C for about an hour. This sample is then vacuum distilled. Ten ml of the distillate is accurately weighed and mixed with 10ml of an appropriate organic scintillator cocktail in a 20ml plastic vial and counted in a liquid scintillation spectrometer for 1000 minutes. Background and a NIST standard are also similarly counted and the tritium content calculated.

<u>Method/Procedure--Enrichment of Lower Tritium Content Water (less than 15 TU).</u> About 300 ml of the water sample is conventionally distilled to near completion. Exactly 200g is added to an enrichment cell along with 2ml of 9M tritium-free sodium hydroxide and is electrolytically enriched down to about 11-13 ml (final weight is exactly determined), and then neutralized with carbon dioxide for 20 minutes. The enrichment procedure is carried

out under conditions of about 2°C and constant voltage of 4V. Ten ml of the enriched sample is accurately weighed and mixed with an appropriate organic scintillator cocktail in a 20 ml plastic vial and counted in a liquid scintillation spectrometer for 1000 minutes. Background and a NIST standard are also similarly counted and the tritium content calculated.

<u>General QA/QC Procedures</u> include critically reviewing TU/cpm/g of NIST standard versus existing data, critically reviewing background cpm versus existing data, and comparing data from splits of NIST and other samples with outside established laboratories. A criteria of exceeding 1 sigma limits from existing data triggers investigation of possible errors. Electrolytic enrichment cells are calibrated using working standards approximately every 6 months, or whenever duplicates prepared in different cells suggest a possible change in enrichment factor.

<u>Maintenance</u> The vacuum system is thoroughly evacuated between samples. All glassware and electrolytic cells are cleaned with deionized water and baked out at about 130° C between samples.

<u>Replication</u> At a minimum, every tenth analysis is a replicate. Periodically a blind split is sent to another established tritium analysis laboratory for check purposes.

<u>Reference Sample</u> A NIST water standard (a dilution of NIST 4361B) is used for each sample set to verify accuracy and reproducibility. A glass-sealed high tritium sample is routinely checked to verify that the counter is operating satisfactorily. QA/QC plots are maintained for both standard and background counts using deviation of 1 sigma as a criteria for a more detailed evaluation of the data.

<u>Calculation</u> Calculations are performed utilizing a spreadsheet to calculate tritium concentration in TU on the date counted.

<u>Documentation</u> All procedural tests, sample preparations and verifications performed are recorded in bound maintenance log books. All final data including the date prepared, with analyst identification, are recorded on laboratory log sheets or in bound log books.

III. Dual Inlet Mass Spectrometric Analysis

A. Measurement of ¹³C/¹²C and ¹⁸O/¹⁶O in CO₂

Equipment Finnigan MAT Delta S Isotope Ratio Mass Spectrometer

Method/Procedure Because ${}^{13}C/{}^{12}C$ and ${}^{18}O/{}^{16}O$ analyses are performed simultaneously, the procedure described here generates both measurements. A mass spectrometric analysis involves comparisons of a sample to a reference standard; in this case the comparisons are measurements of mass 44, 45, and 46, giving the both the oxygen and carbon isotopic compositions. This is accomplished by a dual inlet system where the sample and the reference standard are measured alternately. At the beginning of each day, a reference standard is introduced into the standard side of the inlet system, and this gas is generally used for the entire session. There are two different reference standards in aluminum cylinders which are permanently mounted on the MS inlet system. The sample to be analyzed against the standard is introduced into the system via an evacuated inlet system and tube-cracker. With the inlet system fully evacuated, the sample (which is sealed into 1/4" Pyrex tubing) is introduced by breaking the glass sample tube and allowing the sample to fill a variable volume bellows. Once the sample has been introduced into the MS, the actual analysis is computer controlled using equipment obtained from the manufacturer. Each analysis is given a specific reference name and/or number, utilizing the lab number as the primary reference. Final results are calculated by the manufacturer's software, and are stored on the hard drive of the computer, recorded in a bound lab notebook, and stored as the computer generated printout.

<u>Maintenance</u> The source region of the MS is periodically disassembled and cleaned. The filament is replaced as needed. Oil levels in mechanical vacuum pumps are checked frequently and maintained at the proper level. Turbomolecular pumps are lubricated according to the manufacturer's recommendations.

<u>Calibration/Standardization</u> The first analysis of each session is a zero enrichment, where the working standard is analyzed against itself to check machine stability. Isotope ratio determination involves multiple direct comparisons of the sample to a reference standard (generally at least 6 comparisons). Stable carbon and oxygen isotope compositions are always reported as the difference between the ratios of the two isotopes of interest in the sample and the ratio in a primary reference standard. That is,

$$\delta X_{(\text{sample})} = [(R_{\text{sample}} - R_{\text{standard}})/R_{\text{standard}}] \times 1000$$

Where X represents the isotope of interest, ¹³C or ¹⁸O, and R represents the ratio of ¹³C/¹²C, or ¹⁸O/¹⁶O. The δ value is expressed in terms of per mil (‰), or parts per thousand.

In practice, the difference between the sample and an internal reference standard is measured and then the value relative to the primary standard is calculated by the instrument manufacturer's software. Two internal reference standards are used at Isotech, both of which have been calibrated multiple times over the past 20 years relative to several standards (graphite, oil, carbonates, waters, etc.) available from the International Atomic Energy Agency and the National Institute of Standards and Technology, in at least two different laboratories and on up to five different mass spectrometers. Standardization of the mass spectrometer involves analyzing one the reference standards against the other (the reference standard used for the actual analysis is chosen according to the types of samples to be analyzed). This standardization is carried out at least once each day that analyses are to be conducted. In the rare event that the value obtained differs by more than 2 standard deviations from the expected value, the standardization of the reference gases is checked by having them analyzed by another laboratory, or by recalibrating them relative to NIST or IAEA standards.

Replication Because of replicate sample preparations, at least 10% of all analyses are replicates.

<u>Reference Samples</u> Because 10% of all samples prepared for stable isotope analysis are check samples or reference samples which have been previously analyzed, these samples also serve as check samples for the mass spectrometer.

Calculation All calculations are performed by the software obtained from the manufacturer.

B. Measurement of ²H/¹H (Deuterium/Hydrogen) in H₂

Equipment

Finnigan Delta Plus XL isotope ratio mass spectrometer Aluminum heating block Personal computer

<u>Method/Procedure</u> The H₃ factor, which is the portion of the mass 3 signal attributable to ${}^{1}\text{H}{-}^{1}\text{H}{-}^{1}$ (instead of ${}^{2}\text{H}{-}^{2}\text{H}$), is determined before each run early in the day and periodically throughout the day based on machine performance (if the values start drifting, a new H₃ factor is determined). The reference standard must be replenished at least once during an 8 hour period.

Water samples for deuterium/hydrogen analysis are sealed into $\frac{1}{4}$ " Pyrex tubing as H₂O, along with a measured quantity of zinc. Each sample tube is labeled and reacted in a heating block at 500°C for 35 minutes to generate hydrogen gas. Once the sample has been reacted, it is introduced into the sample side of the MS inlet system and analyzed against the working standard. Each analysis is given a unique label, using the lab number as the primary reference. Once the sample has been introduced into the MS, the analysis is computer controlled. The raw result is calculated by the manufacturer's software and recorded into a bound lab notebook, as well as being stored on computer hard disk and computer generated printout of results.

<u>Maintenance</u> The source region of the MS is periodically disassembled and cleaned. The filament is replaced as needed. Oil levels in mechanical vacuum pumps are checked frequently and maintained at the proper level. Turbomolecular pumps are lubricated according to the manufacturer's recommendations.

<u>Calibration/Standardization</u> The first run each day is a zero-enrichment where the standard is run against itself to check machine stability. Stable hydrogen isotope compositions are always reported as the difference between the ratios of the two isotopes of interest in the sample and the ratio in a primary reference standard. That is,

$$\delta D_{(\text{sample})} = \left[\left({^2H}/{^1H}_{\text{sample}} - {^2H}/{^1H}_{\text{standard}} \right) / {^2H}/{^1H}_{\text{standard}} \right] \times 1000$$

The δ value is expressed in terms of per mil (‰), or parts per thousand.

In practice, the difference between the sample and an internal reference standard is measured and then the value relative to the primary standard is calculated by the instrument manufacturer's software. Two internal reference standards are used at Isotech which have been calibrated relative to several water standards available from the International Atomic Energy Agency and the National Institute of Standards and Technology. Standardization of the mass spectrometer involves analyzing one the reference standards against the other. This standardization is carried out at least once each day that analyses are to be conducted. In the rare event that the value obtained differs by more than 2 standard deviations from the expected value, the standardization is repeated with new aliquots of the reference standards. If the difference persists, the calibration of the reference gases is checked by having them analyzed by another laboratory, or by recalibrating them relative to NIST or IAEA standards. Aliquots of the NIST and IAEA standards are also periodically analyzed as samples as a further check on the calibration of the reference standard.

<u>Replication</u> Because of replicate preparation of samples, at least 10% of all analyses are replicates.

<u>Reference Samples</u> Because 10% of all samples prepared for stable isotope analysis are check samples or reference samples which have been previously analyzed, these samples also serve as check samples for the mass spectrometer.

<u>Calculation</u> All calculations are performed by the manufacturer's computer software. The raw data is then converted to final data using a spreadsheet on a personal computer. The spreadsheets are stored on computer hard disk and a copy is attached to the raw printouts for each batch of analyses.

IV. Gas Chromatographic Analysis of Gases

A. Analysis of hydrocarbons

<u>Equipment</u> Carle AGC 400 Gas Chromatograph which was custom designed by the manufacturer for Isotech. The GC is equipped with both thermal conductivity (TCD) and flame ionization (FID) detectors. Data processing is provided by a Nelson Analytical PC Interface coupled with a personal computer.

<u>Method/Procedure</u> At the start of each day, the detectors are turned on and the flow rate of the carrier gas is adjusted to an optimum level. The system is given 30 minutes for the thermistor detector to stabilize before the first sample is analyzed.

All gas sampling cylinders are fitted with a regulator containing a septum on the outlet. Before opening the valve on the cylinder, the air from the regulator is evacuated through a needle port connected to the inlet vacuum. If there is sufficient sample pressure, the outlet pressure is adjusted to approximately 50 psig.

The sample loop on the GC is evacuated to less than 60 microns between each sample. Samples are taken from the cylinder using a gas-lock syringe and injected through a septum into the evacuated sample loop. Air contamination from the syringe needle is evacuated while the loop is still open to the vacuum line. A large enough syringe is used to pressurize the sample loop with gas, and then the loop is adjusted to atmospheric pressure through a tube that is vented under water (to prevent air from leaking back into the vent). Sample identification is entered into the Nelson software and the method is downloaded into the PC interface. The run is then started by pressing a "run" keypad on the GC.

The Carle AGC 400 operates under isothermal conditions, utilizing several different packed columns and valve switching to separate the various components. Instrument configuration was designed by Carle specifically to meet the requirements of Isotech. Helium is used as the carrier gas. All valve switching during the analysis is computer-controlled. The detectors are connected to the PC interface, which converts the analog signal to digital and sends the data to the PC software for processing. The software for the Nelson system does component detection and area integration. The resulting component peak areas are then quantified by the software (given raw percent values) by comparing them to previously run standards. The lab technician checks the raw total for each analysis to ensure that all components have been detected. The raw total can vary from day to day depending on atmospheric pressure, with acceptable raw totals of 97% to 103%. The lab technician also checks all baselines for accuracy from the chromatograms shown on the computer screen. This raw computer record is maintained for each sample corresponding to its individual lab number. The raw percentage values for each sample are downloaded into the main sample database, and are normalized to 100% when the Analysis Report is generated.

<u>Maintenance</u> GC columns are periodically baked out according to manufacturer's instructions. Septa in the sampling valves are replaced as needed.

<u>Calibration/Standardization</u> Approximately 10 different reference standards are used for standardization of the Carle AGC 400 gas chromatograph. These standards were all purchased from Scott Specialty Gases. Most of these standards also contain some of the fixed gases. Normally all 10 are analyzed on the same day during a new standardization to minimize the effects of barometric pressure variations. The concentration for the individual components range from 15ppm to 99% (for methane). Maximum concentrations of other hydrocarbons are 12.6% for ethane, 7% for propane, 3% for butanes, and 1% for pentanes. These concentration ranges cover the majority of natural gases submitted for analysis. For each new standardization, the peak area of each concentration for each compound is inserted into a table within the Nelson software. This table is then accessed by the software, which uses point-to-point interpolation, to determine component concentrations for gas samples during analysis. At least four points are used for each component.

<u>Reference Samples</u> The reference sample used as the 1st run of each day and every tenth sample thereafter is representative of the majority of natural gas samples received for analysis. Reference samples are either created from a single sample or are mixed from several samples to give the desired composition. New reference samples are created before the current sample is depleted, and older reference samples are stored for future analysis and cross checks should problems arise. Data obtained for reference samples and expected results based on previous analyses can be provided as part of a QA/QC report.

<u>Replication</u> Every tenth analysis is a replicate. This replicate analysis is done approximately five samples following the check sample, thus a system check is performed at least every five analyses.

<u>Calculation</u> Each individual component for each sample is manually compared to the computer generated output to insure that the peak was labeled correctly and integrated correctly by the Nelson software.

B. Analysis of fixed gases

<u>Equipment</u> Carle AGC 400 Gas Chromatograph, Carle AGC 100 Gas Chromatograph with dual TCD detectors, and Nelson Analytical GC Interface.

<u>Method/Procedure</u> The procedure for analysis of fixed gases is identical to that for analysis of hydrocarbons, with two exceptions. First, for separation of oxygen and argon, an external column on the AGC 100 is used. This column operates at -78°C, therefore a dewar of dry ice/isopropyl alcohol is placed on the column before each run. At the end of each run, the dewar is removed and the column is warmed to room temperature to allow any other components held on the column to be passed. The column is flushed for 15 minutes between runs while the other

GC is in operation. The second difference is that the Carle AGC 100 is not computer controlled. This means that the technician must control the two valves manually. Both valves are switched to forward flow at the start of each analysis, and the Nelson PC interface is then started. Both valves are switched to backflush at predetermined times. The exact time of the switch is determined by monitoring the "real time" display on the computer screen. The lab technician checks all baselines to verify peak integration.

<u>Maintenance</u> GC columns are periodically baked out according to manufacturer's instructions. The septum on the injection valve is periodically replaced.

<u>Calibration/Standardization</u> Approximately 10 different reference standards are used to standardize the Carle AGC 100 and Carle AGC 400 for compositional analysis of fixed gases. All of these gases were purchased from Scott Specialty Gases. Some of these standards also contain hydrocarbons and are used for standardization of those compounds as well. Normally, all gases are analyzed on the same day during a new standardization to minimize the effects of barometric pressure. The concentration ranges of the standards cover the majority of natural gases submitted for analysis. For each new standardization, the peak area of each concentration for each compound is inserted into a table within the Nelson software. This table is then accessed by the software which uses point-to-point interpolation to determine component concentrations for gas samples during analysis.

<u>Check Sample</u> The reference sample used as the 1st run of each day and every tenth sample thereafter is chosen based on its composition. All reference samples contain at least nitrogen and carbon dioxide, and most also contain hydrogen, helium, and argon. The reference samples are either a single sample meeting the above requirements, or are mixtures of several samples to give the desired composition. New reference samples are created before the current sample is depleted, and older reference samples are stored for future analysis and cross checks should problems arise. Data obtained for reference samples and expected results based on previous analyses can be provided as part of a QA/QC report.

<u>Replication</u> Every tenth analysis is a duplicate. This duplicate analysis is performed approximately five samples following the check sample, thus a system check is performed at least every five analyses.

<u>Calculation</u> Each individual component for each sample is manually compared to the computer generated output to insure that the peak was labeled correctly and integrated correctly by the Nelson software.

V. Radiocarbon Analysis of Prepared Samples

Radiocarbon analyses of purified CO2 samples prepared by Isotech are currently being subcontracted to either Beta Analytic Inc., Coral Gables, Florida or to Illinois State Geological Survey, Champaign, Illinois. Beta Analytic is the largest commercial radiocarbon dating laboratory in the world. The attached QA/QC plans have been provided by

BETA ANALYTIC INC University Branch 4985 S.W. 74 Court Miami, FL 33155

Illinois State Geological Survey Natural Resources Building 615 East Peabody Drive Champaign, IL 61820

ATTACHMENT C

Isotech Quality Assurance and Quality Control Documentation

National Institute of Standards & Technology **Certificate**

Standard Reference Material 4361C Hydrogen-3 Radioactivity Standard

This Standard Reference Material (SRM) consists of tritiated water, having a standardized and certified quantity of radioactive hydrogen-3. It is intended primarily for the calibration of instruments that are used to measure radioactivity and for the monitoring of radiochemical procedures. The solution, whose composition is specified in Table 1, is contained in a 500-mL borosilicate-glass serum vial.

The certified hydrogen-3 massic activity value, at a Reference Time of 1200 EST, 3 September 1998, is:

$(2.009 \pm 0.015) \text{ Bq} \cdot \text{g}^{-1}$

Additional physical, chemical, and radiological properties for the SRM, as well as details on the standardization method, are given in Table 1. Uncertainty intervals for certified quantities are expanded (k=2) uncertainties calculated according to the ISO and NIST Guidelines (see Note 1)*. Table 2 contains a specification of the components that comprise the uncertainty analyses.

The certification of this SRM, within the measurement uncertainties specified, is valid for at least five (5) years after receipt. The solution matrix, in an unopened ampoule, is believed to be indefinitely homogeneous and stable, within its half-life-dependent, useful lifetime. NIST will monitor this material and will report any substantive changes in certification to the purchaser. Should any of the certified values change, purchasers of this SRM will be notified of the change by NIST.

This SRM may represent a radiological hazard. Hydrogen-3 decays by beta particle emission. None of the beta particles escape from the SRM vial. During the decay process no photons are emitted. The SRM should be stored and used at a temperature between 5 and 35 °C. The vial (or any subsequent container should always be clearly marked as containing radioactive material. If the vial is transported it should be packed, marked, labeled and shipped in accordance with the applicable national, international, and carrier regulations. The SRM should be used only by persons qualified to handle radioactive materials.

This Standard Reference Material was prepared in the Physics Laboratory, Ionizing Radiation Division, Radioactivity Group, Dr. M.P Unterweger, Acting Group Leader. The overall technical direction and physical measurements leading to certification were provided by Drs. L.L. Lucas and M.P Unterweger of the Radioactivity Group. The support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the Standard Reference Materials Program.

> Lisa R. Karam, Deputy Chief Ionizing Radiation Division

Gaithersburg, Maryland 20899 June 1999 Half-life and text revised October 2000 Text revised and expiration date extended February 2004 Text revised and expiration date extended February 2007

Robert L. Watters, Jr., Chief Measurement Services Division

*Notes and references are on page 4

Table 1. Properties of SRM 4361C

Certified values							
Radionuclide	Hydrogen-3						
Reference time	1200 EST, 3 September 1998						
Massic activity of the solution	2.009 Bq•g ⁻¹						
Relative expanded uncertainty $(k = 2)$	0.76 % (see Note 1)*						

Uncertified information

Source description	Liquid in 500 mL borosilicate-glass media bottle with Teflon- lined screw cap
Solution composition	Distilled water
Solution density	(0.998 ± 0.002) g•mL ⁻¹ at 20 °C (see Note 2)
Solution mass	Approximately 500g
Radionuclidic impurities	None detected (see Note 3)
Half-lifes used	3 H: (4500 ± 8) d (see Note 4)
Calibration method (and instruments)	The certified massic activity for ³ H was obtained by $4\pi\beta$ gas counting of SRM 4927E using the NIST length-compensated internal gas proportional counters and intercomparison of SRMs 4927E/4926E/4361C using two $4\pi\beta$ liquid-scintillation (LS) counting systems (see Note 5)

	Uncertainty component	Assessment Type [†]	Relative standard uncertainty contribution on massic activity of ³ H (%)
1	Massic count rate of SRM 4927E, corrected for background and decay; standard deviation of the mean for 23 sets of gas counting measurements (see Note 5)	A	0.18
2	LS intercomparison of SRM 4926E and SRM 4927E; standard deviation of the mean for 7 sets of LS measurements	A	0.06
3	Decay corrections for ³ H; (for half-life uncertainty of 0.18%)	A	0.002
4	Dilution of SRM 4926E to make SRM 4361C	В	0.12
5	Gram-mole determinations based on pressure, volume and temperature measurements	В	0.20
6	Livetime determinations	В	0.10
7	Extrapolation of count-rate-versus-energy to zero energy	В	0.20
8	Limit for radionuclidic impurities	В	0.05
Rela	ative combined standard uncertainty	1977 A. 199	0.38
Rela	ative expanded uncertainty $(k = 2)$		0.76

Table 2. Uncertainty evaluation for the massic activity for SRM 4361C

 † = (A) denotes evaluation by statistical methods; (B) denotes evaluation by other methods.

NOTES

Note 1. The uncertainties on certified values are expanded uncertainties, $U = ku_c$. The quantity u_c is the combined standard uncertainty calculated according to the ISO and NIST Guides (see references [1] and [2]). The combined standard uncertainty is multiplied by a coverage factor of k = 2 and was chosen to obtain an approximate 95 % level of confidence.

Note 2. The stated uncertainty is two times the standard uncertainty. See reference [2]

Note 3. The estimated lower limit of detection for radionuclidic impurities is 0.001 Bq•g⁻¹

Note 4. The stated uncertainty is the standard uncertainty. See reference [2] and [3].

Note 5. Extensive gas-counting measurements were made on the SRM 4927E solution during 1998 and 1999. The SRM 4926E solution was intercompared with the SRM 4927E using LS counting. The SRM 4926E solution was then quantitatively diluted, using distilled water with a measured hydrogen-3 content, to make the SRM 4361C solution. The 4926E/4361C massic activity ratio was confirmed by LS counting.

REFERENCES

- International Organization for Standardization (ISO), Guide to the Expression of Uncertainty in Measurement, 1993 (corrected and reprinted, 1995). Available from Global Engineering Documents, 12 Inverness Way East, Englewood, CO 80112, U.S.A. Telephone 1-800-854-7179.
- [2] B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20407, U.S.A.
- [3] L.L Lucas and M.P. Unterweger, *Comprehensive Review and Critical Evaluation of the Half-Life of Tritium*, J. Res. Natl. Inst. Stand. Technol. **105**, 541-549 (2000)

BETA #	Instrument Calibration Hot Prior to Sample Count (Directly Traceable to NIST W# Sample Hot Following Sample Count (Directly Traceable to NIST OX II - SRM 4990C) Calibratio (Directly Traceable to NIST OX II - SRM 4990C)		Calibration Reference Hot (Directly Traceable to NIST OX II - SRM 4990C)	Net Hot Difference Calibration Hot - Sample Hot (+/- 140 cpm limit)	Sample Quench Correction Check (tSIE)	Instrument Quench Correction Normative (tSIE) Calibration Value	Net (tSIE) Difference Normative - Sample (+/- 0.10 limit)	Sample Counting Statistics (% <1 sigma/ %1-2 / %2-3 / %3-4 / % >4)	
287280	I-196336	4872 cpm	4881 cpm	4861 cpm	-20 cpm (passed)	5.10	5.05	-0.05	62/38/0/0/0
287281	I-196337	5481 cpm	5490 cpm	5538 cpm	-48 cpm (passed)	5.63	5.60	-0.03	66/33/4/0/0
287282	I-196338	6531 cpm	6549 cpm	6550 cpm	-1 cpm (passed)	6.84	6.81	-0.03	92/8/0/0/0
287283	1-196339	4171 com	4171 com	4176 cpm	-5 cpm (passed)	5 16	5.20	0.04	67/31/3/0/0
20.200	1.00000					0.10	0.20	0.01	
287284	I-196340	5154 cpm	5165 cpm	5191 cpm	-26 cpm (passed)	5.03	5.05	0.02	71/29/0/0/0
287285	I-196341	5730 cpm	5753 cpm	5783 cpm	-30 cpm (passed)	5.80	5.77	-0.03	72/28/0/0/0
			-						
287286	I-196342	8721 cpm	8678 cpm	8730 cpm	-52 cpm (passed)	4.46	4.49	0.03	73/27/0/0/0
287287	I-196343	4957 com	4985 cpm	5021 cpm	- 36 cpm (passed)	5.52	5 55	0.03	76/24/0/0/0
201201	. 1000-10		-1000 opin	00210011		0.02	0.00	0.00	10/2-1/0/0/0
287288	I-196344	6492 cpm	6504 cpm	6563 cpm	-59 cpm (passed)	6.08	6.06	-0.02	71/25/4/0/0
287289	I-196345	4167 cpm	4171 cpm	4176 cpm	 -5 cpm (passed) 	5.22	5.16	-0.06	65/35/0/0/0

Spectrum report

10/26/2011 12:52:14 PM

Setup information \my documents\default.ini

JOB #	NIST date	count date	Value +	-/- SD	AVG NIST :		BLK date	count date	Value +/-	- SD	AVG BLK :	Comments
"NEW" Batch COCKTAIL					TU/cpm/g						cpm	
	14-Nov	18-Nov	776.79 -	-/- 4.29	9		14-Nov	17-Nov	1.717 +/-	0.034		
					776.79 +/-	4.29	19-Nov	23-Nov	1.799 +/-	0.036	1.758 +/-	0.035
	1-Dec	3-Dec	772.91 -	-/- 4.29	9 774.85 +/-	4.29	1-Dec	2-Dec	1.727 +/-	0.034	1.748 +/-	0.035
	9-Dec	11-Dec	775.15 -	-/- 4.29	9 774.95 +/-	4.29	9-Dec	12-Dec	1.767 +/-	0.034	1.753 +/-	0.034
							17-Dec	21-Dec	1.779 +/-	0.034	1.758 +/-	0.034
Job 10619 CNC	24-Dec	29-Dec	777.09 -	-/- 4.36	6 775.48 +/-	4.31	24-Dec	28-Dec	1.806 +/-	- 0.035	1.776 +/-	0.035
							5-Jan	8-Jan	1.851 +/-	- 0.035	1.829 +/-	0.035 avg last 2 for CNC

CO	INTER	#2
00		π ∠

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	12/29/2008		
Value on above date	1.12463	Bq/gm =	9520 TU
Dilution factor	1		
Concentration of dilution	1.12463	Bq/gm =	9520.01 TU

Standard Activity		
Background count rate	1.806 +/-	0.035 cpm
Standard count rate	26.139 +/-	0.132 cpm
Net activity	24.333 +/-	0.136 cpm
Grams of sample	1.9862	grams
Net standard activity per gram	12.251 +/-	0.069 cpm/gm
TU/cpm/gm	777.09 +/-	4.36

Counting efficiency

total cpm net actvy (cpm)/g **efficiency %** 67.48 TU of std *0.007088 12.251 (std count - bkgrd count)/g 18.16 net actvy/total dpm std

DATA FILE JOB # Count dates:	477,479 10619 CNC 12-28 through	counter 2 1-9-09			
	477		479		
Position #	13	14	1	2	3
Sample ID	Blank	NIST 1.9862g	149418 DC	149419 DC	Blank
Cocktail date	24-Dec	24-Dec	5-Jan	5-Jan	5-Jan
Date counted	28-Dec	29-Dec	6-Jan	7-Jan	8-Jan

POS	F	-NCT1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	CPM	CTIME	TIME	DATE
	13	1.82	2.01	1.82	1.82	2	4.6	729.22	207.43	4.0	6000	5:39 AM	12/28/2008
	13	1.77	1.98	1.77	1.77	2	5	729.77	213.33	!	5 6000	7:20 AM	12/28/2008
	13	1.92	2.19	1.93	1.93	2.2	5.3	728.62	221.65	5.3	3 6000	9:01 AM	12/28/2008
	13	1.71	1.87	1.71	1.71	1.9	4.4	729.32	210.38	4.4	4 6000	10:41 AM	12/28/2008
	13	1.65	1.76	1.66	1.66	1.8	4.4	728.92	206.14	4.4	4 6000	12:22 PM	12/28/2008
	13	1.88	2.06	1.88	1.88	2.1	5	729.27	213.31	!	5 6000	2:03 PM	12/28/2008
	13	1.87	2.02	1.88	1.87	2	4.7	728.87	213.52	4.	7 6000	3:44 PM	12/28/2008
	13	1.76	1.96	1.76	1.76	2	4.5	728.72	210.46	4.	5 6000	5:25 PM	12/28/2008
	13	1.85	2.08	1.85	1.85	2.1	5.1	728.52	217.26	5.	1 6000	7:06 PM	12/28/2008
	13	1.75	1.91	1.75	1.75	1.9	4.7	729.17	213.78	4.	7 6000	8:47 PM	12/28/2008
	13	1.86	2.11	1.86	1.86	2.1	4.9	728.87	208.14	4.9	9 6000	10:28 PM	12/28/2008
	13	1.75	1.89	1.75	1.75	1.9	5	728.72	215.56	!	5 6000	12:09 AM	12/29/2008
	13	1.67	1.84	1.67	1.67	1.8	4.5	729.07	216.91	4.	5 6000	1:49 AM	12/29/2008
	13	1.81	2.08	1.81	1.81	2.1	4.9	729.27	212.81	4.9	9 6000	3:30 AM	12/29/2008
	13	2.02	2.24	2.02	2.02	2.2	5.4	729.12	214.53	5.4	4 6000	5:11 AM	12/29/2008
	14	25.96	26.76	26.04	26.01	26.8	30.6	729.77	126.14	30.0	6000	6:52 AM	12/29/2008
	14	26.06	26.8	26.1	26.08	26.8	30.5	729.62	124.98	30.	5 6000	8:33 AM	12/29/2008
	14	26.47	27.26	26.54	26.49	27.3	31.3	729.72	126.46	31.3	3 6000	10:14 AM	12/29/2008
	14	25.93	26.64	25.95	25.94	26.6	30.1	729.82	123.08	30.	1 6000	11:55 AM	12/29/2008
	14	25.99	26.67	26.02	26.01	26.7	30.5	730.37	125.18	30.4	4 6000	1:36 PM	12/29/2008
	14	27.11	27.75	27.14	27.12	27.8	31.6	729.52	124.7	31.0	6000	3:17 PM	12/29/2008
	14	27	27.71	27.02	27.01	27.7	31.3	729.12	123.75	31.3	3 6000	4:58 PM	12/29/2008
	14	26.56	27.33	26.68	26.61	27.4	30.8	729.42	123.61	30.8	6000	6:38 PM	12/29/2008
	14	25.41	26.12	25.43	25.41	26.1	30.2	729.07	125.95	30.2	2 6000	8:19 PM	12/29/2008
	14	25.94	26.62	25.99	25.94	26.6	30.6	729.57	125.41	30.0	6000	10:00 PM	12/29/2008
	14	26.37	27.19	26.43	26.38	27.2	30.6	728.97	123.32	30.0	6000	11:41 PM	12/29/2008
	14	26.17	26.82	26.2	26.18	26.8	30.8	729.97	125.22	30.8	3 6000	1:22 AM	12/30/2008
	14	26.7	27.39	26.76	26.73	27.4	30.9	729.17	123.07	30.9	9 6000	3:03 AM	12/30/2008
	14	24.99	25.69	25.06	25.04	25.7	29.5	729.12	125.26	29.	5 6000	4:44 AM	12/30/2008
	14	25.42	26.12	25.45	25.42	26.1	29.4	728.82	122.86	29.4	4 6000	6:25 AM	12/30/2008

POS	FNCT1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	CPM		CTIME	TIME	DATE	RPT
	1 1.87	7 2.01	1.87	1.87	2	4.9	729.52	213.51		4.9	6000	8:39 AM	1/6/2009	1
	1 2	2 2.19	2	2	2.2	5	728.77	214.22		5	6000	10:20 AM	1/6/2009	2
	1 1.92	2 2.09	1.93	1.93	2.1	5.3	729.42	215.33		5.3	6000	12:01 PM	1/6/2009	3
	1 1.73	3 1.96	1.73	1.73	2	5.2	729.92	215.91		5.2	6000	1:42 PM	1/6/2009	4
	1 1.94	4 2.18	1.95	1.95	2.2	5.9	729.02	219.52		5.9	6000	3:23 PM	1/6/2009	5
	1 2.19	2.42	2.2	2.19	2.4	5.4	728.27	207.3		5.4	6000	5:03 PM	1/6/2009	6
	1 2.1	1 2.26	2.11	2.1	2.3	5.5	729.67	217.72		5.5	6000	6:44 PM	1/6/2009	7
	1 2.11	1 2.31	2.11	2.11	2.3	5.5	727.97	216.93		5.5	6000	8:25 PM	1/6/2009	8
	1 1.89	9 2.07	1.89	1.89	2.1	5	729.72	212.54		5	6000	10:06 PM	1/6/2009	9
	1 1.89	9 2.03	1.89	1.89	2	5.3	728.87	217.6		5.3	6000	11:47 PM	1/6/2009	10
	1 2.26	5 2.48	2.27	2.27	2.5	5.6	729.42	206.97		5.6	6000	1:28 AM	1/7/2009	11
	1 2.03	3 2.31	2.06	2.06	2.3	5.5	729.47	209.5		5.5	6000	3:09 AM	1/7/2009	12
	1 1.96	5 2.27	1.96	1.96	2.3	5.5	729.07	218.31		5.5	6000	4:50 AM	1/7/2009	13
	1 2.06	5 2.18	2.06	2.06	2.2	5.2	728.27	210.04		5.2	6000	6:31 AM	1/7/2009	14
	1 2.1	1 2.33	2.1	2.1	2.3	5.2	729.02	209.35		5.2	6000	8:11 AM	1/7/2009	15
	2 1.98	3 2.15	1.98	1.98	2.1	5.6	729.97	214.1		5.6	6000	9:52 AM	1/7/2009	1
	2 2.14	4 2.37	2.15	2.14	2.4	5.3	728.72	203.51		5.3	6000	11:33 AM	1/7/2009	2
	2 2.17	7 2.29	2.17	2.17	2.3	5.3	729.67	208.79		5.3	6000	1:14 PM	1/7/2009	3
	2 1.94	4 2.13	1.94	1.94	2.1	5.1	728.57	210.88		5.1	6000	2:55 PM	1/7/2009	4
	2 2.13	3 2.34	2.13	2.13	2.3	5.5	729.82	212.98		5.5	6000	4:36 PM	1/7/2009	5
	2 2.04	4 2.26	2.04	2.04	2.3	5.7	728.72	215.16		5.7	6000	6:17 PM	1/7/2009	6
	2 2.14	4 2.31	2.14	2.14	2.3	5.5	729.72	208.83		5.5	6000	7:58 PM	1/7/2009	7
	2 1.97	7 2.2	1.97	1.97	2.2	5.3	728.47	212.16		5.3	6000	9:39 PM	1/7/2009	8
	2 2.07	7 2.23	2.07	2.07	2.2	5.3	729.47	210.22		5.3	6000	11:20 PM	1/7/2009	9
	2 1.63	3 1.8	1.63	1.63	1.8	4.8	728.82	218.89		4.8	6000	1:00 AM	1/8/2009	10
	2 1.96	6 2.11	1.96	1.96	2.1	5.1	728.97	215.86		5.1	6000	2:41 AM	1/8/2009	11
	2 1.79	9 1.99	1.79	1.79	2	4.9	729.17	212.63		4.9	6000	4:22 AM	1/8/2009	12
	2 2.14	4 2.37	2.15	2.14	2.4	5.7	729.12	211.79		5.7	6000	6:03 AM	1/8/2009	13
	2 1.75	5 1.93	1.76	1.76	1.9	5.4	728.27	223.95		5.4	6000	7:44 AM	1/8/2009	14
	2 2.04	4 2.27	2.04	2.04	2.3	5.2	728.52	210.02		5.2	6000	9:25 AM	1/8/2009	15
	3 1.92	2 2.08	1.92	1.92	2.1	5	730.22	217.22		5	6000	11:06 AM	1/8/2009	1
	3 1.75	5 1.89	1.75	1.75	1.9	4.7	728.82	213.85		4.7	6000	12:47 PM	1/8/2009	2
	3 1.83	3 2.03	1.83	1.83	2	5.2	731.32	218.19		5.2	6000	2:28 PM	1/8/2009	3
	3 1.75	5 1.91	1.75	1.75	1.9	5.1	730.32	225.14		5.1	6000	4:09 PM	1/8/2009	4
	3 2.02	2 2.16	2.03	2.03	2.2	5.3	729.52	212.29		5.3	6000	5:49 PM	1/8/2009	5
	3 1.9	9 2.11	1.9	1.9	2.1	5	729.87	213.38		5	6000	7:30 PM	1/8/2009	6
	3 1.85	5 2.11	1.85	1.85	2.1	5.1	729.97	213.34		5.1	6000	9:11 PM	1/8/2009	7
	3 1.71	1 1.91	1.71	1.71	1.9	4.7	730.57	216.37		4.7	6000	10:52 PM	1/8/2009	8
	3 1.7	7 1.85	1.7	1.7	1.8	4.6	729.92	216.47		4.6	6000	12:33 AM	1/9/2009	9
	3 1.83	3 2.03	1.84	1.84	2	4.6	730.87	210.94		4.6	6000	2:14 AM	1/9/2009	10
	3 1.83	3 1.98	1.83	1.83	2	4.7	730.82	211.82		4.7	6000	3:55 AM	1/9/2009	11
	3 1.9	2.03	1.9	1.9	2	4.8	728.67	211.64		4.8	6000	5:36 AM	1/9/2009	12
	3 1.91	1 2.11	1.91	1.91	2.1	5.3	729.87	216.23		5.3	6000	7:17 AM	1/9/2009	13
	3 1.87	7 2.09	1.87	1.87	2.1	4.8	729.87	208.58		4.8	6000	8:57 AM	1/9/2009	14
	3 2	2 2.2	2	2	2.2	5.2	729.87	208.19		5.2	6000	10:38 AM	1/9/2009	15

LABORATORY

149418

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	12/29/2008		
Value on above date	1.12463	Bq/gm =	9520 TU
Dilution factor	1		
Concentration of dilution	1.12463	Bq/gm =	9520.01 TU

Standard Activity		
Background count rate	1.806 +/-	0.035 cpm
Standard count rate	26.139 +/-	0.132 cpm
Net activity	24.333 +/-	0.136 cpm
Grams of sample	1.9862	grams
Net standard activity per gram	12.251 +/-	0.069 cpm/gm
TU/cpm/qm	777.09 +/-	4.36

Sample Activity			
Background rate	1.851 +/	- 0.035	cpm
Sample count rate	2.003 +/	- 0.037	cpm
Net activity	0.152 +/	- 0.0506	cpm
Grams of sample	10.0258		grams
Net sample activity per gram	0.0152 +/	- 0.0051	cpm/gm
TU	11.78 +/	- 3.925	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	11.781 +/-	3.927 TU

LABORATORY #

149418 methane

Avg Standard Activity

|--|

Sample Activity				
Background rate	1.829	+/-	0.035	cpm
Sample count rate	2.003	+/-	0.037	cpm
Net activity	0.175	+/-	0.0505	cpm
Grams of sample	10.0258			grams
Net sample activity per gram	0.0174	+/-	0.0050	cpm/gm
TU	13.51	+/-	3.907	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +/	- 0.01	
Tf/To	1.00 +/	- 0.010	
TRITIUM CONC. OF SAMPLE	13.510 +/	- 3.909 TU	

LABORATORY

149419

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	12/29/2008		
Value on above date	1.12463	Bq/gm =	9520 TU
Dilution factor	1		
Concentration of dilution	1.12463	Bq/gm =	9520.01 TU

Standard Activity		
Background count rate	1.806 +/-	0.035 cpm
Standard count rate	26.139 +/-	0.132 cpm
Net activity	24.333 +/-	0.136 cpm
Grams of sample	1.9862	grams
Net standard activity per gram	12.251 +/-	0.069 cpm/gm
TU/cpm/qm	777.09 +/-	4.36

Sample Activity				
Background rate	1.851 +	+/-	0.035	cpm
Sample count rate	1.993 +	+/-	0.036	cpm
Net activity	0.141 +	+/-	0.0506	cpm
Grams of sample	9.9756			grams
Net sample activity per gram	0.0142 +	+/-	0.0051	cpm/gm
TU	11.01 +	⊦/-	3.940	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	11.010 +/-	3.941 TU

LABORATORY #

149419 methane

Avg Standard Activity

	TU/cpm/gm	775.48 +/-	4.31	
--	-----------	------------	------	--

Sample Activity				
Background rate	1.829	+/-	0.035	cpm
Sample count rate	1.993	+/-	0.036	cpm
Net activity	0.164	+/-	0.0504	cpm
Grams of sample	9.9756			grams
Net sample activity per gram	0.0164	+/-	0.0051	cpm/gm
TU	12.75	+/-	3.921	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +/	- 0.01	
Tf/To	1.00 +/	- 0.010	
TRITIUM CONC. OF SAMPLE	12.749 +/	- 3.923 TU	

COUNTER 3 (new) Year 2009
NIST and BLANK Values

JOB #	NIST date co	ount date V	/alue +/-	SD	AVG NIST :		BLK date	count da	te Value	e +/-	SD	AVG BLK :		Comments	
	4-Feb	5-Feb	434.66 +/-	2.17			4-Fe	b 5-F	eb 1.4	121 +/-	0.04	2			
		6-Feb	430.62 +/-	2.13				" 6-F	eb 1.3	341 +/-	0.03	7			
		8-Feb	434.56 +/-	2.17	433.28 +/-	2.15		" 7-F	eb 1.4	438 +/-	0.03	8			
Job 10796 CNC	10-Feb	14-Feb	431.23 +/-	2.54	432.77 +/-	2.25	10-Fe	b 13-F	eb 1.2	273 +/-	0.04	0			
								" 17-F	eb 1.2	296 +/-	0.04	0 1.35	64 +/- 0.03	9 1.296 +/- 0.040 for C	NC job 10796

CO	UNT	ER	#3
	••••		

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/gm	431.23 +/-	2.54

Counting efficiency

total cpm net actvy (cpm)/g **efficiency %** 66.99 TU of std *0.007088 21.917 (std count - bkgrd count)/g 32.72 net actvy/total dpm std

DATA FILE JOB # Count dates:	090210 10796 CNC 2-12 through window 3(60	counter 3 2-20-09 -220)]												
Position #	24	25	26	27	28	29	30	31	32	26	33	34	35	36	37
Sample ID	152394	152395	Blank	NIST	152396	152397	152398	152399	152400	Blank	152401	152402	152403	152404	152405
	DC	DC		1.9882 g	DC	DC	DC	DC	DC	recount	DC	DC	DC	DC	DC
Cocktail date	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb	10-Feb
Date counted	12-Feb	12-Feb	13-Feb	14-Feb	14-Feb	15-Feb	15-Feb	16-Feb	17-Feb	17-Feb	18-Feb	18-Feb	19-Feb	20-Feb	20-Feb

	40700 0												
JODS XXXXX	x, 10796 C												
		ті	IE 10	EEB 2000) 13.25								
					9 13.25								
*** DIRECT		H ·C·\	GWEN	18 ***									
Dirteo		11.0.0											
PARAM	TER GRO	OUP:	8										
ID: 0802	10												
00A PROG	RAM MO	DE	6	->									
ORDER P	OS ID		CTI	IME COUN	NTS CUCN	ITS M	ICW REF	STD	STMS	STIME			
1 21 1	XXXXXX												
2 22 1	XXXXXX												
3 23 1	XXXXXX												
4 24 1	52394	1	00:00	NO LIM N	IO LIM 1	8	N						
5 25 1	52395	1	00:00	NO LIM N	IO LIM 1	8	N						
6 26 B	LANK	1	00:00	NO LIM N	NO LIM 1	8	N						
7 27 N	IST	10	0:00 N		DLIM 1	8 N							
8 28 1	52396	1	00:00	NO LIM N	IO LIM 1	8	N						
9 29 1	52397	1	00:00	NO LIM N	IO LIM 1	8	N						
10 30 1	52398	1	100:00	NO LIM I	NO LIM 1	8	N						
11 31 1	52399	1	100:00			8	N						
12 32 1		1	100:00			8							
13 20 5						0							
14 33 1	52401	1	100.00			0							
10 34 1	52402	1	100.00			0 8	N						
17 36 1	52403	1	100.00			8	N						
18 37 1	52405	1	100.00			8	N						
		FS	1			0							
COINCID	ENCE BIA	S (L/H) [
			/										
MCA INPU	T TRIGG.	INHIB	BIT		MEMORY	SPL	İT						
1 LRSUM	DCOS (G		L*F	२								
2 GSUM	G			L*R									
WINDOW	CHANNE	ELS I	MCA	HALF									
2 50-	270 1	2											
3 60-	220 1	2											
4 50-	320 1	1											
5 50-	270 1	1											
6 60-	220 1	1											
7 1-1	024 2	1											
8 1-1	024 2	2											
0-1-4			 _		()								
SELECTE) PRINTO	UT FO	IR TEF	≺MINAL 1	(A)								

	CYC	POS	REP	CTIME	CUCNTS	SQP	ID	CPM1	CPM2	CPM3	CPM4	CPM5	CPM6	CPM7	CPM8
Q012101N.00)1 1	21	1	100:01.8	285	0		2.91	2.41	1.77	0.25	0.25	0.22	1301	27.09
Q012102N.00	01 1	21	2	100:01.8	539	0		2.59	2.11	1.51	0.16	0.16	0.12	1301	26.23
Q012103N.00	01 1	21	3	100:01.8	774	0		2.4	2.09	1.63	0.13	0.13	0.1	1300	27.41
Q012104N.00	01 1	21	4	100:01.8	1031	0		2.63	2.06	1.59	0.16	0.16	0.1	1298	26.49
Q012105N.00	01 1	21	5	100:01.8	1253	0		2.27	1.84	1.51	0.03	0.03	0.02	1298	27.3
Q012106N.00)1 1	21	6	100:01.8	1477	0		2.29	1.96	1.51	0.06	0.06	0.05	1301	26.57
Q012107N.00)1 1	21	7	100:01.8	1690	0		2.18	1.86	1.34	0.06	0.06	0.05	1313	27.3
Q012108N.00)1 1	21	8	100:01.8	1920	0		2.35	1.94	1.42	0.07	0.07	0.07	1312	27
Q012109N.00)1 1	21	9	100:01.8	2162	0		2.47	2.06	1.39	0.04	0.04	0.04	1328	25.73
Q012110N.00)1 1	21	10	100:01.8	2404	0		2.47	1.97	1.56	0.02	0.02	0.02	1334	26.01
Q022201N.00	01 1	22	1	100:01.8	246	0		2.51	2.03	1.58	0.05	0.05	0.05	1336	27.42
Q022202N.00	01 1	22	2	100:01.8	489	0		2.48	1.93	1.4	0.15	0.15	0.11	1347	27.78
Q022203N.00)1 1	22	3	100:01.8	746	0		2.63	2.16	1.54	0.06	0.06	0.04	1356	27.18
Q022204N.00	01 1	22	4	100:01.8	1053	0		3.14	2.62	2.07	0.06	0.06	0.04	1373	27.17
Q022205N.00)1 1	22	5	100:01.8	1292	0		2.44	2.1	1.5	0.06	0.06	0.03	1384	29.08
Q022206N.00)1 1	22	6	100:01.8	1499	0		2.11	1.83	1.37	0.06	0.06	0.04	1372	28.24
Q022207N.00)1 1	22	7	100:01.8	1748	0		2.54	2.07	1.61	0.02	0.02	0.02	1349	27.66
Q022208N.00)1 1	22	8	100:01.8	1981	0		2.38	1.92	1.47	0.08	0.08	0.08	1322	26.8
Q032301N.00)1 1	23	1	100:01.8	210	0		2.14	1.69	1.19	0.04	0.04	0	1312	26.1
Q032302N.00)1 1	23	2	100:01.8	451	0		2.46	1.92	1.45	0.05	0.05	0.03	1303	27.02
Q032303N.00)1 1	23	3	100:01.8	664	0		2.18	1.81	1.29	0.07	0.07	0.05	1295	26.99
Q032304N.00)1 1	23	4	100:01.8	866	0		2.06	1.6	1.21	0.04	0.04	0.02	1283	27.2
Q032305N.00	01 1	23	5	100:01.8	1061	0		1.99	1.69	1.25	0.05	0.05	0.05	1284	26.02
Q032306N.00	01 1	23	6	100:01.8	1282	0		2.26	1.89	1.38	0.08	0.08	0.04	1276	26.85
Q032307N.00	01 1	23	7	100:01.8	1541	0		2.65	2.13	1.57	0.07	0.07	0.07	1274	26.34
Q032308N.00	01 1	23	8	100:01.8	1765	0		2.29	1.84	1.42	0.05	0.05	0.03	1273	26.69
Q042401N.00	01 1	24	1	100:01.8	199	0	152394	2.03	1.74	1.27	0.06	0.06	0.05	1262	26.37
Q042402N.00	01 1	24	2	100:01.8	444	0	152394	2.5	2.15	1.47	0.07	0.07	0.05	1261	24.96
Q042403N.00	01 1	24	3	100:01.8	680	0	152394	2.41	1.98	1.44	0.04	0.04	0.04	1259	25.84
Q042404N.00	01 1	24	4	100:01.8	894	0	152394	2.19	1.7	1.17	0.05	0.05	0.05	1268	26.59
Q042405N.00)1 1	24	5	100:01.8	1130	0	152394	2.41	1.95	1.52	0.09	0.09	0.06	1270	26.46
Q042406N.00)1 1	24	6	100:01.8	1351	0	152394	2.26	1.9	1.35	0.1	0.1	0.08	1259	26.26
Q042407N.00	01 1	24	7	100:01.8	1557	0	152394	2.1	1.76	1.36	0.07	0.07	0.07	1265	25.66
Q042408N.00	01 1	24	8	100:01.8	1762	0	152394	2.09	1.66	1.27	0.06	0.06	0.04	1254	26.33
Q052501N.00	01 1	25	1	100:01.8	218	0	152395	2.23	1.84	1.42	0.1	0.1	0.07	1253	26.36
Q052502N.00	01 1	25	2	100:01.8	460	0	152395	2.47	2.03	1.59	0.03	0.03	0.02	1253	26.61
Q052503N.00)1 1	25	3	100:01.8	672	0	152395	2.16	1.77	1.18	0.09	0.09	0.08	1254	25.29
Q052504N.00	<u>)1 1</u>	25	4	100:01.8	889	0	152395	2.22	1.77	1.33	0.04	0.04	0.03	1248	25.58
Q052505N.00	<u>1 1</u>	25	5	100:01.8	1121	0	152395	2.37	1.93	1.52	0.05	0.05	0.02	1252	25.78
Q052506N.00	<u>1 1</u>	25	6	100:01.8	1335	0	152395	2.19	1.83	1.41	0.07	0.07	0.04	1258	25.73
Q052507N.00	01 1	25	(100:01.8	1538	0	152395	2.07	1.68	1.23	0.06	0.05	0.03	1256	25.39
Q052508N.00	01 1	25	8	100:01.8	1760	0	152395	2.27	1.89	1.51	0.03	0.03	0.02	1262	25.72
Q062601N.00	01 1	26	1	100:01.8	209	0	BLANK	2.13	1.81	1.31	0.03	0.03	0.02	1264	26.57
Q062602N.00	1	26	2	100:01.8	416	0	BLANK	2.11	1.72	1.23	0.01	0.01	0.01	1267	26.23
Q062603N.00	01 1	26	3	100:01.8	634	0	BLANK	2.23	1.8	1.28	0.04	0.04	0.01	1269	25.98
QU62604N.00	1 1	26	4	100:01.8	865	0	BLANK	2.36	1.88	1.42	0.06	0.06	0.05	12/9	26.37
QU62605N.00	1 1	26	5	100:01.8	1041	0	BLANK	1.8	1.45	1.08	0.02	0.02	0.01	1280	25.75
Q062606N.00	1	26	6	100:01.8	1221	0	BLANK	1.84	1.6	1.17	0.04	0.04	0.04	12/7	26.33
Q062607N.00	<u>)1 1</u>	26	7	100:01.8	1448	0	BLANK	2.32	1.95	1.41	0.03	0.03	0.02	1280	26.68
Q062608N.00	<u>)1 1</u>	26	8	100:01.8	1634	0	BLANK	1.9	1.57	1.28	0.09	0.09	0.08	1277	26.6
Q072701N.00)1 1	27	1	100:01.8	4482	0	NIST	45.9	45.5	44.35	0.09	0.09	0.06	1284	26.36

O072702N 001	1	27	2	100.01.8	9080	0	NIST	47 1	46.4	45 36	0.03	0.03	0.03	1277	26 69
Q072702N 001	1	27	2	100.01.8	13595	0	NIST	46.2	45.9	44 57	0.00	0.00	0.06	1267	26.00
Q072704N 001	1	27	4	100.01.8	17928	0	NIST	44.3	40.0	42 93	0.07	0.07	0.05	1266	25.92
Q072705N 001		27	5	100.01 8	22448	0	NIST	46.3	45.7	44 71	0.03	0.03	0.02	1270	27.57
Q072706N 001	1	27	6	100.01.8	26960	0	NIST	46.2	45.8	44 69	0.00	0.04	0.04	1266	26.11
Q072707N 001	1	27	7	100.01.8	31543	0	NIST	46.9	46.5	45 28	0.06	0.06	0.03	1266	25 79
Q072708N 001	1	27	8	100.01.8	36089	0	NIST	46.5	46	44 98	0.05	0.05	0.04	1260	27.1
Q082801N 001	1	28	1	100.01.8	197	0	152396	2 01	1 65	1.32	0.03	0.03	0.02	1262	26 14
Q082802N 001	1	28	2	100.01.8	412	0	152396	2.01	1.87	1.4	0.00	0.00	0.02	1258	25.69
Q082803N 001	1	28	3	100.01.8	605	0	152396	1.97	1.57	1.19	0.06	0.06	0.03	1259	26.00
Q082804N 001	1	28	4	100.01 8	819	0	152396	2 19	1.85	1.26	0.04	0.04	0.03	1252	26.32
Q082805N 001	1	28	5	100.01 8	1014	0	152396	1 99	1.54	1.13	0.04	0.04	0.02	1259	26.05
Q082806N 001	1	28	6	100.01 8	1210	0	152396	2	1.54	1.14	0.06	0.06	0.02	1248	26.02
Q082807N 001	1	28	7	100.01 8	1427	0	152396	2 22	1.01	1.41	0.07	0.07	0.04	1247	26.4
Q082808N 001	1	28	8	100.01 8	1639	0	152396	2 16	1 76	1.34	0.04	0.04	0.03	1250	26.07
Q092901N 001	1	29	1	100.01 8	196	0	152397	2	1 66	1.19	0.09	0.09	0.07	1252	25.2
Q092902N 001	1	29	2	100.01 8	390	0	152397	1.98	1.63	1.29	0.07	0.07	0.06	1257	26 25
Q092903N 001	1	29	-	100.01 8	603	0	152397	2 18	1.84	1.4	0.06	0.06	0.01	1248	25 75
Q092904N 001	1	29	4	100.01 8	826	0	152397	2.28	1.98	1.47	0.05	0.05	0.04	1244	26.28
Q092905N 001	1	29	5	100.01 8	1040	0	152397	2 19	1.84	1.31	0.08	0.08	0.06	1249	26.24
Q092906N.001	1	29	6	100:01.8	1250	0	152397	2.14	1.73	1.34	0.03	0.03	0.02	1259	26.8
Q092907N.001	1	29	7	100:01.8	1459	0	152397	2.13	1.82	1.42	0.07	0.07	0.05	1244	26.51
Q092908N.001	1	29	8	100:01.8	1647	0	152397	1.92	1.55	1.15	0.04	0.04	0.02	1252	25.37
Q103001N.001	1	30	1	100:01.8	183	0	152398	1.87	1.56	1.08	0.04	0.04	0.03	1243	25.85
Q103002N.001	1	30	2	100:01.8	400	0	152398	2.22	1.82	1.31	0.05	0.05	0.03	1252	26.26
Q103003N.001	1	30	3	100:01.8	609	0	152398	2.13	1.8	1.44	0.05	0.05	0.03	1245	25.42
Q103004N.001	1	30	4	100:01.8	824	0	152398	2.2	1.89	1.38	0.02	0.02	0.01	1235	25.49
Q103005N.001	1	30	5	100:01.8	995	0	152398	1.75	1.47	1.12	0.02	0.02	0.02	1243	25.36
Q103006N.001	1	30	6	100:01.8	1193	0	152398	2.02	1.67	1.27	0.09	0.09	0.06	1236	25.65
Q103007N.001	1	30	7	100:01.8	1407	0	152398	2.19	1.74	1.23	0.03	0.03	0.01	1247	26.59
Q103008N.001	1	30	8	100:01.8	1604	0	152398	2.01	1.55	1.12	0.04	0.04	0.03	1236	25.66
Q113101N.001	1	31	1	100:01.8	207	0	152399	2.11	1.75	1.29	0.06	0.06	0.03	1231	25.28
Q113102N.001	1	31	2	100:01.8	433	0	152399	2.31	1.95	1.49	0.03	0.03	0.02	1232	26.12
Q113103N.001	1	31	3	100:01.8	627	0	152399	1.98	1.72	1.32	0.07	0.07	0.05	1223	25.99
Q113104N.001	1	31	4	100:01.8	856	0	152399	2.34	1.86	1.43	0.06	0.06	0.04	1228	27.15
Q113105N.001	1	31	5	100:01.8	1068	0	152399	2.16	1.76	1.32	0.07	0.07	0.06	1246	25.91
Q113106N.001	1	31	6	100:01.8	1285	0	152399	2.22	1.87	1.35	0.03	0.03	0.02	1235	24.62
Q113107N.001	1	31	7	100:01.8	1519	0	152399	2.39	1.99	1.37	0.04	0.04	0.01	1243	26.08
Q113108N.001	1	31	8	100:01.8	1728	0	152399	2.13	1.82	1.41	0.07	0.07	0.04	1243	26.19
Q123201N.001	1	32	1	100:01.8	201	0	152400	2.05	1.59	1.2	0.07	0.07	0.04	1247	26.08
Q123202N.001	1	32	2	100:01.8	424	0	152400	2.28	1.86	1.34	0.07	0.07	0.07	1243	27.06
Q123203N.001	1	32	3	100:01.8	641	0	152400	2.22	1.83	1.36	0.08	0.08	0.07	1247	26.73
Q123204N.001	1	32	4	100:01.8	845	0	152400	2.08	1.72	1.34	0.05	0.05	0.03	1246	26.63
Q123205N.001	1	32	5	100:01.8	1058	0	152400	2.18	1.72	1.38	0.04	0.04	0.03	1261	27.11
Q123206N.001	1	32	6	100:01.8	1265	0	152400	2.11	1.75	1.39	0.13	0.13	0.11	1262	26.56
Q123207N.001	1	32	7	100:01.8	1492	0	152400	2.32	1.84	1.37	0.05	0.05	0.04	1263	26.7
Q123208N.001	1	32	8	100:01.8	1715	0	152400	2.28	1.84	1.29	0.03	0.03	0.01	1269	26.43
Q132601N.001	1	26	1	100:01.8	245	0	BLANK	2.5	2.03	1.51	0.07	0.07	0.06	1279	27.04
Q132602N.001	1	26	2	100:01.8	480	0	BLANK	2.4	2.05	1.48	0.06	0.06	0.05	1289	25.78
Q132603N.001	1	26	3	100:01.8	692	0	BLANK	2.16	1.74	1.31	0.04	0.04	0.04	1300	26.22
Q132604N.001	1	26	4	100:01.8	898	0	BLANK	2.1	1.75	1.24	0.03	0.03	0.02	1297	26.84
Q132605N.001	1	26	5	100:01.8	1121	0	BLANK	2.28	1.92	1.46	0.02	0.02	0.02	1311	27.89

Q132606N.001	1	26	6 100:01.8	1308	0	BLANK	1.91	1.53	1.1	0.03	0.03	0.02	1314	26.56
Q132607N.001	1	26	7 100:01.8	1493	0	BLANK	1.89	1.54	1.08	0	0	0	1331	27.78
Q132608N.001	1	26	8 100:01.8	1690	0	BLANK	2.01	1.57	1.19	0.04	0.04	0.04	1326	27.81
Q143301N.001	1	33	1 100:01.8	221	0	152401	2.26	1.85	1.38	0.06	0.06	0.05	1324	27.34
Q143302N.001	1	33	2 100:01.8	425	0	152401	2.08	1.65	1.29	0.06	0.06	0.03	1351	26.47
Q143303N.001	1	33	3 100:01.8	648	0	152401	2.28	1.99	1.56	0.04	0.04	0.04	1346	26.24
Q143304N.001	1	33	4 100:01.8	874	0	152401	2.31	1.94	1.38	0.04	0.04	0.02	1362	28.49
Q143305N.001	1	33	5 100:01.8	1115	0	152401	2.46	2.07	1.55	0.05	0.05	0.04	1364	28.93
Q143306N.001	1	33	6 100:01.8	1331	0	152401	2.21	1.9	1.42	0.06	0.06	0.05	1368	27.51
Q143307N.001	1	33	7 100:01.8	1543	0	152401	2.16	1.86	1.31	0.01	0.01	0.01	1368	28.25
Q143308N.001	1	33	8 100:01.8	1772	0	152401	2.34	1.97	1.41	0.05	0.05	0.01	1357	28.25
Q153401N.001	1	34	1 100:01.8	221	0	152402	2.26	1.81	1.4	0.06	0.06	0.03	1349	28.39
Q153402N.001	1	34	2 100:01.8	453	0	152402	2.37	1.97	1.56	0.04	0.04	0.02	1349	26.98
Q153403N.001	1	34	3 100:01.8	656	0	152402	2.07	1.68	1.21	0.03	0.03	0.02	1345	27.88
Q153404N.001	1	34	4 100:01.8	874	0	152402	2.23	1.79	1.25	0.07	0.07	0.05	1325	27.83
Q153405N.001	1	34	5 100:01.8	1080	0	152402	2.1	1.76	1.38	0.06	0.06	0.04	1320	27.11
Q153406N.001	1	34	6 100:01.8	1302	0	152402	2.27	1.92	1.41	0.1	0.1	0.1	1318	27
Q153407N.001	1	34	7 100:01.8	1516	0	152402	2.19	1.83	1.24	0.06	0.06	0.04	1310	27.61
Q153408N.001	1	34	8 100:01.8	1745	0	152402	2.34	1.78	1.34	0.06	0.06	0.03	1317	27.71
Q163501N.001	1	35	1 100:01.8	201	0	152403	2.05	1.67	1.24	0.04	0.04	0.03	1307	26.89
Q163502N.001	1	35	2 100:01.8	426	0	152403	2.3	1.96	1.65	0.08	0.08	0.04	1294	27.48
Q163503N.001	1	35	3 100:01.8	670	0	152403	2.49	1.98	1.41	0.04	0.04	0.02	1295	26.83
Q163504N.001	1	35	4 100:01.8	889	0	152403	2.24	1.81	1.36	0.02	0.02	0.01	1284	26.96
Q163505N.001	1	35	5 100:01.8	1077	0	152403	1.92	1.62	1.31	0.05	0.05	0.03	1287	26.2
Q163506N.001	1	35	6 100:01.8	1293	0	152403	2.21	1.81	1.28	0.08	0.08	0.05	1272	26.15
Q163507N.001	1	35	7 100:01.8	1516	0	152403	2.28	1.89	1.34	0.04	0.04	0.02	1277	26.41
Q163508N.001	1	35	8 100:01.8	1724	0	152403	2.12	1.62	1.19	0.06	0.06	0.03	1284	26.53
Q173601N.001	1	36	1 100:01.8	226	0	152404	2.31	1.99	1.48	0.02	0.02	0.01	1278	25.95
Q173602N.001	1	36	2 100:01.8	437	0	152404	2.15	1.74	1.36	0.09	0.09	0.08	1282	26.66
Q173603N.001	1	36	3 100:01.8	651	0	152404	2.19	1.8	1.34	0.05	0.05	0.05	1274	26.45
Q173604N.001	1	36	4 100:01.8	828	0	152404	1.81	1.45	1.07	0.06	0.06	0.05	12/1	25.77
Q173605N.001	1	36	5 100:01.8	1063	0	152404	2.4	1.89	1.41	0.06	0.06	0.05	1272	26.27
Q173606N.001	1	36	6 100:01.8	1251	0	152404	1.92	1.62	1.12	0.03	0.03	0.03	1268	27.58
Q173607N.001	1	36	7 100:01.8	1483	0	152404	2.37	1.86	1.17	0.03	0.03	0.02	1259	26.02
Q173608N.001	1	36	8 100:01.8	1703	0	152404	2.25	1.78	1.34	0.07	0.07	0.05	1263	25.76
Q183701N.001	1	37	1 100:01.8	214	0	152405	2.19	1.83	1.32	0.02	0.02	0.02	1269	26.83
Q183702N.001	1	37	2 100:01.8	424	0	152405	2.14	1.7	1.28	0.03	0.03	0.03	1265	26.54
Q183703N.001	1	37	3 100:01.8	639	0	152405	2.2	1.79	1.36	0	0	0	1263	27.34
Q183704N.001	1	37	4 100:01.8	851	0	152405	2.16	1.83	1.29	0.02	0.02	0.02	1269	25.9
Q183705N.001	1	37	5 100:01.8	1096	0	152405	2.5	2.07	1.48	0.03	0.03	0.02	12/3	25.97
Q183706N.001	1	37	6 100:01.8	1292	0	152405	2	1.6	1.1	0.06	0.06	0.03	12//	26.31
Q183707N.001	1	37	/ 100:01.8	1505	0	152405	2.18	1.63	1.05	0.05	0.05	0.03	1286	27.01
Q183708N.001	1	37	8 100:01.8	1709	0	152405	2.08	1.73	1.26	0.13	0.13	0.09	1273	26.03
152394

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity				
Background rate	1.273	+/-	0.040	cpm
Sample count rate	1.356	+/-	0.041	cpm
Net activity	0.084	+/-	0.0574	cpm
Grams of sample	10.0257			grams
Net sample activity per gram	0.0084	+/-	0.0057	cpm/gm
TU	3.60	+/-	2.467	

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	3.602 +/- 2.467 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.356	+/-	0.041	cpm
Net activity	0.060	+/-	0.0576	cpm
Grams of sample	10.0257			grams
Net sample activity per gram	0.0060	+/-	0.0057	cpm/gm
TU	2.59	+/-	2.488	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 -	⊦/-	0.01
Tf/To	1.00 -	⊦/-	0.010
TRITIUM CONC. OF SAMPLE	2.590 -	H-	2.488 TU

152395

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity			
Background rate	1.273 +/	- 0.040	cpm
Sample count rate	1.399 +/	- 0.042	cpm
Net activity	0.126 +/	- 0.0578	cpm
Grams of sample	10.0239		grams
Net sample activity per gram	0.0126 +/	- 0.0058	cpm/gm
TU	5.43 +/	- 2.486	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	5.431 +/-	2.487 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

152395 Methane

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.399	+/-	0.042	cpm
Net activity	0.103	+/-	0.0581	cpm
Grams of sample	10.0239			grams
Net sample activity per gram	0.0102	+/-	0.0058	cpm/gm
TU	4.43	+/-	2.507	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1	+/-	0.01
Tf/To	1.00	+/-	0.010
TRITIUM CONC. OF SAMPLE	4.425	+/-	2.507 TU

152396

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity		
Background rate	1.273 +/	- 0.040 cpm
Sample count rate	1.306 +/	- 0.040 cpm
Net activity	0.034 +/	- 0.0564 cpm
Grams of sample	9.9466	grams
Net sample activity per gram	0.0034 +/	- 0.0057 cpm/gm
TU	1.45 +/	- 2.446

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	1.452 +/-	2.446 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

152396 Methane

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.306	+/-	0.040	cpm
Net activity	0.010	+/-	0.0567	cpm
Grams of sample	9.9466			grams
Net sample activity per gram	0.0010	+/-	0.0057	cpm/gm
TU	0.42	+/-	2.467	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1	+/-	0.01
Tf/To	1.00	+/-	0.010
TRITIUM CONC. OF SAMPLE	0.424	+/-	2.467 TU

152397

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/gm	431.23 +/-	2.54

Sample Activity				
Background rate	1.273	+/-	0.040	cpm
Sample count rate	1.321	+/-	0.041	cpm
Net activity	0.049	+/-	0.0569	cpm
Grams of sample	5.9408			grams
Net sample activity per gram	0.0082	+/-	0.0096	cpm/gm
TU	3.54	+/-	4.132	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/- 0.01	
Tf/To	1.00 +/- 0.010	
TRITIUM CONC. OF SAMPLE	3.539 +/- 4.132	TU

LABORATORY #

Avg Standard Activity

10/cpm/gm 432.77 +/- 2.23

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.321	+/-	0.041	cpm
Net activity	0.025	+/-	0.0572	cpm
Grams of sample	5.9408			grams
Net sample activity per gram	0.0042	+/-	0.0096	cpm/gm
TU	1.82	+/-	4.167	

Sample Enrichment				
Initial amount of water	1			
final amount of water	1			
Enrichment factor for cell	1 +	⊦/-	0.01	
Tf/To	1.00 +	⊦/-	0.010	
TRITIUM CONC. OF SAMPLE	1.821	H	4.167 TU	

Report < 10.2 TU note: water of combustion only 5.94 g

152398

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity		
Background rate	1.273 +/-	0.040 cpm
Sample count rate	1.306 +/-	0.039 cpm
Net activity	0.034 +/-	0.0561 cpm
Grams of sample	10.1446	grams
Net sample activity per gram	0.0033 +/-	0.0055 cpm/gm
TU	1.42 +/-	2.384

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	1.424 +/- 2.384 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

152398 Methane

Sample Activity		
Background rate	1.296 +/-	0.040 cpm
Sample count rate	1.306 +/-	0.039 cpm
Net activity	0.010 +/-	0.0564 cpm
Grams of sample	10.1446	grams
Net sample activity per gram	0.0010 +/-	0.0056 cpm/gm
TU	0.42 +/-	2.404

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.416 +/-	2.404 TU

152399

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity		
Background rate	1.273 +/	- 0.040 cpm
Sample count rate	1.373 +/-	- 0.041 cpm
Net activity	0.100 +/	- 0.0575 cpm
Grams of sample	10.1954	grams
Net sample activity per gram	0.0098 +/	- 0.0056 cpm/gm
TU	4.23 +/	- 2.432

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	4.230 +/- 2.432 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

152399 Methane

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.373	+/-	0.041	cpm
Net activity	0.076	+/-	0.0578	cpm
Grams of sample	10.1954			grams
Net sample activity per gram	0.0075	+/-	0.0057	cpm/gm
TU	3.24	+/-	2.452	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	• 0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	3.237 +/-	2.453 TU

152400

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/gm	431.23 +/-	2.54

Sample Activity		
Background rate	1.273 +/-	0.040 cpm
Sample count rate	1.334 +/-	0.041 cpm
Net activity	0.061 +/-	0.0571 cpm
Grams of sample	10.1697	grams
Net sample activity per gram	0.0060 +/-	0.0056 cpm/gm
TU	2.60 +/-	2.420

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/- 0.01	
Tf/To	1.00 +/- 0.010	
TRITIUM CONC. OF SAMPLE	2.597 +/- 2.420 TU	

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

152400 Methane

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.334	+/-	0.041	cpm
Net activity	0.038	+/-	0.0573	cpm
Grams of sample	10.1697			grams
Net sample activity per gram	0.0037	+/-	0.0056	cpm/gm
TU	1.60	+/-	2.440	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	1.596 +/-	2.440 TU

152401

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/gm	431.23 +/-	2.54

Sample Activity				
Background rate	1.273	+/-	0.040	cpm
Sample count rate	1.413	+/-	0.042	cpm
Net activity	0.140	+/-	0.0579	cpm
Grams of sample	10.0514			grams
Net sample activity per gram	0.0139	+/-	0.0058	cpm/gm
TU	6.01	+/-	2.486	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	6.006 +/-	2.486 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

152401 Methane

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.413	+/-	0.042	cpm
Net activity	0.116	+/-	0.0582	cpm
Grams of sample	10.0514			grams
Net sample activity per gram	0.0116	+/-	0.0058	cpm/gm
TU	5.01	+/-	2.506	

Sample Enrichment				
Initial amount of water	1			
final amount of water	1			
Enrichment factor for cell	1	+/-	0.01	
Tf/To	1.00	+/-	0.010	
TRITIUM CONC. OF SAMPLE	5.005	+/-	2.507 TU	

152402

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity				
Background rate	1.273	+/-	0.040	cpm
Sample count rate	1.349	+/-	0.041	cpm
Net activity	0.076	+/-	0.0573	cpm
Grams of sample	9.9033			grams
Net sample activity per gram	0.0077	+/-	0.0058	cpm/gm
TU	3.32	+/-	2.494	

Sample Enrichment			
Initial amount of water	1	_	
final amount of water	1		
Enrichment factor for cell	1 +/	/-	0.01
Tf/To	1.00 +	/-	0.010
TRITIUM CONC. OF SAMPLE	3.320 +	1-	2.495 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.349	+/-	0.041	cpm
Net activity	0.053	+/-	0.0576	cpm
Grams of sample	9.9033			grams
Net sample activity per gram	0.0053	+/-	0.0058	cpm/gm
TU	2.29	+/-	2.515	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	2.294 +/-	2.516 TU

152403

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity		
Background rate	1.273 +/-	0.040 cpm
Sample count rate	1.348 +/-	0.041 cpm
Net activity	0.075 +/-	0.0572 cpm
Grams of sample	10.0257	grams
Net sample activity per gram	0.0075 +/-	0.0057 cpm/gm
TU	3.23 +/-	2.461

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +	-/-	0.01
Tf/To	1.00 +	-/-	0.010
TRITIUM CONC. OF SAMPLE	3.226 +	-/-	2.461 TU

LABORATORY #

152403 Methane

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.348 -	+/-	0.041	cpm
Net activity	0.051	+/-	0.0575	cpm
Grams of sample	10.0257			grams
Net sample activity per gram	0.0051 ·	+/-	0.0057	cpm/gm
TU	2.21 -	+/-	2.482	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1	+/-	0.01
Tf/To	1.00	+/-	0.010
TRITIUM CONC. OF SAMPLE	2.212	+/-	2.482 TU

152404

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/qm	431.23 +/-	2.54

Sample Activity				
Background rate	1.273	+/-	0.040	cpm
Sample count rate	1.306	+/-	0.040	cpm
Net activity	0.034	+/-	0.0566	cpm
Grams of sample	10.0097			grams
Net sample activity per gram	0.0033	+/-	0.0057	cpm/gm
TU	1.44	+/-	2.437	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	1.443 +/-	2.437 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

152404 Methane

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.306	+/-	0.040	cpm
Net activity	0.010	+/-	0.0569	cpm
Grams of sample	10.0097			grams
Net sample activity per gram	0.0010	+/-	0.0057	cpm/gm
TU	0.42	+/-	2.458	

Sample Enrichment				
Initial amount of water	1			
final amount of water	1			
Enrichment factor for cell	1	+/-	0.01	
Tf/To	1.00	+/-	0.010	
TRITIUM CONC. OF SAMPLE	0.422	+/-	2.458 TU	

152405

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/14/2009		
Value on above date	1.11653	Bq/gm =	9451 TU
Dilution factor	1		
Concentration of dilution	1.11653	Bq/gm =	9451.40 TU

Standard Activity		
Background count rate	1.273 +/-	0.040 cpm
Standard count rate	44.849 +/-	0.253 cpm
Net activity	43.576 +/-	0.256 cpm
Grams of sample	1.9882	grams
Net standard activity per gram	21.917 +/-	0.129 cpm/gm
TU/cpm/gm	431.23 +/-	2.54

Sample Activity			
Background rate	1.273 +/	/- 0.040	cpm
Sample count rate	1.306 +/	/- 0.040	cpm
Net activity	0.034 +/	- 0.0562	cpm
Grams of sample	9.9318		grams
Net sample activity per gram	0.0034 +/	- 0.0057	cpm/gm
TU	1.45 +/	/- 2.441	

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	1.455 +/- 2.441 TU

LABORATORY #

152405 Methane

Avg Standard Activity

	TU/cpm/gm	432.77 +/-	2.25	
--	-----------	------------	------	--

Sample Activity				
Background rate	1.296	+/-	0.040	cpm
Sample count rate	1.306	+/-	0.040	cpm
Net activity	0.010	+/-	0.0565	cpm
Grams of sample	9.9318			grams
Net sample activity per gram	0.0010	+/-	0.0057	cpm/gm
TU	0.42	+/-	2.462	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.425 +/-	2.462 TU

JOB #	NIST date co	ount date	Value +/-	SD	AVG NIST):		BLK date	count date	Value +/- S	5D	AVG BLK :	Date repor	ted
	22-Aug	25-Aug	733.31 +/-	3.94			22-Au	g 24-Aug	1.585 +/-	0.033			
							"	26-Aug	1.561 +/-	0.033	1.573 +/-	0.033	
	14-Nov	23-Nov	726.34 +/-	3.82	729.83 +/-	3.88	19-No	v 24-Nov	1.546 +/-	0.032	1.564 +/-	0.033	
							1-De	ec 4-Dec	1.581 +/-	0.033	1.568 +/-	0.033	
	1-Dec	10-Dec	719.95 +/-	3.83	726.54 +/-	3.86	8-De	c 11-Dec	1.648 +/-	0.033	1.584 +/-	0.033	
	"						17-De	c 22-Dec	1.613 +/-	0.033	1.589 +/-	0.033	
	24-Dec	4-Jan	727.80 +/-	3.91	726.85 +/-	3.88	30-De	c 3-Jan	1.643 +/-	0.033	1.597 +/-	0.033	
	12-Jan	16-Jan	728.59 +/-	3.89	727.20 +/-	3.88	19-Ja	in 21-Jan	1.668 +/-	0.033	1.606 +/-	0.033	
Job 10797 CNC	28-Jan	5-Feb	719.46 +/-	3.81	725.91 +/-	3.87	28-Ja	in 4-Feb	1.598 +/-	0.033	1.605 +/-	0.033	

1	С	ο	U	Ν	Т	Е	R	#1	

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/gm	719.46 +/-	3.81

Counting efficiency

total cpm net actvy (cpm)/g **efficiency %** 67.08 TU of std *0.007088 13.155 (std count - bkgrd count)/g 19.61 net actvy/total dpm std

DATA FILE JOB # Count dates:	962,963 10797 CNC 1-31 througi	counter 1 1 2-16-09					
	962,963	963					
Position #	2,2&26	3	4	5	6	7	8
Sample ID	152406	152407	152408	BLANK	NIST	152409	152410
	DC	DC	DC		2.0263 g	DC	DC
Cocktail date	28-Jan	28-Jan	28-Jan	28-Jan	28-Jan	28-Jan	28-Jan
Date counted	1/31,2/2&17	2-Feb	3-Feb	4-Feb	5-Feb	6-Feb	7-Feb

9	10	11	12	13	14
152411	152412	152413	152414	152415	152416
DC	DC	DC	DC	DC	DC
28-Jan	28-Jan	28-Jan	28-Jan	28-Jan	28-Jan
9-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb

2009 QAQC-JOB10797.xls

POS	FNCT1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	CPM	CTIME	TIME	DATE	RPT
1	1.88	1.88	1.81	1.81	1.90	4.90	785.15	208.46	4.90	6000	11:52 AM	1/30/2009	1
1	1.66	1.67	1.62	1.61	1.70	4.80	784.32	221.85	4.80	6000	1:33 PM	1/30/2009	2
1	1.83	1.83	1.73	1.73	1.80	4.50	785.00	205.47	4.50	6000	3:13 PM	1/30/2009	3
1	1.81	1.81	1.68	1.68	1.80	4.50	784.95	213.32	4.50	6000	4:54 PM	1/30/2009	4
1	1.72	1.75	1.70	1.68	1.70	4.80	785.62	220.98	4.80	6000	6:35 PM	1/30/2009	5
1	1.68	1.68	1.62	1.62	1.70	4.40	784.17	214.18	4.40	6000	8:16 PM	1/30/2009	6
1	1.70	1.70	1.65	1.65	1.70	4.40	785.20	213.77	4.40	6000	9:57 PM	1/30/2009	7
1	1.78	1.78	1.73	1.73	1.80	4.70	785.20	221.34	4.70	6000	11:38 PM	1/30/2009	8
1	1.56	1.57	1.44	1.43	1.60	4.30	784.48	217.86	4.30	6000	1:19 AM	1/31/2009	9
1	1.89	1.90	1.82	1.81	1.90	4.80	785.15	212.75	4.80	6000	3:00 AM	1/31/2009	10
1	1.90	1.90	1.80	1.80	1.90	4.70	784.74	211.79	4.70	6000	4:41 AM	1/31/2009	11
1	1.67	1.67	1.60	1.60	1.70	4.30	785.00	211.45	4.30	6000	6:21 AM	1/31/2009	12
1	1.78	1.79	1.64	1.63	1.80	4.70	784.74	212.09	4.70	6000	8:02 AM	1/31/2009	13
1	1.55	1.55	1.49	1.49	1.50	4.00	784.69	213.67	4.00	6000	9:43 AM	1/31/2009	14
1	1.90	1.90	1.80	1.80	1.90	4.80	784.95	207.92	4.80	6000	11:24 AM	1/31/2009	15
2	1.73	1.73	1.68	1.68	1.70	4.70	784.38	217.25	4.70	6000	1:05 PM	1/31/2009	1
2	1.89	1.89	1.77	1.77	1.90	4.50	784.95	207.87	4.50	6000	2:46 PM	1/31/2009	2
2	1.68	1.68	1.57	1.57	1.70	4.50	784.07	213.91	4.50	6000	4:27 PM	1/31/2009	3
2	1.75	1.75	1.68	1.68	1.80	4.60	783.39	218.56	4.60	6000	6:08 PM	1/31/2009	4
2	1.61	1.61	1.57	1.57	1.60	4.40	784.48	210.28	4.40	6000	7:49 PM	1/31/2009	5
2	1.70	1.70	1.64	1.64	1.70	4.30	784.69	209.94	4.30	6000	9:30 PM	1/31/2009	6
2	1.53	1.53	1.44	1.44	1.50	4.30	783.45	217.62	4.30	6000	11:10 PM	1/31/2009	7
2	1.67	1.67	1.58	1.58	1.70	4.50	783.34	218.73	4.50	6000	0:51 AM	2/1/2009	8
2	1.36	1.36	1.32	1.32	1.40	3.90	784.01	218.09	3.90	6000	2:32 AM	2/1/2009	9

POS	FNCT1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	CPM	CTIME	TIME	DATE	RPT
	2 1.97	7 1.97	1.9	1.9	2	4.8	787.39	204.2	4	.8 6000	9:10 AM	2/2/2009	1
	2 1.58	3 1.6	1.46	1.44	1.6	4	783.91	214.08		4 6000	10:51 AM	2/2/2009	2
	2 1.75	5 1.75	1.67	1.67	1.8	4.5	784.48	212.08	2	.5 6000	12:32 PM	2/2/2009	3
	2 1.55	5 1.56	1.5	1.49	1.6	4.3	784.58	213.7	2	.3 5787	2:13 PM	2/2/2009	4
	3 1.73	3 1.73	1.65	1.65	1.7	4.4	786.66	216.03	4	.4 6000	3:50 PM	2/2/2009	1
	3 1.63	3 1.63	1.57	1.57	1.6	4.6	785.57	221.47	2	.6 6000	5:31 PM	2/2/2009	2
	3 1.79	9 1.79	1.69	1.69	1.8	4.5	784.95	210.94	4	.5 6000	7:12 PM	2/2/2009	3
	3 1.27	7 1.27	1.19	1.19	1.3	4	785.72	224.07		4 6000	8:53 PM	2/2/2009	4
	3 1.55	5 1.55	1.44	1.44	1.5	4.3	785.83	213.42	4	.3 6000	10:34 PM	2/2/2009	5
	3 1.6	1 1.61	1.54	1.54	1.6	4.3	785.05	218.15	2	.3 6000	12:15 AM	2/3/2009	6
	3 1.94	4 1.94	1.81	1.81	1.9	4.9	785.46	209.62	4	.9 6000	1:56 AM	2/3/2009	7
	3 1.57	7 1.57	1.51	1.51	1.6	4.1	785.41	221.4	2	.1 6000	3:36 AM	2/3/2009	8
	3 1.96	6 1.96	1.86	1.86	2	4.8	786.09	211.51	4	.8 6000	5:17 AM	2/3/2009	9
	3 1.72	2 1.72	1.64	1.64	1.7	4.4	785.41	217.07	4	.4 6000	6:58 AM	2/3/2009	10
	3 1.74	4 1.74	1.65	1.65	1.7	4.7	784.79	216.8	2	.7 6000	8:39 AM	2/3/2009	11
	3 1.73	3 1.73	1.61	1.61	1.7	4.3	785.78	218.29	4	.3 6000	10:20 AM	2/3/2009	12
	3 1.6	1 1.61	1.54	1.54	1.6	4.5	786.24	215.04	2	.5 6000	12:01 PM	2/3/2009	13
	3 1.62	2 1.62	1.47	1.47	1.6	4.3	785.98	219.15	2	.3 6000	1:42 PM	2/3/2009	14
	3 1.63	3 1.63	1.59	1.59	1.6	4.1	785.52	218.37	2	.1 6000	3:23 PM	2/3/2009	15
	4 1.86	5 1.86	1.74	1.74	1.9	4.5	784.95	206.52	2	.5 6000	5:04 PM	2/3/2009	1
	4 1.6	1 1.61	1.55	1.55	1.6	4.6	785.36	225.21	4	.6 6000	6:45 PM	2/3/2009	2
	4 1.7	7 1.7	1.62	1.62	1.7	4.7	784.74	218.45	2	.7 6000	8:26 PM	2/3/2009	3
	4 1.58	3 1.58	1.53	1.53	1.6	4.3	785.62	212.91	4	.3 6000	10:06 PM	2/3/2009	4
	4 1.78	3 1.78	1.65	1.65	1.8	4.7	785.46	218.21	4	.7 6000	11:47 PM	2/3/2009	5
	4 1.66	5 1.67	1.62	1.61	1.7	4.2	786.35	212.99	4	.2 6000	1:28 AM	2/4/2009	6
	4 1.66	5 1.66	1.59	1.59	1.7	4.6	785.57	219.9	4	.6 6000	3:09 AM	2/4/2009	7
	4 1.68	3 1.68	1.56	1.56	1.7	4.3	786.19	215.1	4	.3 6000	4:50 AM	2/4/2009	8
	4 1.47	7 1.47	1.4	1.4	1.5	4.1	785.15	222.63	4	.1 6000	6:31 AM	2/4/2009	9
	4 1.86	5 1.86	1.77	1.77	1.9	4.9	785.2	221.37	4	.9 6000	8:12 AM	2/4/2009	10
	4 1.64	4 1.64	1.58	1.58	1.6	4.8	785.72	223.59	4	.8 6000	9:53 AM	2/4/2009	11
	4 1.64	4 1.64	1.58	1.58	1.6	4.2	784.74	212.55	4	.2 6000	11:34 AM	2/4/2009	12
	4 1.53	3 1.53	1.52	1.52	1.5	4.2	785.72	218.39	2	.2 6000	1:14 PM	2/4/2009	13
	4 1.84	4 1.84	1.67	1.67	1.8	4.7	785.31	218.87	4	.7 6000	2:55 PM	2/4/2009	14
	4 1.5	5 1.5	1.45	1.45	1.5	4.2	785	217.85	2	.2 6000	4:36 PM	2/4/2009	15
	5 1.59	9 1.59	1.52	1.52	1.6	4.4	783.86	220.45	4	.4 6000	6:17 PM	2/4/2009	1
	5 1.29	9 1.29	1.21	1.21	1.3	3.9	784.07	223.57	3	.9 6000	7:58 PM	2/4/2009	2
	5 1.62	2 1.62	1.53	1.53	1.6	4.3	783.76	207.9	2	.3 6000	9:39 PM	2/4/2009	3
	5 1.64	4 1.64	1.55	1.55	1.6	4.5	784.38	221.05	4	.5 6000	11:20 PM	2/4/2009	4
	5 1.86	5 1.86	1.78	1.78	1.9	4.3	783.6	205.61	2	.3 6000	1:01 AM	2/5/2009	5
	5 1.65	5 1.65	1.55	1.55	1.7	4.5	784.58	215.82	2	.5 6000	2:42 AM	2/5/2009	6
	5 1.8	1 1.81	1.74	1.74	1.8	4.5	784.22	210.39	2	.5 6000	4:23 AM	2/5/2009	7
	5 1.64	4 1.64	1.57	1.57	1.6	4.2	784.07	219.38	2	.2 6000	6:04 AM	2/5/2009	8
	5 1.62	2 1.62	1.55	1.55	1.6	4.3	784.32	217.31	2	.3 6000	7:44 AM	2/5/2009	9
	5 1.63	3 1.63	1.55	1.55	1.6	4	783.96	217.65		4 6000	9:25 AM	2/5/2009	10
	5 1.42	2 1.42	1.36	1.36	1.4	3.9	784.79	224.96	3	.9 6000	11:06 AM	2/5/2009	11
	5 1.7	7 1.7	1.57	1.57	1.7	4.1	783.96	210.19	2	.1 6000	12:47 PM	2/5/2009	12
	5 1.56	6 1.57	1.54	1.53	1.6	4.2	784.69	218.43	4	.2 6000	2:28 PM	2/5/2009	13
	5 1.44	4 1.44	1.38	1.38	1.4	4	784.69	219.26		4 6000	4:09 PM	2/5/2009	14
	5 1.5	5 1.5	1.43	1.43	1.5	3.9	784.89	214.25	3	.9 6000	5:50 PM	2/5/2009	15
	6 28.92	2 28.94	28.48	28.46	28.9	32.6	783.55	121.9	32	.6 6000	7:31 PM	2/5/2009	1
	6 28.06	5 28.08	27.41	27.39	28.1	31.9	784.01	121.97	31	.9 6000	9:12 PM	2/5/2009	2
	6 29.22	2 29.24	28.84	28.82	29.2	33.5	783.34	122.61	33	.5 6000	10:53 PM	2/5/2009	3

6	28.44	28.48	27.92	27.88	28.5	32.3	784.17	122.57	32.3	6000	12:33 AM	2/6/2009	4
6	27.98	27.99	27.55	27.54	28	31.7	784.17	122.53	31.7	6000	2:14 AM	2/6/2009	5
6	27.74	27.77	27.22	27.2	27.8	31.6	784.27	122.93	31.6	6000	3:55 AM	2/6/2009	6
6	28.27	28.29	27.75	27.73	28.3	32	783.86	121.89	32	6000	5:36 AM	2/6/2009	7
6	27.93	27.97	27.54	27.49	28	32.1	783.24	123.93	32.1	6000	7:17 AM	2/6/2009	8
6	27.84	27.87	27.36	27.33	27.9	32.3	784.17	123.6	32.3	6000	8:58 AM	2/6/2009	9
6	28.39	28.4	27.87	27.86	28.4	32.2	783.5	121.3	32.2	6000	10:39 AM	2/6/2009	10
6	28.35	28.38	27.87	27.84	28.4	32.1	784.01	121.9	32.1	6000	12:20 PM	2/6/2009	11
6	28.13	28.13	27.6	27.6	28.1	31.7	783.65	121.18	31.7	6000	2:01 PM	2/6/2009	12
6	27.86	27.86	27.32	27.32	27.9	31.8	783.6	122.79	31.8	6000	3:41 PM	2/6/2009	13
6	28.48	28.49	28.09	28.08	28.5	32.5	783.65	122.22	32.5	6000	5:22 PM	2/6/2009	14
6	28.2	28.24	27.72	27.68	28.2	32.3	784.12	122.11	32.3	6000	7:03 PM	2/6/2009	15
7	1.38	1.38	1.32	1.32	1.4	3.8	784.12	215.48	3.8	6000	8:44 PM	2/6/2009	1
7	1.55	1.55	1.51	1.51	1.5	4	784.89	207.84	4	6000	10:25 PM	2/6/2009	2
7	1.68	1.68	1.64	1.64	1.7	4.2	784.22	203.84	4.2	6000	12:06 AM	2/7/2009	3
7	1.79	1.79	1.65	1.65	1.8	4.4	784.43	206.89	4.4	6000	1:47 AM	2/7/2009	4
7	1.45	1.45	1.36	1.36	1.5	4	784.69	210.7	4	6000	3:28 AM	2/7/2009	5
7	1.46	1.46	1.44	1.44	1.5	4.1	784.48	214.6	4.1	6000	5:09 AM	2/7/2009	6
7	1.53	1.53	1.46	1.46	1.5	4.1	783.81	211.66	4.1	6000	6:50 AM	2/7/2009	7
7	1.46	1.46	1.39	1.39	1.5	4	783.45	216.96	4	6000	8:30 AM	2/7/2009	8
7	1.82	1.82	1.71	1.71	1.8	4.5	783.5	208.47	4.5	6000	10:11 AM	2/7/2009	9
7	1.87	1.87	1.78	1.78	1.9	4.7	784.22	216.02	4.7	6000	11:52 AM	2/7/2009	10
7	1.7	1.7	1.61	1.61	1.7	4.1	783.6	204.17	4.1	6000	1:33 PM	2/7/2009	11
7	1.39	1.39	1.36	1.36	1.4	4.3	784.74	226.06	4.3	6000	3:14 PM	2/7/2009	12
7	1.62	1.62	1.54	1.54	1.6	3.8	784.17	210.46	3.8	6000	4:55 PM	2/7/2009	13
7	1.39	1.39	1.36	1.36	1.4	3.8	783.86	214.64	3.8	6000	6:36 PM	2/7/2009	14
7	1.47	1.47	1.42	1.42	1.5	4.2	783.6	217.77	4.2	6000	8:17 PM	2/7/2009	15
8	1.78	1.78	1.72	1.72	1.8	4.3	784.53	208.15	4.3	6000	9:58 PM	2/7/2009	1
8	1.81	1.81	1.8	1.8	1.8	4.1	784.48	206.47	4.1	6000	11:39 PM	2/7/2009	2
8	1.73	1.73	1.65	1.65	1.7	4.4	784.89	214	4.4	6000	1:20 AM	2/8/2009	3
8	1.64	1.64	1.57	1.57	1.6	4.2	784.27	213.12	4.2	6000	3:00 AM	2/8/2009	4
8	1.69	1.69	1.62	1.62	1.7	4.1	784.38	204.98	4.1	6000	4:41 AM	2/8/2009	5
8	1.63	1.63	1.55	1.55	1.6	4.3	784.89	212.88	4.3	6000	6:22 AM	2/8/2009	6
8	1.41	1.42	1.39	1.38	1.4	4.1	783.55	212.52	4.1	6000	8:03 AM	2/8/2009	7
8	1.63	1.63	1.51	1.51	1.6	4.2	784.12	209.55	4.2	6000	9:44 AM	2/8/2009	8
8	1.78	1.78	1.73	1.73	1.8	4.8	784.53	218.05	4.8	6000	11:25 AM	2/8/2009	9
8	1.46	1.46	1.39	1.39	1.5	4	783.34	213.94	4	6000	1:06 PM	2/8/2009	10
8	1.44	1.44	1.34	1.34	1.4	3.9	782.98	211.44	3.9	6000	2:47 PM	2/8/2009	11
8	1.7	1.7	1.66	1.66	1.7	4.1	784.69	210.88	4.1	6000	4:28 PM	2/8/2009	12
8	1.45	1.45	1.36	1.36	1.5	4.3	783.91	222.6	4.3	6000	6:08 PM	2/8/2009	13
8	1.77	1.77	1.69	1.69	1.8	3.9	784.27	203.25	3.9	6000	7:49 PM	2/8/2009	14
8	1.55	1.55	1.44	1.44	1.5	4	783.76	214.12	4	6000	9:30 PM	2/8/2009	15
9	1.43	1.43	1.37	1.37	1.4	4	784.43	220.97	4	6000	11:11 PM	2/8/2009	1
9	1.84	1.84	1.73	1.73	1.8	4.4	783.55	210.25	4.4	6000	12:52 AM	2/9/2009	2
9	1.74	1.74	1.69	1.69	1.7	4	783.76	199.9	4	6000	2:33 AM	2/9/2009	3
9	1.51	1.51	1.39	1.39	1.5	3.9	783.7	215.42	3.9	6000	4:14 AM	2/9/2009	4
9	1.62	1.63	1.57	1.56	1.6	4.2	784.69	208.3	4.2	6000	5:55 AM	2/9/2009	5
9	1.65	1.65	1.58	1.58	1.7	4.2	783.29	214.97	4.2	6000	7:36 AM	2/9/2009	6
9	1.64	1.64	1.55	1.55	1.6	4.1	783.81	211.97	4.1	6000	9:17 AM	2/9/2009	7
9	1.69	1.69	1.59	1.59	1.7	4.1	783.45	206.97	4.1	6000	10:58 AM	2/9/2009	8
9	1.65	1.65	1.6	1.6	1.7	4.3	784.48	214.09	4.3	6000	12:38 PM	2/9/2009	9
9	1.63	1.63	1.53	1.53	1.6	3.9	782.83	202.49	3.9	6000	2:19 PM	2/9/2009	10
9	1.64	1.64	1.56	1.56	1.6	3.9	783.08	209.09	3.9	6000	4:00 PM	2/9/2009	11

0	4 50	4 50	4 40	4 40	4 5	4	704 07	044.00	4	0000		0/0/0000	40
9	1.53	1.53	1.49	1.49	1.5	4	784.27	214.88	4	6000	5:41 PM	2/9/2009	12
9	1.69	1.69	1.62	1.62	1.7	4.1	783.65	208	4.1	6000	7:22 PM	2/9/2009	13
9	1.55	1.55	1.5	1.5	1.5	3.8	783.55	211.19	3.8	6000	9:03 PM	2/9/2009	14
9	1.76	1.76	1./1	1.71	1.8	4.3	783.55	207.72	4.3	6000	10:44 PM	2/9/2009	15
10	1.62	1.62	1.55	1.55	1.6	4	784.12	208.45	4	6000	12:25 AM	2/10/2009	1
10	1.56	1.56	1.5	1.5	1.6	4.2	783.96	218.7	4.2	6000	2:06 AM	2/10/2009	2
10	1.76	1.77	1.64	1.63	1.8	4.5	784.69	211.22	4.5	6000	3:47 AM	2/10/2009	3
10	1.52	1.52	1.44	1.44	1.5	3.9	783.5	213.45	3.9	6000	5:28 AM	2/10/2009	4
10	1.5	1.5	1.4	1.4	1.5	4.3	784.43	213.3	4.3	6000	7:08 AM	2/10/2009	5
10	1.86	1.86	1.77	1.77	1.9	4.4	784.64	205.36	4.4	6000	8:49 AM	2/10/2009	6
10	1.53	1.53	1.47	1.47	1.5	4.1	783.7	208.12	4.1	6000	10:30 AM	2/10/2009	7
10	1.66	1.66	1.62	1.62	1.7	4.3	783.81	212.18	4.3	6000	12:11 PM	2/10/2009	8
10	1.51	1.51	1.45	1.45	1.5	3.6	783.03	207.6	3.6	6000	1:52 PM	2/10/2009	9
10	1.56	1.56	1.5	1.5	1.6	4.2	783.34	218.89	4.2	6000	3:33 PM	2/10/2009	10
10	1.53	1.53	1.5	1.5	1.5	4.1	784.22	216.04	4.1	6000	5:14 PM	2/10/2009	11
10	1.76	1.76	1.69	1.69	1.8	4.1	783.76	204.4	4.1	6000	6:55 PM	2/10/2009	12
10	1.51	1.51	1.46	1.46	1.5	3.9	783.19	211.2	3.9	6000	8:36 PM	2/10/2009	13
10	1.78	1.78	1.73	1.73	1.8	4.6	783.08	207	4.6	6000	10:16 PM	2/10/2009	14
10	1.64	1.64	1.51	1.51	1.6	4.2	784.48	213.93	4.2	6000	11:57 PM	2/10/2009	15
11	1.76	1.76	1.72	1.72	1.8	4.3	783.55	209.12	4.3	6000	1:38 AM	2/11/2009	1
11	1.6	1.6	1.47	1.47	1.6	4	782.83	205.89	4	6000	3:19 AM	2/11/2009	2
11	1.64	1.64	1.59	1.59	1.6	4.3	782.88	213.23	4.3	6000	5:00 AM	2/11/2009	3
11	1.64	1.64	1.54	1.54	1.6	4.2	783.24	214.88	4.2	6000	6:41 AM	2/11/2009	4
11	1.61	1.61	1.47	1.47	1.6	4.2	783.6	212.33	4.2	6000	8:22 AM	2/11/2009	5
11	1.97	1.97	1.81	1.81	2	4.2	783.6	199.43	4.2	6000	10:03 AM	2/11/2009	6
11	1.62	1.62	1.55	1.55	1.6	4.4	783.91	216.16	4.4	6000	11:44 AM	2/11/2009	7
11	1.65	1.65	1.58	1.58	1.7	4.3	784.22	211.69	4.3	6000	1:25 PM	2/11/2009	8
11	1.66	1.66	1.61	1.61	1.7	4.3	783.5	214.06	4.3	6000	3:05 PM	2/11/2009	9
11	1.69	1.69	1.53	1.53	1.7	4.4	784.22	213.79	4.4	6000	4:46 PM	2/11/2009	10
11	1.56	1.56	1.4	1.4	1.6	4.1	783.91	215.48	4.1	6000	6:27 PM	2/11/2009	11
11	1.6	1.6	1.53	1.53	1.6	3.9	784.01	207.93	3.9	6000	8:08 PM	2/11/2009	12
11	1.8	1.8	1.72	1.72	1.8	4.2	783.19	208	4.2	6000	9:49 PM	2/11/2009	13
11	1.55	1.55	1.47	1.47	1.5	4	783.6	215.42	4	6000	11:30 PM	2/11/2009	14
11	1.83	1.83	1.78	1.78	1.8	4.7	784.12	219.13	4.7	6000	1:11 AM	2/12/2009	15
12	1.6	1.6	1.54	1.54	1.6	4	783.55	220.18	4	6000	2:52 AM	2/12/2009	1
12	1.51	1.51	1.41	1.41	1.5	4	783.03	213	4	6000	4:33 AM	2/12/2009	2
12	1.49	1.49	1.43	1.43	1.5	4.1	783.19	220.07	4.1	6000	6:14 AM	2/12/2009	3
12	1.71	1.71	1.63	1.63	1.7	4.2	783.91	207.82	4.2	6000	7:54 AM	2/12/2009	4
12	1.6	1.6	1.48	1.48	1.6	4	784.07	213.74	4	6000	9:35 AM	2/12/2009	5
12	1.88	1.88	1.75	1.75	1.9	4.3	783.03	205.33	4.3	6000	11:16 AM	2/12/2009	6
12	1.51	1.51	1.44	1.44	1.5	4	783.45	213.62	4	6000	12:57 PM	2/12/2009	7
12	1.43	1.43	1.34	1.34	1.4	4.1	783.5	218.84	4.1	6000	2:38 PM	2/12/2009	8
12	1.57	1.57	1.45	1.45	1.6	4.2	783.24	212.6	4.2	6000	4:19 PM	2/12/2009	9
12	1.5	1.5	1.47	1.47	1.5	3.9	783.45	211.22	3.9	6000	6:00 PM	2/12/2009	10
12	1.45	1.45	1.39	1.39	1.5	3.9	782.93	221.27	3.9	6000	7:41 PM	2/12/2009	11
12	1.55	1.55	1.47	1.47	1.5	4.3	782.83	214.2	4.3	6000	9:22 PM	2/12/2009	12
12	1.55	1.55	1.46	1.46	1.5	3.9	783.6	215.16	3.9	6000	11:02 PM	2/12/2009	13
12	1.61	1.61	1.54	1.54	1.6	4	782.62	212.96	4	6000	12:43 AM	2/13/2009	14
12	1.54	1.54	1.46	1.46	1.5	4.2	783.65	222.14	4.2	6000	2:24 AM	2/13/2009	15
13	1.47	1.47	1.38	1.38	1.5	4.1	784.12	221.2	4.1	6000	4:05 AM	2/13/2009	1
13	1.43	1.43	1.35	1.35	1.4	3.8	783.76	220.99	3.8	6000	5:46 AM	2/13/2009	2
13	1.6	1.6	1.53	1.53	1.6	4	784.38	211.02	4	6000	7:27 AM	2/13/2009	3
13	1.7	1.7	1.61	1.61	1.7	4.3	784.12	209.42	4.3	6000	9:08 AM	2/13/2009	4

13	1.6	1.6	1.54	1.54	1.6	3.9	783.29	209.34	3.9	6000 1	0:49 AM	2/13/2009	5
13	1.37	1.37	1.31	1.31	1.4	3.8	783.86	219.03	3.8	6000 1	2:30 PM	2/13/2009	6
13	1.61	1.61	1.56	1.56	1.6	4.2	784.12	213.3	4.2	6000	2:11 PM	2/13/2009	7
13	1.73	1.74	1.7	1.69	1.7	4.2	783.34	206.12	4.2	6000	3:52 PM	2/13/2009	8
13	1.69	1.69	1.58	1.58	1.7	4.5	784.07	211.09	4.5	6000	5:32 PM	2/13/2009	9
13	1.75	1.75	1.69	1.69	1.8	4.1	783.5	211.42	4.1	6000	7:13 PM	2/13/2009	10
13	1.54	1.54	1.41	1.41	1.5	3.9	784.32	212.61	3.9	6000	8:54 PM	2/13/2009	11
13	1.69	1.69	1.63	1.63	1.7	4.2	784.01	207.43	4.2	6000 1	0:35 PM	2/13/2009	12
13	1.69	1.69	1.6	1.6	1.7	3.9	783.81	210.21	3.9	6000 1	2:16 AM	2/14/2009	13
13	1.61	1.61	1.52	1.52	1.6	4.2	784.12	209.01	4.2	6000	1:57 AM	2/14/2009	14
13	1.73	1.73	1.71	1.71	1.7	4.7	783.5	216.35	4.7	6000	3:38 AM	2/14/2009	15
14	1.81	1.81	1.75	1.75	1.8	4.6	783.45	207.3	4.6	6000	5:19 AM	2/14/2009	1
14	1.56	1.56	1.47	1.47	1.6	3.9	783.29	211.87	3.9	6000	7:00 AM	2/14/2009	2
14	1.5	1.5	1.4	1.4	1.5	4	783.65	217.9	4	6000	8:41 AM	2/14/2009	3
14	1.54	1.54	1.52	1.52	1.5	4.1	783.65	214.29	4.1	6000 1	0:22 AM	2/14/2009	4
14	1.5	1.51	1.41	1.4	1.5	4.1	783.6	213.22	4.1	6000 1	2:02 PM	2/14/2009	5
14	1.61	1.61	1.58	1.58	1.6	4.4	783.34	214.97	4.4	6000	1:43 PM	2/14/2009	6
14	1.8	1.8	1.67	1.67	1.8	4.3	783.81	207.18	4.3	6000	3:24 PM	2/14/2009	7
14	1.51	1.51	1.44	1.44	1.5	4.1	782.88	211.58	4.1	6000	5:05 PM	2/14/2009	8
14	1.53	1.53	1.44	1.44	1.5	4	783.65	210.75	4	6000	6:46 PM	2/14/2009	9
14	1.5	1.51	1.4	1.39	1.5	4.1	782.72	214.2	4.1	6000	8:27 PM	2/14/2009	10
14	1.66	1.66	1.61	1.61	1.7	4.2	783.08	210.21	4.2	6000 1	0:08 PM	2/14/2009	11
14	1.49	1.49	1.41	1.41	1.5	3.8	783.03	213.1	3.8	6000 1	1:49 PM	2/14/2009	12
14	1.71	1.71	1.66	1.66	1.7	4.4	782.67	209.81	4.4	6000	1:30 AM	2/15/2009	13
14	1.47	1.47	1.41	1.41	1.5	4	783.55	211.92	4	6000	3:10 AM	2/15/2009	14
14	1.55	1.55	1.47	1.47	1.5	3.9	782.77	215.17	3.9	6000	4:51 AM	2/15/2009	15
26	1.69	1.69	1.59	1.59	1.7	4.2	783.76	207.93	4.2	6000 8:	22 AM	2/17/2009	1
26	1.63	1.63	1.57	1.57	1.6	3.7	782.62	208.63	3.7	4288 10):03 AM	2/17/2009	2

152406

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity				
Background count rate	1.598 +	+/-	0.033	cpm
Standard count rate	28.254 +	+/-	0.137	cpm
Net activity	26.656 +	⊦/-	0.141	cpm
Grams of sample	2.0263			grams
Net standard activity per gram	13.155 +	+/-	0.070	cpm/gm
TU/cpm/gm	719.46 +	H/-	3.81	

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.673	+/-	0.033	cpm
Net activity	0.075	+/-	0.0467	cpm
Grams of sample	10.0375			grams
Net sample activity per gram	0.0074	+/-	0.0046	cpm/gm
TU	5.35	+/-	3.345	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	5.352 +/-	3.346 TU

LABORATORY #

Avg Standard Activity

TU/cpm/gm	725.91 +/-	3.87	

152406 water

Sample Activity				
Background rate	1.605	+/-	0.033	cpm
Sample count rate	1.673	+/-	0.033	cpm
Net activity	0.068	+/-	0.0468	cpm
Grams of sample	10.0375			grams
Net sample activity per gram	0.0068	+/-	0.0047	cpm/gm
TU	4.91	+/-	3.386	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	4.912 +/-	3.386 TU

Report < 11.7

152407

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/qm	719.46 +/-	3.81

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.673	+/-	0.033	cpm
Net activity	0.075	+/-	0.0467	cpm
Grams of sample	9.9893			grams
Net sample activity per gram	0.0075	+/-	0.0047	cpm/gm
TU	5.43	+/-	3.362	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	5.426 +/-	3.362 TU

Avg Standard Activity

LABORATORY #

TU/cpm/gm	725.91 +/-	3.87	

152407 water

Sample Activity				
Background rate	1.605	+/-	0.033	cpm
Sample count rate	1.673	+/-	0.033	cpm
Net activity	0.069	+/-	0.0468	cpm
Grams of sample	9.9893			grams
Net sample activity per gram	0.0069	+/-	0.0047	cpm/gm
TU	4.98	+/-	3.402	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +	/-	0.01
Tf/To	1.00 +	/-	0.010
TRITIUM CONC. OF SAMPLE	4.984 +	<i> -</i>	3.403 TU

Report < 11.8

152408

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity				
Background count rate	1.598 +	+/-	0.033	cpm
Standard count rate	28.254 +	+/-	0.137	cpm
Net activity	26.656 +	⊦/-	0.141	cpm
Grams of sample	2.0263			grams
Net standard activity per gram	13.155 +	+/-	0.070	cpm/gm
TU/cpm/gm	719.46 +	H/-	3.81	

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.667 -	+/-	0.033	cpm
Net activity	0.069 -	+/-	0.0466	cpm
Grams of sample	10.0122			grams
Net sample activity per gram	0.0069 -	+/-	0.0047	cpm/gm
TU	4.98 -	+/-	3.349	

Sample Enrichment			
Initial amount of water	1	_	
final amount of water	1		
Enrichment factor for cell	1 +	-/-	0.01
Tf/To	1.00 +	-/-	0.010
TRITIUM CONC. OF SAMPLE	4.982 +	-/-	3.349 TU

LABORATORY #

Avg Standard Activity

TU/cpm/gm	725.91 -	+/-	3.87	

152408 water

Sample Activity				
Background rate	1.605	+/-	0.033	cpm
Sample count rate	1.667	+/-	0.033	cpm
Net activity	0.063	+/-	0.0467	cpm
Grams of sample	10.0122			grams
Net sample activity per gram	0.0063	+/-	0.0047	cpm/gm
TU	4.54	+/-	3.389	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	4.537 +/-	3.390 TU

Report < 11.3

152409

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity				
Background count rate	1.598 +	+/-	0.033	cpm
Standard count rate	28.254 +	+/-	0.137	cpm
Net activity	26.656 +	⊦/-	0.141	cpm
Grams of sample	2.0263			grams
Net standard activity per gram	13.155 +	+/-	0.070	cpm/gm
TU/cpm/gm	719.46 +	H/-	3.81	

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.615	+/-	0.032	cpm
Net activity	0.017	+/-	0.046	cpm
Grams of sample	10.0467			grams
Net sample activity per gram	0.0017	+/-	0.0046	cpm/gm
TU	1.22	+/-	3.291	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	1.217 +/-	3.291 TU

Avg Standard Activity

LABORATORY #

	TU/cpm/gm	725.91 +	-/- 3.87	
--	-----------	----------	----------	--

152409 water

Sample Activity				
Background rate	1.605	+/-	0.033	cpm
Sample count rate	1.615	+/-	0.032	cpm
Net activity	0.010	+/-	0.0461	cpm
Grams of sample	10.0467			grams
Net sample activity per gram	0.0010	+/-	0.0046	cpm/gm
TU	0.74	+/-	3.332	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1	+/-	0.01
Tf/To	1.00	+/-	0.010
TRITIUM CONC. OF SAMPLE	0.741	+/-	3.332 TU

152410

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/qm	719.46 +/-	3.81

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.631	+/-	0.033	cpm
Net activity	0.033	+/-	0.0464	cpm
Grams of sample	10.0348			grams
Net sample activity per gram	0.0033	+/-	0.0046	cpm/gm
TU	2.39	+/-	3.326	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +	-/-	0.01
Tf/To	1.00 +	-/-	0.010
TRITIUM CONC. OF SAMPLE	2.390 +	-/-	3.326 TU

LABORATORY #

Avg Standard Activity

TU/cpm/gm	725.91 +/-	3.87	

152410 water

Sample Activity		
Background rate	1.605 +/-	0.033 cpm
Sample count rate	1.631 +/-	0.033 cpm
Net activity	0.027 +/-	0.0465 cpm
Grams of sample	10.0348	grams
Net sample activity per gram	0.0026 +/-	0.0046 cpm/gm
TU	1.92 +/-	3.366

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	- 0.01
Tf/To	1.00 +/-	- 0.010
TRITIUM CONC. OF SAMPLE	1.923 +/	- 3.366 TU

```
152411
```

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/qm	719.46 +/-	3.81

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.638	+/-	0.033	cpm
Net activity	0.040	+/-	0.0464	cpm
Grams of sample	9.9938			grams
Net sample activity per gram	0.0040	+/-	0.0046	cpm/gm
TU	2.88	+/-	3.339	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	2.880 +/-	3.340 TU

Avg Standard Activity

LABORATORY #

TU/cpm/gm	725.91 +/-	3.87	

152411 water

Sample Activity				
Background rate	1.605	+/-	0.033	cpm
Sample count rate	1.638	+/-	0.033	cpm
Net activity	0.033	+/-	0.0465	cpm
Grams of sample	9.9938			grams
Net sample activity per gram	0.0033	+/-	0.0047	cpm/gm
TU	2.42	+/-	3.380	

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	2 415 4/2 3 380 TH

```
152412
```

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity				
Background count rate	1.598 -	+/-	0.033	cpm
Standard count rate	28.254	+/-	0.137	cpm
Net activity	26.656 -	+/-	0.141	cpm
Grams of sample	2.0263			grams
Net standard activity per gram	13.155 -	+/-	0.070	cpm/gm
TU/cpm/qm	719.46 -	+/-	3.81	

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.620	+/-	0.033	cpm
Net activity	0.022	+/-	0.0463	cpm
Grams of sample	10.0505			grams
Net sample activity per gram	0.0022	+/-	0.0046	cpm/gm
TU	1.57	+/-	3.316	

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	1.575 +/- 3.316 TU

Avg Standard Activity

LABORATORY #

TU/cpm/gm	725.91 +/-	3.87

152412 water

Sample Activity		
Background rate	1.605 +/-	0.033 cpm
Sample count rate	1.620 +/-	0.033 cpm
Net activity	0.015 +/-	0.0465 cpm
Grams of sample	10.0505	grams
Net sample activity per gram	0.0015 +/-	0.0046 cpm/gm
TU	1.10 +/-	3.356

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/T	o 1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	1 101 4/- 3 356 TU

152413

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/qm	719.46 +/-	3.81

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.658	+/-	0.034	cpm
Net activity	0.060	+/-	0.0474	cpm
Grams of sample	10.01			grams
Net sample activity per gram	0.0060	+/-	0.0047	cpm/gm
TU	4.30	+/-	3.406	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	4.302 +/-	3.407 TU

Avg Standard Activity

LABORATORY #

TU/cpm/gm	725.91 +/-	3.87	

152413 water

Sample Activity				
Background rate	1.605	+/-	0.033	cpm
Sample count rate	1.658	+/-	0.034	cpm
Net activity	0.053	+/-	0.0475	cpm
Grams of sample	10.01			grams
Net sample activity per gram	0.0053	+/-	0.0047	cpm/gm
TU	3.85	+/-	3.447	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 -	+/-	0.01
Tf/To	1.00	+/-	0.010
TRITIUM CONC. OF SAMPLE	3.851	+/-	3.448 TU

```
152414
```

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/qm	719.46 +/-	3.81

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.615	+/-	0.032	cpm
Net activity	0.017	+/-	0.0459	cpm
Grams of sample	10.0622			grams
Net sample activity per gram	0.0017	+/-	0.0046	cpm/gm
TU	1.22	+/-	3.281	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	1.216 +/-	3.281 TU

Avg Standard Activity

LABORATORY #

	TU/cpm/gm	725.91 +/-	3.87	
--	-----------	------------	------	--

152414 water

Sample Activity				
Background rate	1.605	+/-	0.033	cpm
Sample count rate	1.615	+/-	0.032	cpm
Net activity	0.010	+/-	0.046	cpm
Grams of sample	10.0622			grams
Net sample activity per gram	0.0010	+/-	0.0046	cpm/gm
TU	0.74	+/-	3.322	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1	+/-	0.01
Tf/To	1.00	+/-	0.010
TRITIUM CONC. OF SAMPLE	0.739	+/-	3.322 TU

152415

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/gm	719.46 +/-	3.81

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.614	+/-	0.033	cpm
Net activity	0.016	+/-	0.0462	cpm
Grams of sample	10.0613			grams
Net sample activity per gram	0.0016	+/-	0.0046	cpm/gm
TU	1.14	+/-	3.307	

Sample Enrichment	1	
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/- 0.01	
Tf/To	1.00 +/- 0.010	
TRITIUM CONC. OF SAMPLE	1.144 +/- 3.307 TU	

Avg Standard Activity

LABORATORY #

	TU/cpm/gm	725.91 +	/- 3.87	
--	-----------	----------	---------	--

152415 water

Sample Activity				
Background rate	1.605 -	+/-	0.033	cpm
Sample count rate	1.614 -	+/-	0.033	cpm
Net activity	0.009 +	+/-	0.0464	cpm
Grams of sample	10.0613			grams
Net sample activity per gram	0.0009 +	+/-	0.0046	cpm/gm
TU	0.67 +	+/-	3.347	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.667 +/-	3.347 TU

152416

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	2/5/2009		
Value on above date	1.11807	Bq/gm =	9464 TU
Dilution factor	1		
Concentration of dilution	1.11807	Bq/gm =	9464.50 TU

Standard Activity		
Background count rate	1.598 +/-	0.033 cpm
Standard count rate	28.254 +/-	0.137 cpm
Net activity	26.656 +/-	0.141 cpm
Grams of sample	2.0263	grams
Net standard activity per gram	13.155 +/-	0.070 cpm/gm
TU/cpm/qm	719.46 +/-	3.81

Sample Activity				
Background rate	1.598	+/-	0.033	cpm
Sample count rate	1.615	+/-	0.033	cpm
Net activity	0.017	+/-	0.046	cpm
Grams of sample	9.9873			grams
Net sample activity per gram	0.0017	+/-	0.0046	cpm/gm
TU	1.22	+/-	3.316	

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	1.225 +/- 3.316 TU

Avg Standard Activity

LABORATORY #

TU/cpm/gm	725.91 +/-	3.87	

152416 water

Sample Activity			
Background rate	1.605 +/	- 0.033	cpm
Sample count rate	1.615 +/	- 0.033	cpm
Net activity	0.010 +/	- 0.0462	cpm
Grams of sample	9.9873		grams
Net sample activity per gram	0.0010 +/	/- 0.0046	cpm/gm
TU	0.74 +/	/- 3.357	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +	/-	0.01
Tf/To	1.00 +	/-	0.010
TRITIUM CONC. OF SAMPLE	0.745 +	<i> -</i>	3.357 TU

LABORATORY #	152417		sample	was NO	T wate	r	LABORATORY #
NIST standard calculations			could n	ot analy	ze tor i	tritium	
Standardization date	9/3/1998					1	
Standardized value	2.00900		Bq/gm				
Date of measurement	2/5/2009						
Value on above date	1.11807		Bq/gm =	94	64 TU		
Dilution factor	1						
Concentration of dilution	1.11807		Bq/gm =	9464.	50 TU		
Standard Activity							Avg Standard Activity
Background count rate	1.598 -	+/-	0.033	cpm			
Standard count rate	28.254	+/-	0.137	cpm			
Net activity	26.656 -	+/-	0.141	cpm			
Grams of sample	2.0263			grams			
Net standard activity per gram	13.155 -	+/-	0.070	cpm/gm	1 I		
TU/cpm/gm	719.46 -	+/-	3.81				TU/c
Sample Activity							Sample Activity
Background rate	1.598 -	+/-	0.033	cpm			Backgrou
Sample count rate	-	+/-		cpm			Sample cou
Net activity	-1.598 -	+/-	0.0326	cpm			Net
Grams of sample				grams			Grams of sample
Net sample activity per gram	#DIV/0!	+/-	#DIV/0!	cpm/gm	n		Net sample activity pe
TU	#DIV/0! -	+/-	#DIV/0!				

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	#DIV/0! +/- #DIV/0! TU

Avg Standard Activity				
TLI/com/am	725 01	+/-	3 87	
TU/cpm/gm	725.91	+/-	3.87	
TU/cpm/gm	725.91	+/-	3.87	
TU/cpm/gm	725.91	+/-	3.87	
TU/cpm/gm Sample Activity Background rate	725.91	+/-	3.87 0.033	cpm
TU/cpm/gm Sample Activity Background rate Sample count rate	725.91 1.605 0.000	+/- +/- +/-	3.87 0.033 0.000	cpm cpm
TU/cpm/gm Sample Activity Background rate Sample count rate Net activity	725.91 1.605 0.000 -1.605	+/- +/- +/-	3.87 0.033 0.000 0.0328	cpm cpm cpm
TU/cpm/gm Sample Activity Background rate Sample count rate Net activity Grams of sample	725.91 1.605 0.000 -1.605 0	+/- +/- +/-	3.87 0.033 0.000 0.0328	cpm cpm cpm grams
TU/cpm/gm Sample Activity Background rate Sample count rate Net activity Grams of sample Net sample activity per gram	725.91 1.605 0.000 -1.605 0 #DIV/0!	+/- +/- +/- +/-	3.87 0.033 0.000 0.0328 #DIV/0!	cpm cpm cpm grams cpm/gm

152417 water

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor for cell	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	#DIV/0! +/- #DIV/0! TU

NOTE: sample was NOT water could not analyze for tritium

COUNTER 3 (new) Year 2009 NIST and BLANK Values

JOB #	NIST date	count date	Value +/-	SD	AVG NIST :		BLK date	count date	Value	+/- SD	AVG BLK :	
					TU/cpm/g						cpm	
	4-Feb	5-Feb	434.66 +/-	2.17			4-Feb	5-Feb	1.421	+/- 0.04	2	
	"	6-Feb	430.62 +/-	2.13				6-Feb	1.341	+/- 0.03	57	
	"	8-Feb	434.56 +/-	2.17	433.28 +/-	2.15		7-Feb	1.438	+/- 0.03	1.400 +/-	0.039
	10-Feb	14-Feb	431.23 +/-	2.54	432.77 +/-	2.25	10-Feb	13-Feb	1.273	+/- 0.04	0 1.368 +/-	0.039
								17-Feb	1.296	+/- 0.04	0 1.354 +/-	0.039
	20-Feb	24-Feb	434.10 +/-	2.38	433.03 +/-	2.28	20-Feb	23-Feb	1.250	+/- 0.04	0 1.336 +/-	0.039
							"	28-Feb	1.286	+/- 0.04	0 1.329 +/-	0.040
	5-Mar						5-Mar	9-Mar	1.439	+/- 0.03	1.343 +/-	0.039
	"	10-Mar	438.40 +/-	2.04	433.93 +/-	2.24	"	14-Mar	1.370	+/- 0.03	57 1.346 +/-	0.039
							"	20-Mar	1.279	+/- 0.03	1.339 +/-	0.039
							19-Mar	21-Mar	1.282	+/- 0.03	6 1.334 +/-	0.039
							23-Mar	· 23-Mar	1.352	+/- 0.03	1.336 +/-	0.038
							24-Mar	· 27-Mar	1.438	+/- 0.03	5 1.343 +/-	0.038
							26-Mar	27-Mar	1.376	+/- 0.03	14 1.346 +/-	0.038
	24-Mar	29-Mar	430.27 +/-	2.13	433.40 +/-	2.22	24-Mar	28-Mar	1.423	+/- 0.03	4 1.351 +/-	0.038
							"	3-Apr	1.373	+/- 0.04	1 1.352 +/-	0.038
	"	9-Apr	434.22 +/-	2.16	433.51 +/-	2.21	3-Apr	8-Apr	1.369	+/- 0.03	4 1.353 +/-	0.038
		·						10-Apr	1.285	+/- 0.03	1.349 +/-	0.038
Job 11289 CNC	6-Apr	19-Apr	437.46 +/-	2.44	433.95 +/-	2.24	6-Apr	18-Apr	1.420	+/- 0.04	2 1.353 +/-	0.038
I		20-Apr	437.09 +/-	2.43	434.26 +/-	2.26		20-Apr	1.310	+/- 0.04	1 1.351 +/-	0.038
н		·					20-Apr	21-Apr	1.291	+/- 0.03	6 1.348 +/-	0.038

00	LINE	TED	#2
60			#3

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	4/20/2009		
Value on above date	1.10541	Bq/gm =	9357 TU
Dilution factor	1		
Concentration of dilution	1.10541	Bq/gm =	9357.33 TU

Standard Activity				
Background count rate	1.310	+/-	0.041	cpm
Standard count rate	44.069	+/-	0.235	cpm
Net activity	42.759	+/-	0.238	cpm
Grams of sample	1.9973			grams
Net standard activity per gram	21.408	+/-	0.119	cpm/gm
TU/cpm/gm	437.09	+/-	2.43	

Counting efficiency

total cpm net actvy (cpm/g) **efficiency %** 66.32 TU of std *0.007088* 21.408 (std count - bkgrd count)/g 32.28 net actvy/total dpm std

DATA FILE JOB # Count dates:	21 11289 CNC 4-17 through 4	counter 3 -22-09														
Position #	3	4	3	4	21	22										
Sample ID	Blank	NIST	Blank	NIST	160371	Blank										
Cocktail date	6-Apr	6-Apr	6-Apr	6-Apr	20-Apr	20-Apr										
Date counted	18-Apr	19-Apr	20-Apr	20-Apr	21-Apr	21-Apr										
	1		FR	17 A	PR 200)9 14	4:33									
--	--	---	---	---	---	--	---	---	---	--	---	--	--	--	--	--
*** DIREC	TORY			WEN	21 ***											
DIREO			1.0.10													
PARAN	1ETEF	R GRO	UP: 8	3												
ID: 4-17	7-2009)		-												
00A PRO	GRAN	1 MOD	E	6 -	>											
ORDER F	POSI	D		CTI	ME CO		S CUC		CW REF	STD STMS	STIME					
1 1 H				100:00				1 8	N							
2 2 C		0NE 14-6	1	00.00				1 8	IN N							
4 4 N	IIST 4	-6	10	0.00		NOI		1 8 N	IN IN							
5 3 B	BLANK	(4-6	1	00:00	NO LI	M NC	D LIM	1 8	N							
6 4 N	IIST 4	-6	10	0:00 N	IO LIM	NO I	LIM 1	1 8 N								
7 21 1	16037	1	10	00:00 I	NO LIM	NO	LIM	18 N	l							
8 22 E	BLAN	く4-20		100:0	0 NO L	IM N	O LIN	1 10	Ν							
NUMBER	R OF (CYCLE	S	1												
COINCIE	DENC	E BIAS	S (L/H)	L												
				-					-							
			INHIB			NI *D	EMO	RY SPLI	I							
2 CSUM		05 G	1		L*D	.°R										
2 03010	0															
WINDOW	CH	ANNF	IS M	1CA F	IAI F											
2 50-	270	1	2													
3 60-	220	1	2													
4 50-	· 320	1	1													
5 50-	270	1	1													
6 60-	220	1	1													
7 1-	1024	2	1													
8 1-	1024	2	2													
					MINIAL	1 ()	<u>۱</u>									
SELLOIL		CYC	POS	REP	CTIME	- (,,	SOP	SOP%	STIME	חו	CPM3	CPM4	CPM5	CPM6	CPM7	CPM8
Q030301N	N 001	1	3	1	100.01	893	0	001.70	0.00	BLANK 4-6	1 48	0.01	0.01	0.01	1265 53	26.65
Q030302N	N.001	1	3	2	100:01	.884	0	0	0:00	BLANK 4-6	1.47	0.04	0.04	0.03	1275.17	25.81
Q030303N	N.001	1	3	3	100:01	.884	0	0	0:00	BLANK 4-6	1.42	0.03	0.03	0.03	1266.05	26.66
Q030304N	N.001	1	3	4	100:01	.883	0	0	0:00	BLANK 4-6	1.5	0.06	0.06	0.04	1265.21	27.31
Q030305N	N.001	1	3	5	100:01	.883	0	0	0:00	BLANK 4-6	1.28	0.05	0.05	0.05	1270.83	27.27
Q030306N	N.001	1	3	6	100:01	.878	0	0	0:00	BLANK 4-6	1.56	0.01	0.01	0.01	1271.71	26.78
Q030307N	N.001	1	3	7	100:01	.884	0	0	0:00	BLANK 4-6	1.14	0.04	0.04	0.04	1280.3	26.53
Q030308P	N.001	1	3	8	100:01	.883	0	0	0:00	BLANK 4-6	1.51	0.05	0.05	0.02	1277.67	27.13
Q0404011	N.001	1	4	1	100:01	.893	0	0	0:00	NIST 4-6	44.6	0.01	0.01	0.04	12/9.92	27.40
Q0404020	N.001	1	4	2	100.01	.877	0	0	0.00	NIST 4-6	43.56	0.00	0.00	0.04	1285 62	27.39
Q040404N	N.001	1	4	4	100:01	.883	0	0	0:00	NIST 4-6	44.13	0.02	0.02	0.01	1291.7	26.64
Q040405N	N.001	1	4	5	100.01	000	0	0	0:00	NIST 4-6	44.28	0.04	0.04	0.03	1299	27.15
Q040406N			4	5	100.01	.003	0						n			27.2
Q040407N	N.001	1	4	6	100:01	.883	0	0	0:00	NIST 4-6	43.73	0.03	0.03	0.01	1305.7	21.2
Q040408N	N.001 N.001	1	4	6 7	100:01 100:01 100:01	.883 .883	0	0	0:00	NIST 4-6 NIST 4-6	43.73 43.95	0.03	0.03 0.06	0.01 0.06	1305.7 1314.52	27.31
	N.001 N.001 N.001	1 1 1	4 4 4 4	6 7 8	100:01 100:01 100:01 100:01	.883 .883 .883	0 0 0	0 0 0	0:00 0:00 0:00	NIST 4-6 NIST 4-6 NIST 4-6	43.73 43.95 44	0.03 0.06 0.07	0.03 0.06 0.07	0.01 0.06 0.04	1305.7 1314.52 1318.09	27.31 27.27
Q050301N	N.001 N.001 N.001 N.001	1 1 1 1	4 4 4 3	6 7 8 1	100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .892	000000000000000000000000000000000000000	0 0 0	0:00 0:00 0:00 0:00	NIST 4-6 NIST 4-6 NIST 4-6 BLANK 4-6	43.73 43.95 44 1.42	0.03 0.06 0.07 0.02	0.03 0.06 0.07 0.02	0.01 0.06 0.04 0.02	1305.7 1314.52 1318.09 1323.38	27.31 27.27 26.22
Q050301N Q050302N	N.001 N.001 N.001 N.001 N.001	1 1 1 1 1	4 4 4 3 3	5 6 7 8 1 2	100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .892 .883	0 0 0 0 0	0 0 0 0	0:00 0:00 0:00 0:00 0:00	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6	43.73 43.95 44 1.42 1.17	0.03 0.06 0.07 0.02 0.04	0.03 0.06 0.07 0.02 0.04	0.01 0.06 0.04 0.02 0.04	1305.7 1314.52 1318.09 1323.38 1317.07	27.31 27.27 26.22 27.45
Q050301N Q050302N Q050303N	N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1	4 4 4 3 3 3 3	5 6 7 8 1 2 3	100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .892 .883 .883	0 0 0 0 0 0 0	0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6	43.73 43.95 44 1.42 1.17 1.27	0.03 0.06 0.07 0.02 0.04 0.05	0.03 0.06 0.07 0.02 0.04 0.05	0.01 0.06 0.04 0.02 0.04 0.01	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61	27.31 27.27 26.22 27.45 27.97
Q050301N Q050302N Q050303N Q050304N Q050304N	N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3	5 6 7 8 1 2 3 4 5	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .892 .883 .883 .883 .883	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00 0:00	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35	0.03 0.06 0.07 0.02 0.04 0.05 0.04	0.03 0.06 0.07 0.02 0.04 0.05 0.04	0.01 0.06 0.04 0.02 0.04 0.01 0.03 0.03	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.82	27.31 27.27 26.22 27.45 27.97 26.88 27.00
Q050301N Q050302N Q050303N Q050304N Q050305N Q050306N	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3 3 3 3	3 6 7 8 1 2 3 3 4 5 6	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .883 .883 .883	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.03	0.01 0.06 0.04 0.02 0.04 0.01 0.03 0.03 0.03	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61	27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92
Q050301N Q050302N Q050303N Q050304N Q050305N Q050306N Q050307N	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 6 7 8 1 2 3 4 5 6 7	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .892 .883 .883 .883 .883 .883 .883 .883	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.24	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06	0.01 0.06 0.04 0.02 0.04 0.01 0.03 0.03 0.03 0.07 0.04	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.99	27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92 26.92 26.18
Q050301h Q050302h Q050303h Q050304h Q050305h Q050306h Q050306h Q050307h Q050308h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6 7 8 1 2 3 4 5 6 7 7 8	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .883 .883 .883	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.24 1.26 1.35	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.07	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.09 0.06 0.07	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.07 0.04 0.05	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.99 1302.93	27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92 26.18 26.98
Q050301h Q050302h Q050303h Q050304h Q050305h Q050306h Q050306h Q050307h Q050308h Q050308h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 4	5 6 7 8 1 2 3 4 5 6 7 7 8 1	100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01	.883 .883 .883 .883 .883 .883 .883 .883	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 NIST 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.24 1.26 1.35 43.87	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.07 0.03	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06 0.07 0.03	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.03 0.07 0.04 0.05 0	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.99 1302.93 1304.98	27.31 27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92 26.18 26.98 26.98 26.98
Q050301h Q050302h Q050303h Q050304h Q050305h Q050306h Q050306h Q050307h Q050308h Q060401h Q060402h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3 3 3 3 3 4 4 4	5 6 7 8 1 2 3 3 4 5 6 7 7 8 1 2	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .883 .883 .883	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 NIST 4-6 NIST 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.26 1.35 43.87 43.66	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.07 0.03 0.04	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06 0.07 0.03 0.04	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.03 0.07 0.04 0.05 0 0.02	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.99 1302.93 1304.98 1304.35	27.31 27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92 26.18 26.98 26.98 26.98 26.7
Q050301h Q050302h Q050303h Q050304h Q050305h Q050306h Q050306h Q050307h Q050308h Q060401h Q060402h Q060403h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4	6 7 8 1 2 3 3 4 5 6 6 7 7 8 1 2 3 3	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .883 .883 .883	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 NIST 4-6 NIST 4-6 NIST 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.26 1.35 43.87 43.66 44.79	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.07 0.03 0.04 0.03	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06 0.07 0.03 0.04 0.03	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.07 0.04 0.05 0 0 0.02 0.02	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.93 1302.93 1304.98 1304.35 1311.61	27.31 27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92 26.18 26.98 26.98 26.7 27.68 26.7
Q050301h Q050302h Q050303h Q050304h Q050305h Q050306h Q050306h Q050307h Q050308h Q050401h Q060402h Q060403h Q060404h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6 7 8 1 2 3 4 5 6 7 7 8 1 2 3 4	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .883 .883 .883			0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 NIST 4-6 NIST 4-6 NIST 4-6 NIST 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.26 1.35 43.87 43.66 44.79 44.54	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.07 0.03 0.03 0.04 0.03	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06 0.07 0.03 0.04 0.03	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.03 0.07 0.04 0.05 0 0 0.02 0.02	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.93 1302.93 1304.98 1304.98 1304.35	27.31 27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92 26.18 26.98 26.92 26.18 26.98 26.7 27.68 27.19 28.67
Q050301h Q050302h Q050303h Q050304h Q050305h Q050305h Q050307h Q050307h Q050307h Q050307h Q060401h Q060402h Q060403h Q060404h Q060405h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 7 8 1 2 3 4 5 6 7 7 8 1 1 2 3 4 5 5 6 7 7 8 8 1 1 2 3 4 5 5 6 6 7 7 8 8 7 7 8 8 8 8 8 7 7 7 8 8 8 8	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .883 .883 .883			0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 NIST 4-6 NIST 4-6 NIST 4-6 NIST 4-6 NIST 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.26 1.35 43.87 43.66 44.79 44.54 44.48	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.07 0.03 0.04 0.03 0.04	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06 0.07 0.03 0.04 0.03 0.04 0.03	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.07 0.04 0.05 0 0 0.02 0.02 0.02 0.02	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.93 1302.93 1304.98 1304.98 1304.35 1311.61 1318.15 1307.73	27.31 27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.98 26.98 26.18 26.98 26.7 27.68 27.19 28.67 27.19
Q050301h Q050302h Q050303h Q050303h Q050305h Q050305h Q050306h Q050307h Q050307h Q050307h Q050308h Q060401h Q060402h Q060405h Q060405h Q060407h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001		4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7	100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01 100:01	.883 .883 .883 .883 .883 .883 .883 .883			0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 NIST 4-6 NIST 4-6 NIST 4-6 NIST 4-6 NIST 4-6 NIST 4-6 NIST 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.26 1.35 43.87 43.66 44.79 44.54 44.48 44.48	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.03 0.04 0.03 0.04 0.03 0.04 0.03	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06 0.07 0.03 0.04 0.03 0.04 0.03	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.07 0.04 0.05 0 0 0.02 0.02 0.02 0.02	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.93 1302.93 1304.98 1304.35 1311.61 1318.15 1307.73 1295.85	27.31 27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.98 26.18 26.98 26.7 27.68 27.19 28.67 27.12 28.67 27.12
Q050301h Q050302h Q050303h Q050303h Q050305h Q050305h Q050307h Q050307h Q050307h Q060401h Q060402h Q060403h Q060405h Q060406h Q060407h	N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001 N.001		4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	55 66 77 88 11 22 55 66 66 66 88 88 77 77 7 88 83 33 33 33 34 44 45 55 66 66 77 77 77 77 77 77 77 77 77 77 77	100:01 100:01	.003 .883 .883 .883 .883 .883 .883 .883			0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	NIST 4-6 NIST 4-6 NIST 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 BLANK 4-6 NIST 4-6	43.73 43.95 44 1.42 1.17 1.27 1.35 1.42 1.24 1.26 1.35 43.87 43.66 44.79 44.54 44.48 44.48 44.48	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.07 0.07 0.07 0.03 0.04 0.03 0.04 0.03 0.04	0.03 0.06 0.07 0.02 0.04 0.05 0.04 0.03 0.09 0.06 0.07 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04	0.01 0.06 0.04 0.02 0.04 0.03 0.03 0.03 0.07 0.04 0.05 0 0 0.02 0.02 0.02 0.02 0.04 0.03 0.03 0.03	1305.7 1314.52 1318.09 1323.38 1317.07 1323.61 1317.18 1303.83 1303.61 1302.99 1302.93 1304.98 1304.98 1304.35 1311.61 1318.15 1307.73 1295.85 1300.78	27.31 27.31 27.27 26.22 27.45 27.97 26.88 27.09 26.92 26.18 26.98 26.7 27.68 27.68 27.79 28.67 27.12 28.67 27.12 26.97 27.21

Q072101N.001	1	21	1	100:01.892	0	0	0:00	160371	1.39	0.02	0.02	0.01	1309.57	25.96
Q072102N.001	1	21	2	100:01.883	0	0	0:00	160371	1.38	0.09	0.09	0.06	1316.05	27.15
Q072103N.001	1	21	3	100:01.883	0	0	0:00	160371	1.35	0.04	0.04	0.02	1323.76	28.26
Q072104N.001	1	21	4	100:01.883	0	0	0:00	160371	1.45	0.05	0.05	0.02	1323.5	28.06
Q072105N.001	1	21	5	100:01.883	0	0	0:00	160371	1.52	0.04	0.04	0.03	1318.33	27.56
Q072106N.001	1	21	6	100:01.883	0	0	0:00	160371	1.19	0.03	0.03	0.02	1311.27	26.73
Q072107N.001	1	21	7	100:01.883	0	0	0:00	160371	1.46	0.01	0.01	0.01	1307.89	26.88
Q072108N.001	1	21	8	100:01.883	0	0	0:00	160371	1.39	0.02	0.02	0.01	1313.65	27.03
Q082201N.001	1	22	1	100:01.892	0	0	0:00	BLANK 4-20	1.28	0.02	0.02	0.02	1314.54	26.71
Q082202N.001	1	22	2	100:01.883	0	0	0:00	BLANK 4-20	1.13	0.05	0.05	0.04	1310.35	28.38
Q082203N.001	1	22	3	100:01.877	0	0	0:00	BLANK 4-20	1.45	0.02	0.02	0.02	1299.77	26.37
Q082204N.001	1	22	4	100:01.883	0	0	0:00	BLANK 4-20	1.32	0.06	0.06	0.05	1305.32	27.19
Q082205N.001	1	22	5	100:01.883	0	0	0:00	BLANK 4-20	1.28	0.05	0.05	0.04	1302.34	27.05
Q082206N.001	1	22	6	100:01.883	0	0	0:00	BLANK 4-20	1.28	0.05	0.05	0.04	1305.83	27.79
Q082207N.001	1	22	7	100:01.883	0	0	0:00	BLANK 4-20	1.17	0.02	0.02	0.02	1287.06	26.71
Q082208N.001	1	22	8	100:01.883	0	0	0:00	BLANK 4-20	1.35	0.06	0.06	0.06	1303.3	27.46
Q082209N.001	1	22	9	100:01.883	0	0	0:00	BLANK 4-20	1.43	0.06	0.06	0.06	1293.3	27.13
Q082210N.001	1	22	10	100:01.883	0	0	0:00	BLANK 4-20	1.22	0.06	0.06	0.04	1292.37	26.6

160371

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	4/20/2009		
Value on above date	1.10541	Bq/gm =	9357 TU
Dilution factor	1		
Concentration of dilution	1.10541	Bq/gm =	9357.33 TU

Standard Activity		
Background count rate	1.310 +/-	0.041 cpm
Standard count rate	44.069 +/-	0.235 cpm
Net activity	42.759 +/-	0.238 cpm
Grams of sample	1.9973	grams
Net standard activity per gram	21.408 +/-	0.119 cpm/gm
TU/cpm/gm	437.09 +/-	2.43

Sample Activity		
Background rate	1.310 +/-	- 0.041 cpm
Sample count rate	1.420 +/-	- 0.045 cpm
Net activity	0.110 +/	- 0.0605 cpm
Grams of sample	10.0518	grams
Net sample activity per gram	0.0109 +/	- 0.0060 cpm/gm
TU	4.78 +/-	- 2.633

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/- 0.0	1
Tf/To	1.00 +/- 0.01	0
TRITIUM CONC. OF SAMPLE	4.783 +/- 2.63	3 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	434.26 +/-	2.26	
--	-----------	------------	------	--

160371 water

Sample Activity			
Background rate	1.348 +	/- 0.038	3 cpm
Sample count rate	1.420 +	/- 0.045	5 cpm
Net activity	0.072 +	/- 0.059) cpm
Grams of sample	10.0518		grams
Net sample activity per gram	0.0071 +	/- 0.0059) cpm/gm
TU	3.10 +	/- 2.548	3

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +/	- 0.01	
Tf/To	1.00 +/	- 0.010	
TRITIUM CONC. OF SAMPLE	3.103 +/	- 2.548	TU

REPORT < 10.0 TU

COUNTER 3 (new) Year 2009 NIST and BLANK Values

JOB #	NIST date	count date	Value +/-	SD	AVG NIST : TU/cpm/a		BLK date	count date	Value ·	+/- SD	AVG BLK : cpm
	4-Feb	5-Feb	434.66 +/-	2.17	7		4-Feb	5-Feb	1.421 ·	+/- 0.042	
	"	6-Feb	430.62 +/-	2.13	3			6-Feb	1.341 ·	+/- 0.037	
	"	8-Feb	434.56 +/-	2.17	433.28 +/-	2.15	"	7-Feb	1.438 ·	+/- 0.038	1.400 +/- 0.039
	10-Feb	14-Feb	431.23 +/-	2.54	432.77 +/-	2.25	10-Feb	13-Feb	1.273 ·	+/- 0.040	1.368 +/- 0.039
	"						н	17-Feb	1.296 ·	+/- 0.040	1.354 +/- 0.039
	20-Feb	24-Feb	434.10 +/-	2.38	3 433.03 + /-	2.28	20-Feb	23-Feb	1.250 ·	+/- 0.040	1.336 +/- 0.039
	"						"	28-Feb	1.286 •	+/- 0.040	1.329 +/- 0.040
	5-Mar						5-Mai	9-Mar	1.439 •	+/- 0.038	1.343 +/- 0.039
	"	10-Mar	438.40 +/-	2.04	433.93 +/-	2.24	"	14-Mar	1.370 •	+/- 0.037	1.346 +/- 0.039
	"						u u	20-Mar	1.279 ·	+/- 0.038	1.339 +/- 0.039
	"						19-Mai	21-Mar	1.282 •	+/- 0.036	1.334 +/- 0.039
							23-Mai	23-Mar	1.352 •	+/- 0.037	1.336 +/- 0.038
							24-Mai	27-Mar	1.438 •	+/- 0.035	1.343 +/- 0.038
							26-Mai	27-Mar	1.376 •	H- 0.031	4 1.346 +/- 0.038
	24-Mar	29-Mar	430.27 +/-	2.13	3 433.40 +/-	2.22	24-Mai	28-Mar	1.423 •	+/- 0.034	1.351 +/- 0.038
	"						"	3-Apr	1.373 -	+/- 0.041	1.352 +/- 0.038
	"	9-Apr	434.22 +/-	2.16	6 433.51 +/-	2.21	З-Арг	8-Apr	1.369 ·	+/- 0.034	1.353 +/- 0.038
	"						"	10-Apr	1.285 ·	+/- 0.038	1.349 +/- 0.038
	6-Apr	19-Apr	437.46 +/-	2.44	433.95 +/-	2.24	6-Apr	18-Apr	1.420 ·	+/- 0.042	1.353 +/- 0.038
	"	20-Apr	437.09 +/-	2.43	3 434.26 +/-	2.26	"	20-Apr	1.310 ·	+/- 0.041	1.351 +/- 0.038
	"						20-Apr	21-Apr	1.291 ·	+/- 0.036	1.348 +/- 0.038
Job 11299 CNC	"						"	23-Apr	1.310 ·	+/- 0.036	1.346 +/- 0.038

	COL	INTER	#3
--	-----	-------	----

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	4/20/2009		
Value on above date	1.10541	Bq/gm =	9357 TU
Dilution factor	1		
Concentration of dilution	1.10541	Bq/gm =	9357.33 TU

Standard Activity		
Background count rate	1.310 +/-	0.041 cpm
Standard count rate	44.069 +/-	0.235 cpm
Net activity	42.759 +/-	0.238 cpm
Grams of sample	1.9973	grams
Net standard activity per gram	21.408 +/-	0.119 cpm/gm
TU/cpm/gm	437.09 +/-	2.43

Counting efficiency

total cpm net actvy (cpm/g) **efficiency %** 66.32 TU of std *0.007088* wt of std 21.408 (std count - bkgrd count)/g **32.28** net actvy/total dpm std

DATA FILE JOB # Count dates:	Gwen 21,23 11299 CNC 4-17 through 4	counter 3 -22-09				
	21				23	
Position #	3	4	3	4	21	22
Sample ID	Blank	NIST	Blank	NIST	160503	Blank
					DC	
Cocktail date	6-Apr	6-Apr	6-Apr	6-Apr	21-Apr	20-Apr
Date counted	18-Apr	19-Apr	20-Apr	20-Apr	22-Apr	23-Apr

file 23 lsc#3

	-		WED) 22 A	PR 2009 1	0:05											
*** DIREC	TORY	PATH	:C:\G\	VEN23	3 ***												
PARAM	IETER	GROL	JP: 8														
ID: <090	0421>																
UUA PROC	SRAM	MODE		6->													
		Į		OTINA													
ORDER F)	400				ICW REP	SIDSIME	STIME								
1 21 1	60503	4.00	100	00.00													
2 22 E		4-20	1	00:00													
			10	0:00 N			IN										
		DIAS	5 ///LI\	1													
CONCIL		DIAG															
				-	ME		IT										
							-11										
2 GSUM	G	00														-	
2 0001																	
WINDOW	СНА	NNFL	S MO	СА НА	N F											-	
2 50-	270	1 2	>														
3 60-	220	1 2	-														
4 50-	320	1 1	-														
5 50-	270	1 1															
6 60-	220	1 1															
7 1-	1024	2 1															
8 1-	1024	2 2	2														
SELECTE	D PRIN	TOUT	FOR	TERM	IINAL 1 (A)												
		CYC	POS	REP	CTIME	SQP	SQP%	STIME	ID	CPM1	CPM2	CPM3	CPM4	CPM5	CPM6	CPM7	CPM8
Q012101N	J.001	1	21	1	100:01.759	0	0	0:00	160503	2.45	2.07	1.5	0.05	0.05	0.05	1272.98	25.71
Q012102N	N.001	1	21	2	100:01.884	0	0	0:00	160503	2.12	1.84	1.4	0.04	0.04	0.03	1287.4	26.51
Q012103N	1.001	1	21	3	100:01.884	0	0	0:00	160503	2.05	1.66	1.15	0.04	0.04	0.03	1290.14	26.33
Q012104N	J.001	1	21	4	100:01.884	0	0	0:00	160503	2.18	1.8	1.41	0.05	0.05	0.04	1289.19	26.14
Q012105N	J.001	1	21	5	100:01.884	0	0	0:00	160503	2.21	1.83	1.28	0.03	0.03	0.03	1279.54	25.5
Q012106N	1.001	1	21	6	100:01.884	0	0	0:00	160503	2.55	2.07	1.54	0.05	0.05	0.02	1271.06	26.35
Q012107N	1.001	1	21	7	100:01.884	0	0	0:00	160503	2.11	1.69	1.25	0.04	0.04	0.03	1274.52	26.69
Q012108N	1.001	1	21	8	100:01.878	0	0	0:00	160503	2.27	1.84	1.34	0.01	0.01	0.01	1268.27	26.09
Q012109N	N.001	1	21	9	100:01.884	0	0	0:00	160503	2.32	1.9	1.5	0.08	0.08	0.05	1265.42	26.17
Q012110N	1.001	1	21	10	100:01.884	0	0	0:00	160503	2.03	1.7	1.2	0.01	0.01	0	1260.37	26.75
Q022201N	1.001	1	22	1	100:01.893	0	0	0:00	BLANK 4-20	2.29	1.79	1.31	0.04	0.04	0.03	1265.76	26.68
Q022202N	1.001	1	22	2	100:01.884	0	0	0:00	BLANK 4-20	2.07	1.68	1.19	0.06	0.06	0.04	1257.46	26.37
Q022203N	1.001	1	22	3	100:01.878	0	0	0:00	BLANK 4-20	2.23	1.78	1.31	0.04	0.04	0.03	1259.83	26.55
Q022204N	1.001	1	22	4	100:01.884	0	0	0:00	BLANK 4-20	2.34	1.85	1.31	0.04	0.04	0.04	1251.01	27.02
QU22205N	1.001	1	22	5	100:01.884	0	0	0:00	BLANK 4-20	2.36	1.84	1.35	0.07	0.07	0.05	1257.84	20.16
Q022206N	1.001	1	22	0	100:01.884	0	0	0:00	BLANK 4-20	2.20	1.8	1.31	0.1	0.1	0.06	1259.85	26.34
Q022207N	1.001	1	22	/	100:01.884	0	0	0:00	BLANK 4-20	2.32	1.8	1.4	0.07	0.07	0.07	1271.37	20.37
00222081	1.001	4	22	8	100.01.883		0	0:00	BLANK 4-20	2.10	1.74	1.27	0.07	0.07	0.04	12/1.9	20.01
00222091	1.001	4	22	10	100.01.084	0	0	0.00	BLANK 4-20	2.57	1.99	1.40	0.08	0.08	0.07	1202.15	20.09
QUZZZIUN	1.001		22	10	100.01.077	0	0	0.00	DLANK 4-20	1.99	1.71	1.13	0.04	0.04	0.03	1210.29	21.4
	+							1									
note: sec	filo 21	11 50 -	#3) 14#	th Joh	# 11280			1									
11010. 300	1110 61	12001	101 111		11 11203	1	1	1	1				1			1	i.

160503

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	4/20/2009		
Value on above date	1.10541	Bq/gm =	9357 TU
Dilution factor	1		
Concentration of dilution	1.10541	Bq/gm =	9357.33 TU

Standard Activity		
Background count rate	1.310 +/-	0.041 cpm
Standard count rate	44.069 +/-	0.235 cpm
Net activity	42.759 +/-	0.238 cpm
Grams of sample	1.9973	grams
Net standard activity per gram	21.408 +/-	0.119 cpm/gm
TU/cpm/gm	437.09 +/-	2.43

Sample Activity				
Background rate	1.310	+/-	0.041	cpm
Sample count rate	1.357	+/-	0.037	cpm
Net activity	0.047	+/-	0.0547	cpm
Grams of sample	9.9995			grams
Net sample activity per gram	0.0047	+/-	0.0055	cpm/gm
TU	2.05	+/-	2.392	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	2.054 +/-	2.392 TU

LABORATORY #

160503 methane

Avg Standard Activity

TU/cpm/gm	434.26 +/-	2.26	

Sample Activity				
Background rate	1.346	+/-	0.038	cpm
Sample count rate	1.357 -	+/-	0.037	cpm
Net activity	0.011	+/-	0.0529	cpm
Grams of sample	9.9995			grams
Net sample activity per gram	0.0011	+/-	0.0053	cpm/gm
TU	0.46	+/-	2.298	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.459 +/-	2.298 TU

REPORT < 10.0 TU

COUNTER 1 Year 2009

NIST and BLANK Values

JOB #	NIST date	count date	Value	+/- SD	AVG NIST):		BLK date	count date	Value +/	- SD	AVG BLK :	
	22-Aug	25-Aug	733.31	+/- 3.94	1		22-Aug	24-Aug	1.585 +/	- 0.033		
							"	26-Aug	1.561 +/	- 0.033	1.573 +/-	0.033
	14-Nov	23-Nov	726.34	+/- 3.82	2 729.83 +/-	3.88	19-Nov	24-Nov	1.546 +/	- 0.032	1.564 +/-	0.033
							1-Dec	4-Dec	1.581 +/	- 0.033	1.568 +/-	0.033
	1-Dec	10-Dec	719.95	+/- 3.83	3 726.54 +/-	3.86	8-Dec	11-Dec	1.648 +/	- 0.033	1.584 +/-	0.033
							17-Dec	22-Dec	1.613 +/	- 0.033	1.589 +/-	0.033
	24-Dec	4-Jan	727.80	+/- 3.91	726.85 +/-	3.88	30-Dec	3-Jan	1.643 +/	- 0.033	1.597 +/-	0.033
	12-Jan	16-Jan	728.59	+/- 3.89	9 727.20 +/-	3.88	19-Jan	21-Jan	1.668 +/	- 0.033	1.606 +/-	0.033
	28-Jan	5-Feb	719.46	+/- 3.81	l 725.91 +/-	3.87	28-Jan	4-Feb	1.598 +/	- 0.033	1.605 +/-	0.033
	14-Feb	22-Feb	716.86	+/- 3.83	3 724.62 +/-	3.86	12-Feb	21-Feb	1.579 +/	- 0.032	1.602 +/-	0.033
							23-Feb	3-Mar	1.610 +/	- 0.033	1.603 +/-	0.033
	9-Mar	15-Mar	718.98	+/- 3.87	7 723.91 +/-	3.86	9-Mar	14-Mar	1.600 +/	- 0.033	1.603 +/-	0.033
	5-Mar	25-Mar	725.41	+/- 3.64	1 724.08 +/-	3.84	5-Mar	24-Mar	1.654 +/	- 0.033	1.607 +/-	0.033
							19-Mar	31-Mar	1.577 +/	- 0.032	1.604 +/-	0.033
	5-Mar	6-Apr	718.25	+/- 3.58	3 723.50 +/-	3.81	18-Mar	5-Apr	1.616 +/	- 0.033	1.605 +/-	0.033
	17-Apr	25-Apr	726.06	+/- 3.89	9 723.73 +/-	3.82	17-Apr	24-Apr	1.591 +/	- 0.034	1.604 +/-	0.033
	1-May	5-May	717.53	+/- 3.85	5 723.21 +/-	3.82	1-May	4-May	1.537 +/	- 0.032	1.600 +/-	0.033
							"	10-May	1.574 +/	- 0.032	1.599 +/-	0.033
	15-May	21-May	733.54	+/- 4.01	l 724.01 +/-	3.84	15-May	20-May	1.566 +/	- 0.032	1.597 +/-	0.033
	27-May	29-May	738.25	+/- 4.16	6 725.02 +/-	3.86	20-May	28-May	1.593 +/	- 0.033	1.597 +/-	0.033
	8-Jun	12-Jun	741.97	+/- 4.22	725.02 +/-	3.86	8-Jun	11-Jun	1.571 +/	- 0.032	1.596 +/-	0.033
	15-Jun	20-Jun	726.37	+/- 3.4	725.11 +/-	3.83	15-Jun	19-Jun	1.584 +/	- 0.034	1.595 +/-	0.033
Job 11602 CNC	29-Jun	3-Jul	713.13	+/- 4.14	4 724.36 + /-	3.85	29-Jun	2-Jul	1.592 +/	- 0.033	1.595 +/-	0.033

С	ο	U	N.	TΕ	R	#1	

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/3/2009		
Value on above date	1.09289	Bq/gm =	9251 TU
Dilution factor	1		
Concentration of dilution	1.09289	Bq/gm =	9251.37 TU

Standard Activity		
Background count rate	1.592 +/-	0.033 cpm
Standard count rate	27.046 +/-	0.144 cpm
Net activity	25.454 +/-	0.148 cpm
Grams of sample	1.9621	grams
Net standard activity per gram	12.973 +/-	0.075 cpm/gm
TU/cpm/gm	713.13 +/-	4.14

Counting efficiency

total cpm net actvy (cpm)/g **efficiency %** 65.57 TU of std *0.007088 12.973 (std count - bkgrd count)/wt std **19.78** net actvy/total cpm std

DATA FILE JOB # Count dates:	982 11602 CNC 6-29 through 7	counter 1 - 5-09				
Position #	1	2	3	4	5	12
Sample ID	165053	165054	165056	BLK	NIST	165055
	DC-H2O	DC-H2O	DC-H2O		1.9621 g	DC-H2O
Cocktail date	29-Jun	29-Jun	29-Jun	29-Jun	29-Jun	30-Jun
Date counted	29-Jun	30-Jun	1-Jul	2-Jul	3-Jul	4-Jul

RACKPOS POS	F	NCT1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	CPM	CTIME	TIME	DATE	RPT	
1	1	1.7	1.7	1.67	1.67	1.7	4.6	784.12	216.65	4.	6 6000 2 6000	2:53 PM 4:34 PM	6/29/2009		1
1	1	1.73	1.73	1.00	1.00	1.6	4.2	784.53	205.46	4.	2 6000	4.34 FM	6/29/2009		2
1	1	1.75	1.75	1.64	1.64	1.8	4.4	784.17	213.85	4.	4 6000	7:56 PM	6/29/2009		4
1	1	1.72	1.72	1.6	1.6	1.7	4.1	784.07	209.42	4.	1 6000	9:37 PM	6/29/2009		5
1	1	1.75	1.75	1.69	1.69	1.8	4.3	784.27	205.2	4.	3 6000	11:18 PM	6/29/2009		6
1	1	1.65	1.65	1.5	1.5	1.7	4.3	783.96	212.78	4.	3 6000	12:59 AM	6/30/2009		7
1	1	1.74	1.74	1.07	1.07	1.7	4.3	784.12	209.83	4.	3 6000 4 6000	2.40 AM	6/30/2009		9
1	1	1.55	1.55	1.47	1.47	1.5	4.3	783.81	217.95	4.	3 6000	6:01 AM	6/30/2009		10
1	1	1.64	1.64	1.61	1.61	1.6	4.4	784.58	213.31	4.	4 6000	7:42 AM	6/30/2009		11
1	1	1.52	1.53	1.47	1.46	1.5	4.2	783.91	216.62	4.	2 6000	9:23 AM	6/30/2009		12
1	1	1.64	1.64	1.61	1.61	1.6	4.3	783.86	215.8	4.	3 6000	11:04 AM	6/30/2009		13
1	1	1.86	1.87	1.81	1.8	1.9	4.5	784.32	209.61	4.	5 6000	12:45 PM	6/30/2009		14
2	2	1.75	1.75	1.04	1.04	1.7	4.1	784.32	203.37	4.	2 6000	2.20 P M	6/30/2009		1
2	2	1.63	1.63	1.53	1.53	1.6	4.3	783.76	218.04	4.	3 6000	5:48 PM	6/30/2009		2
2	2	1.72	1.72	1.62	1.62	1.7	4.1	783.7	212.04	4.	1 6000	7:29 PM	6/30/2009		3
2	2	1.51	1.51	1.44	1.44	1.5	4.1	784.32	214.97	4.	1 6000	9:09 PM	6/30/2009		4
2	2	1.76	1.77	1.69	1.68	1.8	4.6	783.96	212.07	4.	6 6000	10:50 PM	6/30/2009		5
2	2	1.7	1.7	1.6	1.6	1.7	4.2	783.81	206.64	4.	2 6000	12:31 AM	7/1/2009		6 7
2	2	1.67	1.67	1.63	1.43	1.7	4.2	783.91	212.31	4.	2 6000	3:53 AM	7/1/2009		8
2	2	1.9	1.91	1.86	1.85	1.9	4.5	783.24	207.95	4.	5 6000	5:34 AM	7/1/2009		9
2	2	1.59	1.59	1.53	1.53	1.6	4.2	784.89	211.16	4.	2 6000	7:15 AM	7/1/2009		10
2	2	1.61	1.61	1.48	1.48	1.6	4.2	783.5	213.67	4.	2 6000	8:56 AM	7/1/2009		11
2	2	1.51	1.51	1.46	1.46	1.5	4.1	784.64	216.51	4.	1 6000	10:37 AM	7/1/2009		12
2	2	1.78	1.78	1.74	1.74	1.8	4.4	783.34	212.34	4.	4 6000 3 6000	12:18 PM	7/1/2009		13
2	2	1.75	1.75	1.00	1.00	1.0	4.5	783.91	220.31	4.	5 6000	3:39 PM	7/1/2009		15
3	3	2.14	2.14	2.08	2.08	2.1	5.1	784.27	206.37	5.	1 6000	5:20 PM	7/1/2009		1
3	3	2.38	2.38	2.29	2.29	2.4	5.2	784.43	200.15	5.	2 6000	7:01 PM	7/1/2009		2
3	3	2.19	2.19	2.06	2.06	2.2	4.8	784.17	200.12	4.	8 6000	8:42 PM	7/1/2009		3
3	3	2.2	2.2	2.06	2.06	2.2	5	784.58	208.51	-	5 6000	10:23 PM	7/1/2009		4
3	3	2.34	2.34	2.24	2.24	2.3	5.1	783.91	195.52	5.	1 6000 5 6000	12:04 AM	7/2/2009		5
3	3	2.33	2.33	2.23	2.23	2.3	5.4	784.95	201.02	5	4 6000	3:26 AM	7/2/2009		7
3	3	2.54	2.54	2.49	2.49	2.5	5.6	784.38	201.68	5.	6 6000	5:07 AM	7/2/2009		8
3	3	2.35	2.36	2.28	2.27	2.4	5.1	784.38	199.48	5.	1 6000	6:47 AM	7/2/2009		9
3	3	2.41	2.41	2.3	2.3	2.4	4.9	784.27	193.86	4.	9 6000	8:28 AM	7/2/2009		10
3	3	2.62	2.62	2.53	2.53	2.6	5.1	785.2	189.79	5.	1 6000	10:09 AM	7/2/2009		11
3	3	2.31	2.31	2.20	2.20	2.3	4.5	784.17	100.49	4.	0000 C	1:30 AM	7/2/2009		12
3	3	2.26	2.26	2.18	2.23	2.4	4.7	783.86	199.45	4	7 6000	3:12 PM	7/2/2009		14
3	3	2.29	2.29	2.22	2.22	2.3	5	784.64	202.08		5 6000	4:53 PM	7/2/2009		15
4	4	1.51	1.51	1.42	1.42	1.5	4.5	784.64	222.06	4.	5 6000	6:34 PM	7/2/2009		1
4	4	1.44	1.44	1.35	1.35	1.4	4.4	784.12	218.13	4.	4 6000	8:15 PM	7/2/2009		2
4	4	1.55	1.55	1.49	1.49	1.5	4.2	785.26	218.88	4.	2 6000	9:56 PM	7/2/2009		3
4	4	1.58	1.58	1.45	1.45	1.6	4.5	784.48	218.53	4.	5 6000 8 6000	11:37 PM	7/2/2009		4
4	4	1.76	1.76	1.69	1.69	1.3	4.5	784.69	213.43	4	5 6000	2:58 AM	7/3/2009		6
4	4	1.79	1.79	1.72	1.72	1.8	4.6	785.2	211.87	4.	6 6000	4:39 AM	7/3/2009		7
4	4	1.46	1.46	1.41	1.41	1.5	3.9	784.32	219.08	3.	9 6000	6:20 AM	7/3/2009		8
4	4	1.68	1.68	1.61	1.61	1.7	4.5	785.15	211.86	4.	5 6000	8:01 AM	7/3/2009		9
4	4	1.72	1.72	1.64	1.64	1.7	4.5	784.17	216.98	4.	5 6000	9:42 AM	7/3/2009		10
4	4	1.58	1.58	1.47	1.47	1.0	4.1	784.89	211.22	4.	1 6000	1:04 PM	7/3/2009		12
4	4	1.57	1.53	1.52	1.5	1.6	4.4	784.43	216.18	4.	4 6000	2:45 PM	7/3/2009		13
4	4	1.55	1.55	1.47	1.47	1.5	4.1	784.07	214.59	4.	1 6000	4:25 PM	7/3/2009		14
4	4	1.6	1.6	1.53	1.53	1.6	4.1	784.38	210.96	4.	1 6000	6:06 PM	7/3/2009		15
5	5	27.1	27.12	26.81	26.79	27.1	30.9	784.48	120.31	30.	9 6000	7:47 PM	7/3/2009		1
5	5	27.41	27.41	26.99	26.99	27.4	31.6	784.12	123.12	31.	6 6000	9:28 PM	7/3/2009		2
5	5	26.87	27.00	26.32	27.04	27.5	30.9	783.24	121.40	30	2 0000 9 6000	12:50 AM	7/4/2009		4
5	5	27.08	27.12	26.72	26.68	27.1	30.8	783.34	121.53	30.	8 6000	2:31 AM	7/4/2009		5
5	5	28.55	28.55	28.12	28.12	28.6	32.3	783.91	122.21	32.	3 6000	4:12 AM	7/4/2009		6
5	5	26.89	26.93	26.5	26.45	26.9	31	783.81	123.58	3	1 6000	5:53 AM	7/4/2009		7
5	5	26.35	26.37	25.96	25.94	26.4	30.2	784.64	122.46	30.	2 6000	7:34 AM	7/4/2009		8
5	5	28.12	28.13	27.74	27.73	28.1	32	784.12	121.5	30	2 6000	9:15 AM	7/4/2009		10
5	5	26.82	26.87	26.43	26.23	26.9	30.4	784.32	121.64	30.	4 6000 9 6000	12:36 PM	7/4/2009		11
5	5	27.42	27.43	26.87	26.86	27.4	31.8	784.22	126.1	31.	8 6000	2:17 PM	7/4/2009		12
5	5	27.27	27.3	26.85	26.82	27.3	31.4	784.38	122.48	31.	3 6000	3:58 PM	7/4/2009		13
5	5	27.02	27.03	26.59	26.58	27	30.5	784.27	120.83	30.	5 6000	5:39 PM	7/4/2009		14
5	5	27.26	27.28	26.95	26.92	27.3	31.4	783.29	122.49	31.	4 6000	7:20 PM	7/4/2009		15
12	1∠ 12	1.43	1.43	1.35	1.35	1.4	4.3	784.22	215.19 208.04	4.	3 6000 3 6000	9:01 PM	7/4/2009		1
12	12	1.58	1.08	1.04	1.04	1.0	4.3	784.89	200.94	4.	3 6000	12:23 AM	7/5/2009		∠ 3
12	12	1.43	1.43	1.38	1.38	1.4	4.5	784.74	220.44	4.	4 6000	2:04 AM	7/5/2009		4
12	12	1.71	1.71	1.63	1.63	1.7	4.2	785.05	206.82	4.	2 6000	3:45 AM	7/5/2009		5
12	12	1.56	1.56	1.47	1.47	1.6	4.3	785.1	218.07	4.	3 6000	5:25 AM	7/5/2009		6
12	12	1.67	1.67	1.59	1.59	1.7	4	784.17	209.92		4 6000	7:06 AM	7/5/2009		7
12	1∠ 12	1.61	1.61	1.55	1.55	1.6 1 =	4.2	784.22	210.29	4.	∠ 0000 8 6000	0:47 AM	7/5/2009		8
12	12	1.54	1.04	1.49	1.69	1.5	3.8 4.4	784.32	207.7	3.	4 6000	12:09 PM	7/5/2009		10
12	12	1.76	1.76	1.7	1.7	1.8	4.1	785.52	211.64	4.	1 6000	1:50 PM	7/5/2009		11
12	12	1.75	1.75	1.62	1.62	1.8	4.3	784.22	208.2	4.	3 6000	3:31 PM	7/5/2009		12
12	12	1.63	1.63	1.52	1.52	1.6	4.1	784.27	207.81	4.	1 6000	5:12 PM	7/5/2009		13
12	12	1.77	1.77	1.7	1.7	1.8	4.2	/83.55	205.27	4.	2 6000	6:53 PM	7/5/2009		14
12	14	1.75	1.75	1.7	1.7	1.8	4.3	/ 84.07	211.52	4.	0000	0.33 PM	1/3/2009		10

165053

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/3/2009		
Value on above date	1.09289	Bq/gm =	9251 TU
Dilution factor	1		
Concentration of dilution	1.09289	Bq/gm =	9251.37 TU

Standard Activity		
Background count rate	1.592 +/-	0.033 cpm
Standard count rate	27.046 +/-	0.144 cpm
Net activity	25.454 +/-	0.148 cpm
Grams of sample	1.9621	grams
Net standard activity per gram	12.973 +/-	0.075 cpm/gm
TU/cpm/gm	713.13 +/-	4.14

Sample Activity				
Background rate	1.592	+/-	0.033	cpm
Sample count rate	1.689	+/-	0.034	cpm
Net activity	0.097	+/-	0.047	cpm
Grams of sample	9.9883			grams
Net sample activity per gram	0.0097	+/-	0.0047	cpm/gm
TU	6.95	+/-	3.358	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	6.949 +/-	3.358 TU

Avg Standard Activity

LABORATORY #

TU/cpm/gm	724.36 +/-	3.85	

165053 water

Sample Activity				
Background rate	1.595	+/-	0.033	cpm
Sample count rate	1.689	+/-	0.034	cpm
Net activity	0.094	+/-	0.0469	cpm
Grams of sample	9.9883			grams
Net sample activity per gram	0.0094	+/-	0.0047	cpm/gm
TU	6.83	+/-	3.404	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +/-	0.01	
Tf/To	1.00 +/-	0.010	
TRITIUM CONC. OF SAMPLE	6.835 +/-	3.405 TU	

Report < 13.7 TU

165054

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/3/2009		
Value on above date	1.09289	Bq/gm =	9251 TU
Dilution factor	1		
Concentration of dilution	1.09289	Bq/gm =	9251.37 TU

Standard Activity		
Background count rate	1.592 +/-	0.033 cpm
Standard count rate	27.046 +/-	0.144 cpm
Net activity	25.454 +/-	0.148 cpm
Grams of sample	1.9621	grams
Net standard activity per gram	12.973 +/-	0.075 cpm/gm
TU/cpm/qm	713.13 +/-	4.14

Sample Activity				
Background rate	1.592	+/-	0.033	cpm
Sample count rate	1.668	+/-	0.033	cpm
Net activity	0.076	+/-	0.0468	cpm
Grams of sample	10.0472			grams
Net sample activity per gram	0.0076	+/-	0.0047	cpm/gm
TU	5.39	+/-	3.323	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	5.394 +/-	3.323 TU

Avg Standard Activity

LABORATORY #

TI //opm/am 724.26 // 2.95				
10/cpm/gm 724.30 +/- 3.03	3.85	3.85	724.36 +/-	TU/cpm/gm

165054 water

Sample Activity				
Background rate	1.595 -	+/-	0.033	cpm
Sample count rate	1.668 -	+/-	0.033	cpm
Net activity	0.073 +	+/-	0.0467	cpm
Grams of sample	10.0472			grams
Net sample activity per gram	0.0073 -	+/-	0.0047	cpm/gm
TU	5.26 +	+/-	3.369	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +/	- 0.01	
Tf/To	1.00 +/	- 0.010	
TRITIUM CONC. OF SAMPLE	5.256 +/	- 3.369 TU	

Report < 12.0 TU

165055

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/3/2009		
Value on above date	1.09289	Bq/gm =	9251 TU
Dilution factor	1		
Concentration of dilution	1.09289	Bq/gm =	9251.37 TU

Standard Activity		
Background count rate	1.592 +/-	0.033 cpm
Standard count rate	27.046 +/-	0.144 cpm
Net activity	25.454 +/-	0.148 cpm
Grams of sample	1.9621	grams
Net standard activity per gram	12.973 +/-	0.075 cpm/gm
TU/cpm/gm	713.13 +/-	4.14

Sample Activity			
Background rate	1.592 +	-/- 0.0	33 cpm
Sample count rate	1.647 +	-/- 0.0	33 cpm
Net activity	0.055 +	/- 0.04	67 cpm
Grams of sample	9.9947		grams
Net sample activity per gram	0.0055 +	-/- 0.00	47 cpm/gm
TU	3.90 +	-/- 3.3	30

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 -	+/-	0.01
Tf/To	1.00 -	+/-	0.010
TRITIUM CONC. OF SAMPLE	3.901	+/-	3.330 TU

Avg Standard Activity

LABORATORY #

TU/cpm/gm	724.36 +/-	3.85	

165055 water

Sample Activity				
Background rate	1.595	+/-	0.033	cpm
Sample count rate	1.647	+/-	0.033	cpm
Net activity	0.052	+/-	0.0466	cpm
Grams of sample	9.9947			grams
Net sample activity per gram	0.0052	+/-	0.0047	cpm/gm
TU	3.74	+/-	3.376	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +	+/-	0.01
Tf/To	1.00 +	+/-	0.010
TRITIUM CONC. OF SAMPLE	3.738 -	H/-	3.376 TU

Report < 10.5 TU

165056

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/3/2009		
Value on above date	1.09289	Bq/gm =	9251 TU
Dilution factor	1		
Concentration of dilution	1.09289	Bq/gm =	9251.37 TU

Standard Activity		
Background count rate	1.592 +/-	0.033 cpm
Standard count rate	27.046 +/-	0.144 cpm
Net activity	25.454 +/-	0.148 cpm
Grams of sample	1.9621	grams
Net standard activity per gram	12.973 +/-	0.075 cpm/gm
TU/cpm/qm	713.13 +/-	4.14

Sample Activity			
Background rate	1.592 +/	- 0.033	cpm
Sample count rate	2.347 +/	- 0.040	cpm
Net activity	0.755 +/	- 0.0515	cpm
Grams of sample	10.0254		grams
Net sample activity per gram	0.0753 +/	- 0.0051	cpm/gm
TU	53.68 +/	- 3.675	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	53.681 +/-	3.714 TU

LABORATORY #

165056 water

Avg Standard Activity

	TU/cpm/gm	724.36 +/-	3.85	
--	-----------	------------	------	--

Sample Activity				
Background rate	1.595	+/-	0.033	cpm
Sample count rate	2.347	+/-	0.040	cpm
Net activity	0.752	+/-	0.0514	cpm
Grams of sample	10.0254			grams
Net sample activity per gram	0.0750	+/-	0.0051	cpm/gm
TU	54.30	+/-	3.725	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +	+/- 0.01
Tf/To	1.00 +	⊦/- 0.010
TRITIUM CONC. OF SAMPLE	54.304 +	- 3.765 TU

COUNTER 1 Year 2009

NIST and BLANK Values

JOB #	NIST date	count date	Value	+/- SD	AVG NIST):	BLK date c	ount date	Value +	/- SD	AVG BLK :	
	22-Aug	25-Aug	733.31	+/- 3	.94		22-Aug	24-Aug	1.585 +	/- 0.033		
	-	-					"	26-Aug	1.561 +	/- 0.033	1.573 +/-	0.033
	14-Nov	23-Nov	726.34	+/- 3	.82 729.83	+/- 3.88	3 19-Nov	24-Nov	1.546 +	/- 0.032	1.564 +/-	0.033
							1-Dec	4-Dec	1.581 +	/- 0.033	1.568 +/-	0.033
	1-Dec	10-Dec	719.95	+/- 3	.83 726.54	+/- 3.86	6 8-Dec	11-Dec	1.648 +	/- 0.033	1.584 +/-	0.033
							17-Dec	22-Dec	1.613 +	/- 0.033	1.589 +/-	0.033
	24-Dec	4-Jan	727.80)+/- 3	.91 726.85	+/- 3.88	3 30-Dec	3-Jan	1.643 +	/- 0.033	1.597 +/-	0.033
	12-Jan	16-Jan	728.59	+/- 3	.89 727.20	+/- 3.88	3 19-Jan	21-Jan	1.668 +	/- 0.033	1.606 +/-	0.033
	28-Jan	5-Feb	719.46	i +/- 3	.81 725.91	+/- 3.87	7 28-Jan	4-Feb	1.598 +	/- 0.033	1.605 +/-	0.033
	14-Feb	22-Feb	716.86	i +/- 3	.83 724.62	+/- 3.86	6 12-Feb	21-Feb	1.579 +	/- 0.032	1.602 +/-	0.033
							23-Feb	3-Mar	1.610 +	/- 0.033	1.603 +/-	0.033
	9-Mar	15-Mar	718.98	+/- 3	.87 723.91	+/- 3.86	6 9-Mar	14-Mar	1.600 +	/- 0.033	1.603 +/-	0.033
	5-Mar	25-Mar	725.41	+/- 3	.64 724.08	+/- 3.84	4 5-Mar	24-Mar	1.654 +	/- 0.033	1.607 +/-	0.033
							19-Mar	31-Mar	1.577 +	/- 0.032	1.604 +/-	0.033
	5-Mar	6-Apr	718.25	+/- 3	.58 723.50	+/- 3.81	1 18-Mar	5-Apr	1.616 +	/- 0.033	1.605 +/-	0.033
	17-Apr	25-Apr	726.06	i +/- 3	.89 723.73	+/- 3.82	2 17-Apr	24-Apr	1.591 +	/- 0.034	1.604 +/-	0.033
	1-May	5-May	717.53	+/- 3	.85 723.21	+/- 3.82	2 1-May	4-May	1.537 +	/- 0.032	1.600 +/-	0.033
							п	10-May	1.574 +	/- 0.032	1.599 +/-	0.033
	15-May	21-May	733.54	+/- 4	.01 724.01	+/- 3.84	4 15-May	20-May	1.566 +	/- 0.032	1.597 +/-	0.033
	27-May	29-May	738.25	+/- 4	.16 725.02	+/- 3.86	6 20-May	28-May	1.593 +	/- 0.033	1.597 +/-	0.033
	8-Jun	12-Jun	741.97	+/- 4	.22 725.02	+/- 3.86	6 8-Jun	11-Jun	1.571 +	/- 0.032	1.596 +/-	0.033
	15-Jun	20-Jun	726.37	' +/- 3	.41 725.11	+/- 3.83	3 15-Jun	19-Jun	1.584 +	/- 0.034	1.595 +/-	0.033
	29-Jun	3-Jul	713.13	+/- 4	. <mark>14</mark> 725.11	+/- 3.83	3 29-Jun	2-Jul	1.592 +	/- 0.033	1.595 +/-	0.033
	26-Jun	7-Jul	723.24	+/- 3	.90 725.00	+/- 3.83	3 7-Jul	10-Jul	1.576 +	/- 0.038	1.594 +/-	0.033
	11-Jul	17-Jul	717.18	+/- 3	.39 724.54	+/- 3.81	1 11-Jul	13-Jul	1.604 +	/- 0.034	1.595 +/-	0.033
Job 11610 CNC	20-Jul	25-Jul	731.66	i +/- 3	.93 724.93	+/- 3.81	1 20-Jul	24-Jul	1.601 +	/- 0.033	1.595 +/-	0.033
							28-Jul	1-Aug	1.582 +	/- 0.033	1.594 +/-	0.033

С	ο	υ	Ν	Т	Е	R	#1	

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/25/2009		
Value on above date	1.08920	Bq/gm =	9220 TU
Dilution factor	1		
Concentration of dilution	1.08920	Bq/gm =	9220.10 TU

Standard Activity		
Background count rate	1.601 +/-	0.033 cpm
Standard count rate	27.535 +/-	0.136 cpm
Net activity	25.934 +/-	0.139 cpm
Grams of sample	2.058	grams
Net standard activity per gram	12.602 +/-	0.068 cpm/gm
TU/cpm/gm	731.66 +/-	3.93

Counting efficiency

total cpm net actvy (cpm)/g **efficiency %** 65.35 TU of std *0.007088 12.602 (std count - bkgrd count)/g 19.28 net actvy/total dpm std

DATA FILE JOB # Count dates:	984 11610 CNC 7-24 trhough 8	counter 1 3-4-09				
Position #	5	6	14	15	16	17
Sample ID	Blank	NIST	Blank	165099	165100	165101
		2.058 g		DC -methane	DC -methane	DC -methane
Cocktail date	20-Jul	20-Jul	28-Jul	28-Jul	28-Jul	28-Jul
Date counted	24-Jul	25-Jul	1-Aug	2-Aug	3-Aug	4-Aug

POS	FNCT1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	СРМ	C	TIME	TIME	DATE	RPT
	5 1.3	9 1.39	1.33	1.33	1.4	4	782.98	216.38		4	6000	4:51 PM	7/24/2009	1
	5 1.6	6 1.66	1.58	1.58	1.7	3.9	782.52	204.44	:	3.9	6000	6:32 PM	7/24/2009	2
	5 1.7	9 1.79	1.75	1.75	1.8	4.3	783.7	208.59		4.3	6000	8:13 PM	7/24/2009	3
	5 1.5	1 1.51	1.41	1.41	1.5	3.8	784.17	213.83		3.8	6000	9:54 PM	7/24/2009	4
	5 1.5	3 1.54	1.48	1.47	1.5	4.3	783.7	217.42		4.3	6000	11:35 PM	7/24/2009	5
	5 1.0	2 1.62	1.58	1.58	1.0	4.2	783.34	212.08		4.Z	6000	1:16 AM	7/25/2009	5
	5 1.5 5 1.6	/ 1.50 1 1.61	1.51	1.5	1.0	3.9	783.06	210.34		3.9 1 1	6000	2.30 AIVI 1.37 AM	7/25/2009	/
	5 1.0	9 1.59	1.54	1.04	1.0		783.96	214.35		4.1	6000	6.18 AM	7/25/2009	9
	5 1.5	4 1.54	1.40	1.40	1.0	4 4	782 41	214.00		44	6000	7:59 AM	7/25/2009	10
	5 1.5	7 1.57	1.47	1.47	1.6	3.7	784.32	207.43		3.7	6000	9:40 AM	7/25/2009	11
	5 1.6	2 1.62	1.52	1.52	1.6	4.2	782.88	213.38		4.2	6000	11:21 AM	7/25/2009	12
	51.	5 1.5	1.4	1.4	1.5	3.9	783.55	210.46		3.9	6000	1:02 PM	7/25/2009	13
	51.	7 1.7	1.63	1.63	1.7	4.3	783.45	215.2		4.3	6000	2:43 PM	7/25/2009	14
	5 1.8	2 1.82	1.76	1.76	1.8	4.3	783.65	209.8		4.3	6000	4:24 PM	7/25/2009	15
	6 27.8	5 27.88	27.45	27.42	27.9	31.7	783.19	121.4	3	1.7	6000	6:05 PM	7/25/2009	1
	6 27.5	5 27.57	27.16	27.14	27.6	31.1	782.62	120.72	3	1.1	6000	7:45 PM	7/25/2009	2
	6 27.2	9 27.32	26.87	26.84	27.3	31	783.19	121.27		31	6000	9:26 PM	7/25/2009	3
	6 28.4	9 28.5	28.08	28.07	28.5	32.0	782.98	123.9	3.	2.0 1 0	6000	11:07 PM	7/25/2009	4
	6 27.5 6 27.6	1 27.54 2 27.67	27.03	27 10	27.5	31.8	782.93	123.74	3	1.8	6000	12:48 AM	7/26/2009	5
	6 27.0	3 27.07 8 27.81	27.23	27.10	27.7	31.5	783.03	121.00	3	1.5	6000	2.29 AN	7/26/2009	7
	6 27.8	2 27.86	27.53	27.30	27.0	31.0	783.39	122.14	3	1.0	6000	5:51 AM	7/26/2009	8
	6 27.	2 27.22	26.77	26.75	27.2	31	783.6	123.24	0	31	6000	7:32 AM	7/26/2009	9
	6 27.7	1 27.71	27.24	27.24	27.7	31.6	783.29	121.09	3	1.6	6000	9:13 AM	7/26/2009	10
	6 27.5	4 27.56	27.15	27.13	27.6	31.4	782.83	121.15	3	1.4	6000	10:53 AM	7/26/2009	11
	6 28.2	5 28.26	27.78	27.77	28.3	32.3	783.14	122.58	3	2.3	6000	12:34 PM	7/26/2009	12
	6 26.4	4 26.44	25.98	25.98	26.4	30.5	782.47	124.39	3	0.5	6000	2:15 PM	7/26/2009	13
	6 2	7 27.01	26.57	26.56	27	30.8	783.55	121.54	3	0.8	6000	3:56 PM	7/26/2009	14
	6 26.9	5 27	26.62	26.58	27	31.2	782.67	123.16	3	1.2	6000	5:37 PM	7/26/2009	15
1	4 1.4	6 1.46	1.41	1.41	1.5	4.1	784.27	214.85		4.1	6000	1:26 AM	8/1/2009	1
1	4 1.8	5 1.85	1.68	1.68	1.8	4.4	784.58	207.3		4.4	6000	3:07 AM	8/1/2009	2
1	4 1.6	4 1.64	1.58	1.58	1.6	4.4	783.6	214.08		4.4	6000	4:48 AM	8/1/2009	3
1	4 1.5	6 1.57	1.53	1.52	1.6	4	784.74	214.61		4	6000	6:29 AM	8/1/2009	4
1	4 1.0	2 1.62	1.50	1.50	1.0	4.1	703.70	210.88		4.1 1	6000	8:09 AM	8/1/2009	5
1	4 1.0 4 1.0	4 1.04 5 1.45	1.40	1.40	1.5	4	703.34	210.00		4	6000	9.50 AW	0/1/2009	5
1	4 1.4	5 1.45	1.59	1.59	1.5	4 5	782.98	210.03		45	6000	1.31 AW	8/1/2009	8
1	4 1.4	8 1.48	1.41	1.41	1.0	4.0	783.65	214.63		4.0	6000	2:53 PM	8/1/2009	9
1	4 1.5	7 1.57	1.5	1.5	1.6	4.1	784.53	212.57		4.1	6000	4:34 PM	8/1/2009	10
1	4 1.5	8 1.58	1.54	1.54	1.6	4.1	783.86	208.94		4.1	6000	6:15 PM	8/1/2009	11
1	4 1.4	4 1.44	1.36	1.36	1.4	4	783.45	217.08		4	6000	7:56 PM	8/1/2009	12
1	4 1.7	9 1.79	1.76	1.76	1.8	4.3	783.81	209.91		4.3	6000	9:37 PM	8/1/2009	13
1	4 1.4	1 1.41	1.38	1.38	1.4	4.1	783.86	222.89		4.1	6000	11:17 PM	8/1/2009	14
1	4 1.5	9 1.59	1.54	1.54	1.6	4.1	783.55	210.61		4.1	6000	12:58 AM	8/2/2009	15
1	5 1.8	1 1.81	1.7	1.7	1.8	4.4	783.7	209.77		4.4	6000	2:39 AM	8/2/2009	1
1	5 1.8	3 1.84	1.72	1.71	1.8	4.6	783.6	212.86		4.6	6000	4:20 AM	8/2/2009	2
1	5 1.5	2 1.52	1.46	1.46	1.5	4.2	783.65	212.57		4.2	6000	6:01 AM	8/2/2009	3
1	5 1.3 E 1.7	4 1.34	1.29	1.29	1.3	4.1	783.24	224.53		4.1	6000	7:42 AM	8/2/2009	4
1	5 1.7 5 1.7	/ 1.// 6 1./7	1.7	1.7	1.0	4.4	783.19	211.44		4.4 12	6000	9.25 AN	8/2/2009	5
1	5 1.4	4 164	1.53	1.54	1.5	4.2	783.86	219 52		4.Z 4.4	6000	12:45 PM	8/2/2009	7
1	5 1.0	3 1.63	1.55	1.00	1.0	4.4	783.6	2213.32		44	6000	2.26 PM	8/2/2009	8
1	5 1.6	4 1.64	1.55	1.55	1.6	4.2	783.29	214.98		4.2	6000	4:06 PM	8/2/2009	9
1	5 1.5	3 1.53	1.47	1.47	1.5	3.9	783.29	214.56		3.9	6000	5:47 PM	8/2/2009	10
1	5 1.4	5 1.45	1.37	1.37	1.5	3.9	784.07	214.7	:	3.9	6000	7:28 PM	8/2/2009	11
1	5 1.6	2 1.63	1.53	1.52	1.6	4.2	782.67	211.02		4.2	6000	9:09 PM	8/2/2009	12
1	5 1.5	3 1.54	1.49	1.47	1.5	4	783.29	212.59		4	6000	10:50 PM	8/2/2009	13
1	5 1.5	1 1.51	1.46	1.46	1.5	4.1	783.14	217.63		4.1	6000	12:31 AM	8/3/2009	14
1	5 1.4	3 1.43	1.36	1.36	1.4	3.7	783.34	215.52	:	3.7	6000	2:12 AM	8/3/2009	15
1	6 1.6	5 1.65	1.55	1.55	1.7	4.2	783.19	206.48		4.2	6000	3:53 AM	8/3/2009	1
1	6 1.	7 1.7	1.61	1.61	1.7	4.4	783.34	215.83		4.4	6000	5:34 AM	8/3/2009	2
1	6 1.6 6 1.6	/ 1.6/	1.63	1.63	1.7	4.5	783.39	220.56		4.5	6000	7:15 AM	8/3/2009	3
1	0 1.0 6 1.5	2 1.02	1.04	1.04	1.0	4	703.03	214.24		4	6000	0.00 AIVI	0/3/2009	4
1	6 1.0 6 1.6	9 1.04	1.40	1.40	1.5	4.1	782.62	210.09		4.1 // 3	6000	12.17 DM	8/3/2009	5
1	6 1.0	5 1.02	1.00	1.00	1.0	4.0	782.93	212.43		4.0	6000	1:58 PM	8/3/2009	7
1	6 1.6	5 1.65	1.57	1.57	1.0	4.3	782.93	212.40		4.3	6000	3:39 PM	8/3/2009	, 8
1	6 1.6	1 1.63	1.5	1.48	1.6	4	782.93	213.4		4	6000	5:20 PM	8/3/2009	9
1	6 1.7	6 1.76	1.7	1.7	1.8	4.3	782.83	212.8		4.3	6000	7:01 PM	8/3/2009	10
1	6 1.7	7 1.77	1.71	1.71	1.8	4.4	783.34	212.32		4.4	6000	8:42 PM	8/3/2009	11
1	6 1.8	3 1.83	1.8	1.8	1.8	4.4	782.72	204.67		4.4	6000	10:23 PM	8/3/2009	12
1	6 2.0	1 2.01	1.88	1.88	2	4.4	783.39	201.14		4.4	6000	12:04 AM	8/4/2009	13
1	6 2.0	2 2.02	1.95	1.95	2	4.5	783.14	204.2		4.5	6000	1:44 AM	8/4/2009	14
1	6 1.6	4 1.64	1.51	1.51	1.6	4.1	782.47	212		4.1	6000	3:25 AM	8/4/2009	15
1	7 1.6	1 1.61	1.54	1.54	1.6	4.1	783.96	211.08		4.1	6000	5:06 AM	8/4/2009	1
1	/ 1.8	ь 1.86 о , -	1.72	1.72	1.9	4.7	782.83	211.49		4.7	6000	6:47 AM	8/4/2009	2
1	/ 1. 7 / 7	9 1.9 7 4.57	1.76	1.76	1.9	4.5	782.57	204.56		4.5	6000	8:28 AM	8/4/2009	3
1	7 1.5	י 1.57 די א	1.49	1.49	1.6	4.7	102.93	223.37		4.1 1 2	0000	11.09 AM	8/4/2009	4
1	, 1. 7 1.5	, i./ 5 1.55	1.0	1.0	1.7	4.Z	102.93	210.07		4 .∠ 4.2	6000	1.30 AIVI	8/4/2009	e 5
1	. 1.5 7 16	8 1.69	1.47	1.47	1.5	4.2	783.81	206 1		4	6000	3:12 PM	8/4/2009	7
1	7 1.7	6 1.76	1.65	1.65	1.8	4.1	782.67	206.3		4.1	6000	4:53 PM	8/4/2009	8
. 1	7 1.6	2 1.62	1.56	1.56	1.6	4	782.26	206.51		4	6000	6:34 PM	8/4/2009	9
1	7 1.8	5 1.85	1.78	1.78	1.8	4.5	783.24	204.91		4.5	6000	8:14 PM	8/4/2009	10
1	7 1.5	8 1.58	1.47	1.47	1.6	4.1	782.1	213		4.1	6000	9:55 PM	8/4/2009	11
1	7 1.5	2 1.52	1.43	1.43	1.5	4.2	783.7	222.29		4.2	6000	11:36 PM	8/4/2009	12
1	7 1.7	5 1.75	1.67	1.67	1.8	4.1	783.19	206.73		4.1	6000	1:17 AM	8/5/2009	13
1	7 1.5	3 1.53	1.45	1.45	1.5	4	782.26	213.31		4	6000	2:58 AM	8/5/2009	14
1	7 1.6	8 1.68	1.6	1.6	1.7	4.3	783.03	211.76		4.3	6000	4:39 AM	8/5/2009	15

165099

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/25/2009		
Value on above date	1.08920	Bq/gm =	9220 TU
Dilution factor	1		
Concentration of dilution	1.08920	Bq/gm =	9220.10 TU

Standard Activity			
Background count rate	1.601 +/	/- 0.033	cpm
Standard count rate	27.535 +/	/- 0.136	cpm
Net activity	25.934 +/	/- 0.139	cpm
Grams of sample	2.058		grams
Net standard activity per gram	12.602 +/	/- 0.068	cpm/gm
TU/cpm/gm	731.66 +/	/- 3.93	

Sample Activity				
Background rate	1.601	+/-	0.033	cpm
Sample count rate	1.604	+/-	0.033	cpm
Net activity	0.003	+/-	0.0461	cpm
Grams of sample	10.026			grams
Net sample activity per gram	0.0003	+/-	0.0046	cpm/gm
TU	0.19	+/-	3.364	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/- 0	.010
TRITIUM CONC. OF SAMPLE	0.195 +/- 3	.364 TU

LABORATORY #

Avg Standard Activity

TU/cpm/gm	724.93 +/-	3.81	

165099 methane

Sample Activity				
Background rate	1.594	+/-	0.033	cpm
Sample count rate	1.604	+/-	0.033	cpm
Net activity	0.010	+/-	0.0463	cpm
Grams of sample	10.026			grams
Net sample activity per gram	0.0009	+/-	0.0046	cpm/gm
TU	0.69	+/-	3.349	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor for cell	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.688 +/-	3.349 TU

Report < 10.0 TU

165100

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/25/2009		
Value on above date	1.08920	Bq/gm =	9220 TU
Dilution factor	1		
Concentration of dilution	1.08920	Bq/gm =	9220.10 TU

Standard Activity			
Background count rate	1.601 +/	/- 0.033	cpm
Standard count rate	27.535 +/	/- 0.136	cpm
Net activity	25.934 +/	/- 0.139	cpm
Grams of sample	2.058		grams
Net standard activity per gram	12.602 +/	/- 0.068	cpm/gm
TU/cpm/gm	731.66 +/	/- 3.93	

Sample Activity				
Background rate	1.601	+/-	0.033	cpm
Sample count rate	1.658	+/-	0.036	cpm
Net activity	0.057	+/-	0.0484	cpm
Grams of sample	10.023			grams
Net sample activity per gram	0.0057	+/-	0.0048	cpm/gm
TU	4.17	+/-	3.534	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +,	-/-	0.01
Tf/To	1.00 +	-/-	0.010
TRITIUM CONC. OF SAMPLE	4.170 +	·/-	3.534 TU

LABORATORY #

Avg Standard Activity

TU/cpm/gm	724.93 +/-	3.81	

165100 methane

Sample Activity				
Background rate	1.594 -	+/-	0.033	cpm
Sample count rate	1.658 -	+/-	0.036	cpm
Net activity	0.064 +	+/-	0.0486	cpm
Grams of sample	10.023			grams
Net sample activity per gram	0.0064 +	+/-	0.0049	cpm/gm
TU	4.63 +	+/-	3.516	

Sample Enrichment				
Initial amount of water	1			
final amount of water	1			
Enrichment factor for cell	1	+/-	0.01	
Tf/To	1.00	+/-	0.010	
TRITIUM CONC. OF SAMPLE	4.627	+/-	3.516 TU	

Report < 11.7 TU

165101

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	7/25/2009		
Value on above date	1.08920	Bq/gm =	9220 TU
Dilution factor	1		
Concentration of dilution	1.08920	Bq/gm =	9220.10 TU

Standard Activity			
Background count rate	1.601 +/	/- 0.033	cpm
Standard count rate	27.535 +/	/- 0.136	cpm
Net activity	25.934 +/	/- 0.139	cpm
Grams of sample	2.058		grams
Net standard activity per gram	12.602 +/	/- 0.068	cpm/gm
TU/cpm/gm	731.66 +/	/- 3.93	

Sample Activity				
Background rate	1.601	+/-	0.033	cpm
Sample count rate	1.677 -	+/-	0.033	cpm
Net activity	0.076 -	+/-	0.0467	cpm
Grams of sample	10.0549			grams
Net sample activity per gram	0.0076 -	+/-	0.0046	cpm/gm
TU	5.53 -	+/-	3.401	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +/	/- 0	.01
Tf/To	1.00 +/	/- 0.0	010
TRITIUM CONC. OF SAMPLE	5.530 +/	- 3.4	102 TU

LABORATORY #

Avg Standard Activity

	TU/cpm/gm	724.93 +/-	3.81	
--	-----------	------------	------	--

165101 methane

Sample Activity				
Background rate	1.594 -	+/-	0.033	cpm
Sample count rate	1.677 -	+/-	0.033	cpm
Net activity	0.083 ·	+/-	0.0469	cpm
Grams of sample	10.0549			grams
Net sample activity per gram	0.0082 -	+/-	0.0047	cpm/gm
TU	5.97 -	+/-	3.385	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor for cell	1 +	+/-	0.01
Tf/To	1.00 +	+/-	0.010
TRITIUM CONC. OF SAMPLE	5.973	H/-	3.386 TU

Report < 12.8 TU

JOB #	NIST date co	ount date \	/alue +/- :	SD /	AVG NIST :		BLK date	count date	Value +	- SD	AVG BLK :	Comments
	27-Aug	3-Sep	438.03 +/-	2.44	438.03 +/-	2.44	27-Aug	3-Sep	1.302 +	- 0.036	1.302 +/-	0.036
							"		1.311 +	- 0.036	1.307 +/-	0.036
	9-Sep	15-Sep	433.35 +/-	2.43	435.69 +/-	2.43	9-Sep) 15-Sep	1.316 +	- 0.036	1.310 +/-	0.036
							9-Sep (2) 20-Sep	1.279 +	- 0.034	1.302 +/-	0.036
	7-Aug	28-Sep	442.00 +/-	1.95	437.79 +/-	2.27	7-Aug	27-Sep	1.299 +	- 0.035	1.301 +/-	0.036
12055 CNC waters	7-Oct	8-Oct	438.14 +/-	2.20	437.88 +/-	2.25	7-Oc	t 8-Oct	1.369 +	- 0.037	1.313 +/-	0.036
							"	12-Oct	1.255 +	- 0.035	1.304 +/-	0.036

1	С	ο	U	N٦	ГE	R	#3	

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	10/8/2009		
Value on above date	1.07670	Bq/gm =	9114 TU
Dilution factor	1		
Concentration of dilution	1.07670	Bq/gm =	9114.29 TU

Standard Activity		
Background count rate	1.312 +/-	0.037 cpm
Standard count rate	43.532 +/-	0.209 cpm
Net activity	42.220 +/-	0.212 cpm
Grams of sample	2.0296	grams
Net standard activity per gram	20.802 +/-	0.104 cpm/gm
TU/cpm/gm	438.14 +/-	2.20

Counting efficiency

total cpm net actvy (cpm)/g **efficiency %** 64.60 TU of std *0.007088 20.802 (std count - bkgrd count) / wt std **32.20** net actvy/total dpm std

DATA FILE JOB # Count dates:	56 12055 10-8 through 1	counter 3 0-13-09			
Position #	41	42	44	45	42
Sample ID	NIST	Blank	172337	172338	Blank
	2.0296 g		DC- water	DC-water	
Cocktail date	7-Oct	7-Oct	7-Oct	7-Oct	7-Oct
Date counted	8-Oct	8-Oct	10-Oct	11-Oct	12-Oct

THU 8 OCT 2009 6:57

*** DIRECTORY PATH :C:\GWEN56 ***

PARAMETER GROUP: 8 ID: <091008>

00A PROGRAM MODE 6 ->

CTIME COUNTS CUCNTS MCW REP STD STMS STIME 100:00 NO LIM NO LIM 1 10 Y 1/10 1:00 100:00 NO LIM NO LIM 1 10 Y 1/10 1:00 100:00 NO LIM NO LIM 1 10 Y 1/10 1:00 100:00 NO LIM NO LIM 1 10 Y 1/10 1:00 100:00 NO LIM NO LIM 1 10 N 100:00 NO LIM NO LIM 1 12 N 1
 ORDER
 POS
 ID
 CT

 1
 41
 NIST 10-7
 100:0

 2
 42
 BLANK 10-7
 100:0

 3
 43
 172518
 100:00

 4
 41 2337
 100:00

 5
 45
 172338
 100:00

 6
 42
 BLANK 10-7
 100:

 7
 46
 RECAL #3
 100:01

 NUMBER OF CYCLES
 1
 COINCIDENCE BIAS (L/H)
 L
 MEMORY SPLIT L*R L*R MCA INPUT TRIGG. INHIBIT 1 LRSUM DCOS G 2 GSUM G

SELECTED PRINTOUT FOR TERMINAL 1 (A)

 WINDOW
 CHANNELS
 MCA
 HALF

 2
 50 270
 1
 2

 3
 60 220
 1
 2

 4
 50 320
 1
 1

 5
 50 270
 1
 1

 6
 60 220
 1
 1

 7
 1-1024
 2
 1

 8
 1-1024
 2
 2

	CYC	POS	REP	CTIME	CUCNTS	SQP	SQP%	STIME	ID)	CPM3	CPM4	CPM5	CPM6	CPM7	CPM8
Q014101N.001		1	41	1 100:01.774	4329	753.87	0.15	5 1:0	01 N	IST 10-7	42.71	0.04	0.04	0.02	1247.97	26.16
Q014102N.001		1	41	2 100:01.893	8628	749.46	0.15	5 1:0	02 N	IST 10-7	42.51	0.01	0.01	0.01	1248.09	25.56
Q014103N.001		1	41	3 100:01.886	13064	747.96	0.17	1:0	02 N	IST 10-7	43.67	0.03	0.03	0.02	1254.16	25.59
Q014104N.001		1	41	4 100:01.886	17367	750.72	0.19) 1:0	02 N	IST 10-7	42.41	0.04	0.04	0.04	1247.5	26.51
Q014105N.001		1	41	5 100:01.893	21878	750.3	0.13	3 1:0	02 N	IST 10-7	44.67	0.05	0.05	0.03	1266.44	26.26
Q014106N.001		1	41	6 100:01.893	26299	749.28	0.14	1:0	02 N	IST 10-7	43.57	0.04	0.04	0.03	1273	25.8
Q014107N.001		1	41	7 100:01.893	30708	750.34	0.11	1:0	02 N	IST 10-7	43.71	0.03	0.03	0.02	1260.41	26.34
Q014108N.001		1	41	8 100:01.893	35124	747.98	0.14	1:0	02 N	IST 10-7	43.62	0.06	0.06	0.02	1261.47	26.91
Q014109N.001		1	41	9 100:01.893	39634	747.9	0.12	2 1:0	02 N	IST 10-7	44.74	0.08	0.08	0.07	1268.39	26.96
Q014110N.001		1	41	10 100:01.893	44078	748.55	0.18	3 1:0	02 N	IST 10-7	43.71	0.06	0.06	0.03	1264.36	25.55
Q024201N.001		1	42	1 100:01.893	219	750.6	0.16	6 1:0	02 B	LANK 10	1.41	0.08	0.08	0.06	1275.3	26.17
Q024202N.001		1	42	2 100:01.893	452	749.28	0.14	1:0	02 B	LANK 10	1.5	0.03	0.03	0.03	1274.59	25.57
Q024203N.001		1	42	3 100:01.893	687	751.7	0.17	1:0	02 B	LANK 10	1.53	0	0	0	1270.69	26.93
Q024204N.001		1	42	4 100:01.893	899	747.66	0.14	1:0	02 B	LANK 10	1.09	0.05	0.05	0.05	1278.48	26
Q024205N.001		1	42	5 100:01.893	1130	751.43	0.15	i 1:0	02 B	LANK 10	1.41	0.08	0.08	0.06	1268.68	26.12
Q024206N 001		1	42	6 100.01 893	1348	750.37	0.17	1.0	02 B	ANK 10	1.36	0.01	0.01	0.01	1268.37	26.8
Q024207N 001		1	42	7 100:01 893	1545	750.23	0.14	1.0	02 B	ANK 10	1.13	0.03	0.03	0.02	1269.8	26.82
Q024208N 001		1	42	8 100:01 893	1768	750.12	0.13	1.0	02 B	ANK 10	1.49	0.04	0.00	0.02	1276.09	26.55
0024200N 001		1	12	0 100:01 803	1088	7/06	0.10	> 1.0	02 8	LANK 10	1 / 2	0.04	0.04	0.00	1270.00	25.76
Q024203N.001		1	42	10 100:01 803	2180	750.02	0.12	· 1.0	02 0		1 35	0.03	0.03	0.04	1271.30	25.70
Q02421010.001		1	42	10 100.01.030	2103	130.32	0.17	1.0	02 0		1.55	0.02	0.02	0.02	1270.55	20.21
Q044401N.001		1	44	1 100:01.892	191	749.63	0.14	1:0	02	172337	1.31	0.07	0.07	0.05	1231.25	25.93
Q044402N.001		1	44	2 100:01.892	386	750.84	0.16	6 1:0	02	172337	1.29	0.02	0.02	0.02	1229.17	24.87
Q044403N.001		1	44	3 100:01.892	579	749.84	0.19) 1:0	02	172337	1.2	0.02	0.02	0.02	1240.47	25.44
Q044404N.001		1	44	4 100:01.892	764	749.18	0.15	5 1:0	02	172337	1.23	0.05	0.05	0.03	1240.7	26.05
Q044405N 001		1	44	5 100.01 893	966	748 99	0.17	1.0	02	172337	1.23	0.04	0.04	0.01	1233 49	25.63
Q044406N 001		1	44	6 100:01 893	1169	749.95	0.18	1.0	02	172337	1.23	0.07	0.07	0.06	1229.93	25.88
0044407N 001		1	44	7 100:01 887	1358	750.82	0.13	1.0	02	172337	1 13	0.05	0.05	0.00	1226.36	25.94
0044408N 001		1	44	8 100:01 886	1587	749 72	0.15	1.0	02	172337	14	0.03	0.00	0.02	1216 79	26.75
0044409N 001		1	11	0 100:01 803	1780	751 5	0.10	1.0	02	172337	1 22	0.00	0.00	0.02	1225.1	25.14
Q044403N.001		1	44	10 100:01 893	1996	749.61	0.10	, 1.0 L 1.0	02	172337	1.23	0.03	0.03	0.03	1223.1	25.14
001111010.001		'		10 100.01.000	1000	745.01	0.14	·	02	112001	1.20	0.02	0.02	0.02	1222.04	20.00
Q054501N.001		1	45	1 100:01.892	216	748.89	0.14	1:0	02	172338	1.32	0.1	0.1	0.07	1218.59	25.6
Q054502N.001		1	45	2 100:01.892	404	748.1	0.19) 1:0	02	172338	1.1	0.05	0.05	0.04	1216.15	26.16
Q054503N.001		1	45	3 100:01.892	614	749.16	0.19) 1:0	02	172338	1.42	0.04	0.04	0.04	1211.47	26.05
Q054504N 001		1	45	4 100.01 892	800	749 51	0.18	3 1.0	02	172338	1.24	0.03	0.03	0.03	1207 46	25.13
Q054505N 001		1	45	5 100.01 892	990	749 74	0.13	3 1.0	02	172338	1.13	0.04	0.04	0.04	1204 85	26.38
0054506N 001		1	45	6 100:01 886	1188	749 51	0.13	1.0	02	172338	1 11	0.01	0.01	0.01	1213 38	25.5
0054507N 001		1	45	7 100:01 886	1395	748.24	0.10	1.0	02	172338	1 35	0.06	0.06	0.06	1224.08	25.48
Q054508N 001		1	45	8 100:01 892	1606	740.24	0.10	, 1.0 . 1.0	02	172338	1 31	0.00	0.00	0.00	1224.00	25.40
Q054500N 001		1	45	0 100:01 802	1804	740.66	0.10	1.C	02	172338	1 20	0.02	0.02	0.01	1226.02	25.32
Q054503N.001		1	45	10 100:01 802	2006	748.00	0.18	· 1.0	02	172338	1 20	0.03	0.03	0.04	1220.52	25.02
Q03431010.001		1	40	10 100.01.032	2000	740.5	0.10	, 1.0	02	172550	1.23	0.02	0.02	0.02	1201.00	20.01
Q064201N.001		1	42	1 100:01.892	181	0	C	0:0	00 B	LANK 10	1.27	0.06	0.06	0.04	1225.87	25.46
Q064202N.001		1	42	2 100:01.883	396	0	C) 0:0	00 B	LANK 10	1.41	0.02	0.02	0.02	1223.16	25.71
Q064203N.001		1	42	3 100:01.883	604	0	C	0:0	00 B	LANK 10	1.23	0.06	0.06	0.04	1213.98	26.42
Q064204N.001		1	42	4 100:01.883	794	0	C	0:0	00 B	LANK 10	1.11	0.02	0.02	0.02	1223.63	25.65
Q064205N.001		1	42	5 100:01.883	1003	0	c	0:0	00 B	LANK 10	1.29	0.01	0.01	0.01	1232.01	25.35
Q064206N.001		1	42	6 100:01.883	1195	0	C	0:0	00 B	LANK 10	1.15	0.03	0.03	0.03	1238.16	25.35
Q064207N.001		1	42	7 100:01 883	1392	0	Ċ) 0:0	00 B	LANK 10	1.22	0.03	0.03	0,02	1227,53	26.39
Q064208N.001		1	42	8 100:01 877	1596	ñ	r) 0.0	00 B	LANK 10	1.33	0.02	0.02	0.01	1226.66	25.07
Q064209N.001		1	42	9 100:01.883	1829	0	0) 0:0	00 B	LANK 10	1.43	0.02	0,02	0.02	1227,99	24,82
Q064210N.001		1	42	10 100:01 883	2013	n n	r) 0.0	00 B	LANK 10	1.11	0.06	0.06	0.02	1234.96	25.37
		•				0		0.0				0.00	0.00	0.02	.2000	20.07

172337

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	10/8/2009		
Value on above date	1.07670	Bq/gm =	9114 TU
Dilution factor	1		
Concentration of dilution	1.07670	Bq/gm =	9114.29 TU

Standard Activity				
Background count rate	1.312	+/-	0.037	cpm
Standard count rate	43.532	+/-	0.209	cpm
Net activity	42.220	+/-	0.212	cpm
Grams of sample	2.0296			grams
Net standard activity per gram	20.802	+/-	0.104	cpm/gm
TU/cpm/gm	438.14	+/-	2.20	

Sample Activity	1			
Background rate	1.312	+/-	0.037	cpm
Sample count rate	1.314	+/-	0.035	cpm
Net activity	0.002	+/-	0.0511	cpm
Grams of sample	10.0301			grams
Net sample activity per gram	0.0002	+/-	0.0051	cpm/gm
TU	0.09	+/-	2.234	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.087 +/-	2.234 TU

Avg Standard Activity

LABORATORY # SAMPLE SOURCE:

TU/cpm/gm	437.88 +/-	2.25	

172337

water

Sample Activity				
Background rate	1.304 +	-/-	0.036	cpm
Sample count rate	1.314 +	-/-	0.035	cpm
Net activity	0.010 +	-/-	0.0502	cpm
Grams of sample	10.0301			grams
Net sample activity per gram	0.0010 +	-/-	0.0050	cpm/gm
TU	0.42 +	-/-	2.192	

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	0.417 +/- 2.192 TU

Report < 10.0 TU

SAMPLE SOURCE:

LABORATORY

172338

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	10/8/2009		
Value on above date	1.07670	Bq/gm =	9114 TU
Dilution factor	1		
Concentration of dilution	1.07670	Bq/gm =	9114.29 TU

Standard Activity				
Background count rate	1.312	+/-	0.037	cpm
Standard count rate	43.532	+/-	0.209	cpm
Net activity	42.220	+/-	0.212	cpm
Grams of sample	2.0296			grams
Net standard activity per gram	20.802	+/-	0.104	cpm/gm
TU/cpm/gm	438.14	+/-	2.20	

Sample Activity	1			
Background rate	1.312	+/-	0.037	cpm
Sample count rate	1.314	+/-	0.035	cpm
Net activity	0.002	+/-	0.0512	cpm
Grams of sample	10.052			grams
Net sample activity per gram	0.0002	+/-	0.0051	cpm/gm
TU	0.09	+/-	2.232	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.087 +/-	2.232 TU

 Sample Activity

 Background rate
 1.304 +/ 0.036 cpm

 Sample count rate
 1.314 +/ 0.035 cpm

 Net activity
 0.010 +/ 0.035 cpm

Net activity	0.010 +/-	0.0503 cpm
Grams of sample	10.052	grams
Net sample activity per gram	0.0009 +/-	0.0050 cpm/gm
TU	0.42 +/-	2.191

172338

water

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	0.416 +/- 2.191 TU

Report < 10.0 TU

COUNTER 1 Year 2009 NIST and BLANK Values

JOB #	NIST date c	ount date	Value +/- SD	AVG NIST):		BLK date	count date	Value +/-	SD /	AVG BLK :	
	2-Sep	4-Sep	718.43 +/- 3.8	37 718.43 +/-	3.87	2-Se	p 3-Sep	1.590 +/-	0.034	1.590 +/-	0.034
	"	14-Sep	722.79 +/- 4.0	02 720.61 +/-	3.95	8-Se	p 13-Sep	1.551 +/-	0.032	1.571 +/-	0.033
	21-Sep	24-Sep	725.98 +/- 3.9	98 722.40 +/-	3.96	21-Se	p 23-Sep	1.604 +/-	0.034	1.571 +/-	0.033
Job 12055 CNC	9-Oct	12-Oct	719.64 +/- 4.0	05 721.71 +/-	3.98	9-O	t 11-Oct	1.561 +/-	0.032	1.568 +/-	0.033

COUNTER #1

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	10/12/2009		
Value on above date	1.07604	Bq/gm =	9109 TU
Dilution factor	1		
Concentration of dilution	1.07604	Bq/gm =	9108.68 TU

Standard Activity		
Background count rate	1. <u>561</u> +/-	0.032 cpm
Standard count rate	26.805 +/-	0.138 cpm
Net activity	25.244 +/-	0.142 cpm
Grams of sample	1.9944	grams
Net standard activity per gram	12.657 +/-	0.071 cpm/gm
TU/cpm/gm	719.64 +/-	4.05

Counting efficiency

total cpm net actvy (cpm)/g **efficiency %** 64.56 TU of std *0.007088 12.657 (std count - bkgrd count) / wt std 19.60 net actvy/total dpm std

RACKPOS FNCT	1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	CPM		CTIME	TIME	DATE	RPT
1	1.91	1.91	1.79	1.79	1.9	4.9	782.72	213.42		4.9	6000	4:32 PM	10/9/2009	1
1	1.56	1.56	1.5	1.5	1.6	4.2	782.41	222.24		4.2	6000	6:13 PM	10/9/2009	2
1	1.54	1.54	1.48	1.48	1.5	4.6	781.95	221.24		4.6	6000	7:53 PM	10/9/2009	3
1	1.62	1.63	1.55	1.54	1.6	4.1	782.21	215.95		4.1	6000	9:34 PM	10/9/2009	4
1	1.75	1.75	1.65	1.64	1.8	4.2	782.52	213.58		4.2	6000	11:15 PM	10/9/2009	5
1	1.64	1.65	1.59	1.58	1.7	4.1	782.16	219.45		4.1	6000	12:56 AM	10/10/2009	6
1	1.5	1.5	1.46	1.45	1.5	4	782.83	219.45		4	6000	2:37 AM	10/10/2009	7
1	1.5	1.5	1.41	1.41	1.5	4.2	782.57	223.14		4.2	6000	4:18 AM	10/10/2009	8
1	1.49	1.49	1.39	1.39	1.5	4.3	782.47	220.21		4.3	6000	5:59 AM	10/10/2009	9
1	1.5	1.5	1.36	1.36	1.5	4.1	782	219.11		4.1	6000	7:40 AM	10/10/2009	10
1	1.64	1.64	1.5	1.5	1.6	4.2	782.52	216.95		4.2	6000	9:20 AM	10/10/2009	11
1	1.14	1.14	1.08	1.08	1.1	3.6	782.67	228.59	:	3.6	6000	11:01 AM	10/10/2009	12
1	1 56	1 56	1 45	1 45	1.6	4	782 52	219 11		4	6000	12.42 PM	10/10/2009	13
1	1 46	1 46	1.35	1.35	1.5	4 2	781.85	223.3		42	6000	2.23 PM	10/10/2009	14
1	1 64	1 64	1.56	1.56	1.6	4 1	782	208.2		4 1	6000	4:04 PM	10/10/2009	15
2	1 61	1.61	1 54	1 54	1.6	30	783.14	212 16		39	6000	5:45 PM	10/10/2009	.0
2	1 73	1.01	1.65	1.65	1.0	4.3	783.76	213.38		4.3	6000	7:26 PM	10/10/2009	2
2	1.65	1.65	1.56	1.56	1.7	4.6	783.65	216.00		4.6	6000	9:07 PM	10/10/2009	- 3
2	1.58	1.00	1.00	1.00	1.7	3.0	782.67	209.04		7.0 3.0	6000	10.48 PM	10/10/2009	4
2	1.00	1.00	1.47	1.47	1.0	4 1	783 5	200.04		0.0 4 1	6000	12.29 AM	10/11/2009	5
2	1.42	1.42	1.57	1.57	1.4	4.1	783.20	220.00		1.1	0000	2:00 AM	10/11/2009	5
2	1 1/1	1 14	1.01	1.01	1.7	4.2	784.22	200.50		т. <u>с</u> лл	6000	2:50 AM	10/11/2009	7
2	1 7/	1.44	1.57	1.57	1.4	4.4	783.10	213.30		4.4 / 1	0000	5:31 AM	10/11/2009	/ 8
2	1.74	1.74	1.01	1.01	1.7	4.1	703.13	207.73		 /	6000	7:12 AM	10/11/2009	0
2	1.0	1.5	1.43	1.43	1.5	4	702.12	210.1		4	6000	7.12 AIVI	10/11/2009	9
2	1.05	1.05	1.0	1.0	1.7	4.7	702.03	223.03		4.1	6000	10.34 AM	10/11/2009	10
2	1.40	1.40	1.57	1.57	1.0	4.2	703.43	223.73		4.Z	6000	10.34 AIVI	10/11/2009	10
2	1.07	1.07	1.59	1.09	1.7	4.2	703.00	211.59		4.Z	6000	1/56 DM	10/11/2009	12
2	1.49	1.49	1.43	1.43	1.5	4.4	703.00	219.49		4.4	6000	1:50 PIVI	10/11/2009	13
2	1.73	1.73	1.04	1.04	1.7	4.4	782.52	214.11		4.4	6000	3:37 PM	10/11/2009	14
2	1.44	1.44	1.4	1.4	1.4	4	783.08	217.39		4	6000	5:18 PM	10/11/2009	15
3	1.54	1.54	1.5	1.5	1.5	4.3	782.77	222.62		4.3	6000	6:59 PM	10/11/2009	1
3	1.59	1.59	1.53	1.53	1.6	4.1	783.24	211.77		4.1	6000	8:39 PM	10/11/2009	2
3	1.64	1.64	1.53	1.53	1.6	4.4	/83./6	220.4		4.4	6000	10:20 PM	10/11/2009	3
3	1.73	1.73	1.63	1.63	1.7	4.4	782.16	218.88		4.4	6000	12:01 AM	10/12/2009	4
3	1.46	1.46	1.34	1.34	1.5	4	/82.21	225.35		4	6000	1:42 AM	10/12/2009	5
3	1.41	1.41	1.34	1.34	1.4	3.9	782.98	213.9	:	3.9	6000	3:23 AM	10/12/2009	6
3	1.75	1.75	1.62	1.62	1.8	4.3	782.41	207.95		4.3	6000	5:04 AM	10/12/2009	(
3	1.38	1.38	1.33	1.33	1.4	3.7	782.98	218.73	:	3.7	6000	6:45 AM	10/12/2009	8
3	1.65	1.66	1.6	1.59	1.7	4.3	782.26	212.4		4.3	6000	8:26 AM	10/12/2009	9
3	1.67	1.67	1.57	1.57	1.7	4.2	782.77	217.55		4.2	6000	10:07 AM	10/12/2009	10
3	1.44	1.44	1.32	1.32	1.4	4.1	782.62	219.38		4.1	6000	11:48 AM	10/12/2009	11
3	1.59	1.59	1.47	1.47	1.6	4.1	783.14	206.81		4.1	6000	1:28 PM	10/12/2009	12
3	1.56	1.56	1.45	1.45	1.6	4.1	782.16	213.71		4.1	6000	3:09 PM	10/12/2009	13
3	1.51	1.51	1.4	1.4	1.5	4	782.67	213.54		4	6000	4:50 PM	10/12/2009	14
3	1.5	1.51	1.43	1.42	1.5	4	782.31	217.88		4	6000	6:31 PM	10/12/2009	15
4 2	26.58	26.6	26.19	26.17	26.6	30.2	783.29	120.78	3	0.2	6000	8:12 PM	10/12/2009	1
4 2	26.88	26.91	26.58	26.55	26.9	31	783.03	123.02		31	6000	9:53 PM	10/12/2009	2
4 2	27.19	27.19	26.86	26.86	27.2	30.9	782.57	121.34	3	0.9	6000	11:34 PM	10/12/2009	3
4 2	27.04	27.07	26.49	26.46	27.1	30.8	783.39	121.12	3	0.8	6000	1:15 AM	10/13/2009	4
4 2	26.97	26.99	26.66	26.64	27	30.6	782.31	120.91	3	0.6	6000	2:56 AM	10/13/2009	5
4 2	27.33	27.33	26.88	26.88	27.3	31	783.34	121.21		31	6000	4:36 AM	10/13/2009	6
4 2	27.58	27.6	27.08	27.07	27.6	31.3	782.41	121.77	3	1.3	6000	6:17 AM	10/13/2009	7
4 2	26.94	26.95	26.59	26.58	27	30.9	782.05	123.25	3	0.9	6000	7:58 AM	10/13/2009	8
4 2	26.25	26.26	25.91	25.9	26.3	30.2	783.34	122.1	3	0.2	6000	9:39 AM	10/13/2009	9
4 2	26.17	26.19	25.71	25.69	26.2	29.9	782.05	122.75	2	9.9	6000	11:20 AM	10/13/2009	10
4 2	28.55	28.57	28.03	28.02	28.6	32.4	782.72	121.6	3	2.4	6000	1:01 PM	10/13/2009	11
4 2	26.92	26.94	26.53	26.51	26.9	30.8	782.72	123.04	3	0.8	6000	2:42 PM	10/13/2009	12
4 2	26.08	26.1	25.74	25.72	26.1	29.8	783.14	120.37	2	9.8	6000	4:23 PM	10/13/2009	13
4 2	26.73	26.73	26.35	26.35	26.7	30.7	783.6	122.07	3	0.7	6000	6:04 PM	10/13/2009	14
4 2	26.61	26.63	26.17	26.15	26.6	30.7	783.14	122.95	3	0.7	6000	7:44 PM	10/13/2009	15

DATA FILE JOB #	999 12055	counter 1		
Count dates:	10-9 through 1	0-13-09		
Position #	1	2	3	4
Sample ID	172337	172338	Blank	NIST
	DC-methane	DC-methane		1.9944 g
Cocktail date	9-Oct	9-Oct	9-Oct	9-Oct
Date counted	9-Oct	10-Oct	11-Oct	12-Oct

172337

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	10/12/2009		
Value on above date	1.07604	Bq/gm =	9109 TU
Dilution factor	1		
Concentration of dilution	1.07604	Bq/gm =	9108.68 TU

Standard Activity				
Background count rate	1.561	+/-	0.032	cpm
Standard count rate	26.805	+/-	0.138	cpm
Net activity	25.244	+/-	0.142	cpm
Grams of sample	1.9944			grams
Net standard activity per gram	12.657	+/-	0.071	cpm/gm
TU/cpm/gm	719.64	+/-	4.05	

Sample Activity				
Background rate	1.561	+/-	0.032	cpm
Sample count rate	1.569	+/-	0.035	cpm
Net activity	0.008	+/-	0.0474	cpm
Grams of sample	10.0432			grams
Net sample activity per gram	0.0008	+/-	0.0047	cpm/gm
TU	0.57	+/-	3.397	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.566 +/-	3.397 TU

LABORATORY # SAMPLE SOURCE:

Avg Standard Activity

TU/cpm/gm	721.71 +/-	3.98	

Sample Activity				
Background rate	1.568	+/-	0.033	cpm
Sample count rate	1.569	+/-	0.035	cpm
Net activity	0.002	+/-	0.0479	cpm
Grams of sample	10.0432			grams
Net sample activity per gram	0.0002	+/-	0.0048	cpm/gm
TU	0.12	+/-	3.441	

Sample Enrichment			
Initial amount of water	1		
final amount of water	1		
Enrichment factor	1 +	+/- 0.01	
Tf/To	1.00 +	+/- 0.010	
TRITIUM CONC. OF SAMPLE	0.120	+/- 3.441	TU

172338

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	10/12/2009		
Value on above date	1.07604	Bq/gm =	9109 TU
Dilution factor	1		
Concentration of dilution	1.07604	Bq/gm =	9108.68 TU

Standard Activity				
Background count rate	1.561	+/-	0.032	cpm
Standard count rate	26.805	+/-	0.138	cpm
Net activity	25.244	+/-	0.142	cpm
Grams of sample	1.9944			grams
Net standard activity per gram	12.657	+/-	0.071	cpm/gm
TU/cpm/gm	719.64	+/-	4.05	

Sample Activity				
Background rate	1.561	+/-	0.032	cpm
Sample count rate	1.587	+/-	0.033	cpm
Net activity	0.025	+/-	0.0458	cpm
Grams of sample	10.031			grams
Net sample activity per gram	0.0025	+/-	0.0046	cpm/gm
TU	1.82	+/-	3.287	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	1.817 +/-	3.287 TU

LABORATORY # SAMPLE SOURCE:

Avg Standard Activity

TU/cpm/gm	721.71 +/-	3.98	

172338

methane

Sample Activity			
Background rate	1.568 +/-	0.033	cpm
Sample count rate	1.587 +/-	0.033	cpm
Net activity	0.019 +/-	0.0463	cpm
Grams of sample	10.031		grams
Net sample activity per gram	0.0019 +/-	0.0046	cpm/gm
TU	1.38 +/-	3.332	

Sample Enrichment	
Initial amount of water	1
final amount of water	1
Enrichment factor	1 +/- 0.01
Tf/To	1.00 +/- 0.010
TRITIUM CONC. OF SAMPLE	1.375 +/- 3.332 TU

Report < 10.0 TU

duplicate tritium samples

 YEAR
 Count date
 Tritium value
 Duplicate sample value
 Comments

 2009
 20-Dec
 < 1.0 TU</td>
 < 1.0 TU</td>
 EE

 2010
 11-Jan
 2.80 +/- 0.27
 2.80 +/- 0.28
 EE
COUNTER 3 Year 2009-10
NIST and BLANK Values

NIST date cou	unt date V	/alue +/- S	SD A	VG NIST :		BLK date count date	Value	+/- SD	AVG BLK :	Comments
			(TU/cpm/g)					cpm	
20-Nov	25-Nov	437.30 +/-	2.35	437.30 +/-	2.35	20-Nov (2) 25-Nov	1.331 ·	+/- 0.037	1.331 +/-	0.037
						20-Nov (1) 26-Nov	1.353	+/- 0.037	1.342 +/-	0.037
20-Nov	28-Nov	437.64 +/-	2.35	437.47 +/-	2.35	20-Nov (2) 27-Nov	1.307	+/- 0.036	1.330 +/-	0.037
29-Dec	1-Jan	434.92 +/-	2.47	436.62 +/-	2.39	29-Dec 31-Dec	1.302 ·	+/- 0.036	1.323 +/-	0.036 New A/C
						" 3-Jan	1.318	+/- 0.038	1.322 +/-	0.037
5-Jan	7-Jan	438.62 +/-	2.50	437.12 +/-	2.42	5-Jan 6-Jan	1.386	+/- 0.037	1.333 +/-	0.037
	9-Jan	436.65 +/-	2.48	437.03 +/-	2.43	" 8-Jan	1.286	+/- 0.036	1.326 +/-	0.037
	NIST date con 20-Nov 20-Nov 29-Dec 5-Jan	NIST date count date V 20-Nov 25-Nov 20-Nov 28-Nov 29-Dec 1-Jan 5-Jan 7-Jan " 9-Jan	NIST date count date Value +/- S 20-Nov 25-Nov 437.30 +/- S 20-Nov 28-Nov 437.64 +/- S 29-Dec 1-Jan 434.92 +/- S 5-Jan 7-Jan 438.62 +/- N/- 9-Jan 436.65 +/- N/- N/- N/-	NIST date count date Value +/- SD A 20-Nov 25-Nov 437.30 +/- 2.35 20-Nov 28-Nov 437.64 +/- 2.35 29-Dec 1-Jan 434.92 +/- 2.47 5-Jan 7-Jan 438.62 +/- 2.50 " 9-Jan 436.65 +/- 2.48	NIST date count date Value +/- SD AVG NIST: (TU/cpm/g) 20-Nov 25-Nov 437.30 +/- 2.35 437.30 +/- 20-Nov 28-Nov 437.64 +/- 2.35 437.47 +/- 29-Dec 1-Jan 434.92 +/- 2.47 436.62 +/- 5-Jan 7-Jan 438.62 +/- 2.50 437.12 +/- "9-Jan 436.65 +/- 2.48 437.03 +/-	NIST date count date Value +/- SD AVG NIST : (TU/cpm/g) 20-Nov 25-Nov 437.30 +/- 2.35 437.30 +/- 2.35 20-Nov 28-Nov 437.64 +/- 2.35 437.47 +/- 2.35 29-Dec 1-Jan 434.92 +/- 2.47 436.62 +/- 2.39 5-Jan 7-Jan 438.62 +/- 2.50 437.12 +/- 2.42 " 9-Jan 436.65 +/- 2.48 437.03 +/- 2.43	NIST date count date Value +/- SD AVG NIST : (TU/cpm/g) BLK date count date 20-Nov 25-Nov 437.30 +/- 2.35 437.30 +/- 2.35 20-Nov (2) 25-Nov 20-Nov 25-Nov 437.64 +/- 2.35 437.47 +/- 2.35 20-Nov (2) 27-Nov 20-Nov 28-Nov 437.64 +/- 2.47 436.62 +/- 2.39 29-Dec 31-Dec 3-Jan 438.62 +/- 2.50 437.12 +/- 2.42 5-Jan 6-Jan 5-Jan 7-Jan 436.65 +/- 2.48 437.03 +/- 2.43 "8-Jan	NIST date count date Value +/- SD AVG NIST : (TU/cpm/g) BLK date count date Value - 20-Nov 25-Nov 437.30 +/- 2.35 437.30 +/- 2.35 20-Nov (2) 25-Nov 1.331 - 20-Nov 28-Nov 437.64 +/- 2.35 437.47 +/- 2.35 20-Nov (2) 27-Nov 1.307 - 29-Dec 1-Jan 434.92 +/- 2.47 436.62 +/- 2.39 29-Dec 3-Jan 1.318 - 5-Jan 7-Jan 438.62 +/- 2.50 437.12 +/- 2.43 5-Jan 6-Jan 1.386 - " 9-Jan 436.65 +/- 2.48 437.03 +/- 2.43 " 8-Jan 1.286 -	NIST date count date Value +/- SD AVG NIST : (TU/cpm/g) BLK date count date Value +/- SD 20-Nov 25-Nov 437.30 +/- 2.35 437.30 +/- 2.35 20-Nov (2) 25-Nov 1.331 +/- 0.037 20-Nov 28-Nov 437.64 +/- 2.35 437.47 +/- 2.35 20-Nov (2) 27-Nov 1.307 +/- 0.037 29-Dec 1-Jan 434.92 +/- 2.47 436.62 +/- 2.39 29-Dec 1.302 +/- 0.036 5-Jan 7-Jan 438.62 +/- 2.50 437.12 +/- 2.42 5-Jan 6-Jan 1.386 +/- 0.037 " 9-Jan 436.65 +/- 2.48 437.03 +/- 2.42 5-Jan 6-Jan 1.386 +/- 0.037	NIST date count date Value +/- SD AVG NIST : (TU/cpm/g) BLK date count date Value +/- SD AVG BLK : cpm 20-Nov 25-Nov 437.30 +/- 2.35 437.30 +/- 2.35 20-Nov (2) 25-Nov 1.331 +/- 0.037 1.331 +/- 20-Nov 28-Nov 437.64 +/- 2.35 437.47 +/- 2.35 20-Nov (2) 27-Nov 1.307 +/- 0.036 1.330 +/- 29-Dec 1-Jan 434.92 +/- 2.47 436.62 +/- 2.39 29-Dec 31-Dec 1.302 +/- 0.036 1.332 +/- 5-Jan 7-Jan 438.62 +/- 2.50 437.12 +/- 2.42 5-Jan 6-Jan 1.386 +/- 0.037 1.323 +/- " 9-Jan 436.65 +/- 2.48 437.03 +/- 2.43 " 8-Jan 1.286 +/- 0.036 1.326 +/-

С	ο	U	N	TΕ	R	#3	

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	1/9/2010		
Value on above date	1.06140	Bq/gm =	8985 TU
Dilution factor	1		
Concentration of dilution	1.06140	Bq/gm =	8984.77 TU

Standard Activity		
Background count rate	1.286 +/-	0.036 cpm
Standard count rate	42.289 +/-	0.230 cpm
Net activity	41.003 +/-	0.233 cpm
Grams of sample	1.9927	grams
Net standard activity per gram	20.576 +/-	0.117 cpm/gm
TU/cpm/gm	436.65 +/-	2.48

Counting efficiency

total cpm net actvy (cpm) **efficiency %** 63.68 TU of std *0.007088 20.576 (std count - bkgrd count)/wt std **32.31** net actvy/total cpm

DATA FILE JOB # Count dates:	76 12367 CNC 1-7 through 1-9	counter 3 9-10		
Desition #	24	00	22	24
Position #	21	22	23	24
Sample ID	176954	176955	Blank	NIST
	DC-C	DC-C		1.9927 g
Cocktail date	7-Jan	7-Jan	5-Jan	5-Jan
Date counted	7-Jan	8-Jan	8-Jan	9-Jan

	1			1							1
					44.40						
	1	THU	J 7 J/	AN 2010	14:42						
*** DIRECT	FORY PATH	1 :C:\G	WEN7	′ 6 ***							
PARAM	ETER GRO	UP: 8									
ID: <100	107>										
		F	6								
UGATINOC			0-,	Í							
			OTIN								
URDER P							V REP (510 51105 51	IVIE		
1 21 1	76954 DC-C		100:0	0 NO LI	MNOLIM	1 10	Y 1/10	1:00			
2 22 1	76955 DC-C	;	100:0	0 NO LI	M NO LIM	1 10	Y 1/10	1:00			
3 23 B	LANK 1-5	1	00:00	NO LIN	1 NO LIM	<u>1 10)</u>	<u> 1/10 1</u>	:00			
4 24 N	IST 1-5	10	0:00 N	10 LIM N	NO LIM 1	8 Y 1	1:0 1:0	0			
5 25 1	XXXXX										
6 26 1	XXXXXX										
7 27 1	xxxxx										
8 28 B	XXXXX										
9 29 1	xxxxx					1	1				
10 30 1	XXXXX										
	OF CYCLE	S	1								
COINCID			Ť								
CONICID	LINCE DIAS	, (L/N)	L								
		יסינוא	Г Г	1	MEMORY	/ <u>פ</u> חי יד					
		INHIRI	I		MEMORY	r SPLIT					
1 LRSUM	DCOS G			L*I	к						
2 GSUM	G			L*R							
WINDOW	CHANNEL	_S M	CA H	ALF							
2 50-	270 1	2									
3 60-	220 1	2									
4 50-	320 1	1									
5 50-	270 1	1				1	1				
6 60-	220 1	1	-								
7 1-1	1024 2	1									
7 1-1	1024 2	2									
0 1-1	1024 2	2									
					<i>(</i>)						
SELECTEL	J PRINTOU	TFOR	IERI	MINAL 1	(A)						
		POS	REP	CTIME	CUCNTS	SQP	SQP%	ID	CPM1	CPM2	CPM3
Q012101N	.001	21	1	100:01.	206	752.8	0.16	176954 DC-C	2.1	1.83	1.36
Q012102N	.001	21	2	100:01.	418	750.02	0.12	176954 DC-C	2.16	1.9	1.46
Q012103N	.001	21	3	100:01.	633	748.26	0.16	176954 DC-C	2.2	1.68	1.23
Q012104N	.001	21	4	100:01.	855	747.83	0.16	176954 DC-C	2.27	1.95	1.57
Q012105N	.001	21	5	100:01.	1071	747.08	0.2	176954 DC-C	2.21	1.85	1.45
0012106N	001	21	6	100.01	1283	749.96	0.13	176954 DC-C	2 16	1.82	1 34
0012107N	001	21	7	100.01	1494	748 29	0.16	176954 DC-C	2 15	1.87	1 41
Q0121071	.001	21	0	100.01.	1712	740.23	0.10	176054 DC-C	2.13	1.07	1.46
Q012100N	.001	21	0	100.01.	1/13	740.39	0.10	170934 DC-C	2.24	1.99	1.40
QU12109N	.001	21	9	100:01.	1928	749.18	0.2	170954 DC-C	2.2	1.81	1.39
QU12110N	.001	21	10	100:01.	2156	749.46	0.13	170954 DC-C	2.33	1.98	1.53
0.000				100 -		= 46 -					
Q022201N	.001	22	1	100:01.	211	/49.09	0.14	176955 DC-C	2.15	1.87	1.41
Q022202N	.001	22	2	100:01.	427	747.95	0.18	176955 DC-C	2.21	1.92	1.5
Q022203N	.001	22	3	100:01.	639	747.86	0.17	176955 DC-C	2.16	1.78	1.33
Q022204N	.001	22	4	100:01.	827	745.16	0.15	176955 DC-C	1.92	1.53	1.24
Q022205N	.001	22	5	100:01.	1057	749.77	0.17	176955 DC-C	2.35	1.98	1.37
Q022206N	.001	22	6	100:01.	1264	749.67	0.17	176955 DC-C	2.11	1.65	1.21
Q022207N	.001	22	7	100:01.	1474	748.78	0.17	176955 DC-C	2.14	1.69	1.23
Q022208N	.001	22	8	100:01	1657	747.9	0.16	176955 DC-C	1.87	1.67	1.29
Q022209N	.001	22	.9	100:01	1886	748.35	0.16	176955 DC-C	2.34	1.91	1.58
Q022210N	001	22	10	100.01	2002	747 57	0.10	176955 DC-C	2.04	1 76	1 32
JULLE IUN		22	10	100.01.	2032	1-11.07	0.13		2.1	1.70	1.54
00222041	001	22		100.04	050	749 54	0.17		2 57	2 10	1 55
QU32301N	.001	23	- 1	100:01.	252	740.01	0.17	DLANK 1-3	2.57	2.10	1.00
QU32302N	.001	23	2	100:01.	440	749.12	0.15	DLANK 1-5	1.92	1.63	1.10
QU32303N	.001	23	3	100:01.	622	749.25	0.19	BLANK 1-5	1.86	1.52	1.14
Q032304N	.001	23	4	100:01.	839	747.67	0.16	BLANK 1-5	2.22	1.87	1.4
Q032305N	.001	23	5	100:01.	1045	749.46	0.13	BLANK 1-5	2.1	1.78	1.27
Q032306N	.001	23	6	100:01.	1257	748.59	0.17	BLANK 1-5	2.16	1.79	1.44
Q032307N	.001	23	7	100:01.	1446	748.5	0.16	BLANK 1-5	1.93	1.63	1.28
Q032308N	.001	23	8	100:01.	1641	748.75	0.13	BLANK 1-5	1.99	1.6	1.15
Q032309N	.001	23	9	100:01.	1828	749.17	0.14	BLANK 1-5	1.91	1.56	1.14
Q032310N	.001	23	10	100:01	2039	749.86	0.13	BLANK 1-5	2.15	1.79	1.33
	-										
Q042401N	001	24	1	100.01	4284	752.82	0.13	NIST 1-5	43.84	43 58	42.6
0042402N	001	24	2	100.01	8583	750 96	0.19	NIST 1-5	10.04	43 60	42.66
00424021	.001	24	2	100.01	10750	754.00	0.10	NIGT 1.5	44	42.03	41 20
QU42403N	.001	24	3	100:01.	12/52	731.20	0.16	NICT 4 5	42.07	42.24	41.39
QU424U4N		1 24	4	100:01.	10903	149.93	0.13	C-1 101	43.1	4∠.ŏ/	41.9
0040405	.001	- ·	-	400 0	0	740 00	c · -			40.0	44
Q042405N	.001	24	5	100:01.	21130	748.38	0.15	NIST 1-5	42.65	42.24	41.12
Q042405N Q042406N	.001	24 24	5 6	100:01. 100:01.	21130 25370	748.38	0.15	NIST 1-5 NIST 1-5	42.65	42.24 43.15	41.12 41.91
Q042405N Q042406N Q042407N	.001 .001 .001	24 24 24	5 6 7	100:01. 100:01. 100:01.	21130 25370 29783	748.38 751.12 748.11	0.15 0.14 0.17	NIST 1-5 NIST 1-5 NIST 1-5	42.65 43.39 45.16	42.24 43.15 44.76	41.12 41.91 43.64

LABORATORY

176954

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	1/9/2010		
Value on above date	1.06140	Bq/gm =	8985 TU
Dilution factor	1		
Concentration of dilution	1.06140	Bq/gm =	8984.77 TU

Standard Activity			
Background count rate	1.286	+/-	0.036 cpm
Standard count rate	42.289	+/-	0.230 cpm
Net activity	41.003	+/-	0.233 cpm
Grams of sample	1.9927		grams
Net standard activity per gram	20.576	+/-	0.117 cpm/gm
TU/cpm/gm	436.65	+/-	2.48

Sample Activity				
Background rate	1.286	+/-	0.036	cpm
Sample count rate	1.420	+/-	0.038	cpm
Net activity	0.134	+/-	0.0521	cpm
Grams of sample	10.0078			grams
Net sample activity per gram	0.0134	+/-	0.0052	cpm/gm
TU	5.85	+/-	2.272	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	5.847 +/-	2.272 TU

LABORATORY # SAMPLE SOURCE:

Avg Standard Activity

TU/cpm/gm	437.03 +/-	2.43	

176954

methane

Sample Activity				
Background rate	1.326 +	⊦/-	0.037	cpm
Sample count rate	1.420 +	⊦/-	0.038	cpm
Net activity	0.094 +	⊦/-	0.0526	cpm
Grams of sample	10.0078			grams
Net sample activity per gram	0.0094 +	⊦/-	0.0053	cpm/gm
TU	4.10 +	⊦/-	2.298	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	4.100 +/-	2.298 TU

Report < 10.0 TU

LABORATORY

176955

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	1/9/2010		
Value on above date	1.06140	Bq/gm =	8985 TU
Dilution factor	1		
Concentration of dilution	1.06140	Bq/gm =	8984.77 TU

Standard Activity				
Background count rate	1.286	+/-	0.036	cpm
Standard count rate	42.289	+/-	0.230	cpm
Net activity	41.003	+/-	0.233	cpm
Grams of sample	1.9927			grams
Net standard activity per gram	20.576	+/-	0.117	cpm/gm
TU/cpm/gm	436.65	+/-	2.48	

Sample Activity	1			
Background rate	1.286	+/-	0.036	cpm
Sample count rate	1.348	+/-	0.037	cpm
Net activity	0.062	+/-	0.0513	cpm
Grams of sample	10.0557			grams
Net sample activity per gram	0.0062	+/-	0.0051	cpm/gm
TU	2.69	+/-	2.229	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	2.692 +/-	2.230 TU

LABORATORY # SAMPLE SOURCE:

Avg Standard Activity

TU/cpm/gm	437.03 +/-	2.43	

176955

methane

Sample Activity				
Background rate	1.326	+/-	0.037	cpm
Sample count rate	1.348	+/-	0.037	cpm
Net activity	0.022	+/-	0.0519	cpm
Grams of sample	10.0557			grams
Net sample activity per gram	0.0022	+/-	0.0052	cpm/gm
TU	0.95	+/-	2.256	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.951 +/-	2.256 TU

Report < 10.0 TU

COUNTER 1 Year 2009 NIST and BLANK Values

JOB #	NIST date	count date	Value +/- S	D	AVG NIST):		BLK o	late c	ount date	Value	+/- SD		AVG BLK :	Date reported
Batch cocktail: sep09-					(TU/cpm/g)								cpm	
	10-Sep	20-Sep	735.48 +/-	4.46			10-S	ep (1)	18-Sep	1.605	+/- (0.033		
							10-S	ep (2)	19-Sep	1.601	+/- (0.033	1.603 +/-	0.033
							20-N	ov (1)	20-Nov	1.581	+/- (0.033	1.595 +/-	0.033
									23-Nov	1.598	+/- (0.033	1.596 +/-	0.033
	20-Nov	25-Nov	746.82 +/-	4.20	741.15 +/-	4.33	20-N	ov (2)	24-Nov	1.601	+/- (0.033	1.597 +/-	0.033
							20-N	ov (1)	26-Nov	1.547	+/- (0.032	1.589 +/-	0.033
	20-Nov	28-Nov	743.27 +/-	4.17	741.85 +/-	4.28	20-N	ov (2)	27-Nov	1.580	+/- (0.033	1.587 +/-	0.033
							20-N	ov (1)	29-Nov	1.535	+/- (0.032	1.581 +/-	0.032 New A/C
	20-Nov	1-Dec	748.16 +/-	4.21	743.43 +/-	4.26	20-N	ov (2)	30-Nov	1.537	+/- ().032	1.576 +/-	0.032
Job 12373 CNC	23-Dec	25-Dec	735.71 +/-	4.07	741.89 +/-	4.22	2	3-Dec	24-Dec	1.576	+/- (0.032	1.576 +/-	0.032

COUNTER #1

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	12/25/2009		
Value on above date	1.06385	Bq/gm =	9006 TU
Dilution factor	1		
Concentration of dilution	1.06385	Bq/qm =	9005.54 TU

Standard Activity		
Background count rate	1.576 +/-	0.032 cpm
Standard count rate	26.182 +/-	0.132 cpm
Net activity	24.606 +/-	0.136 cpm
Grams of sample	2.0102	grams
Net standard activity per gram	12.241 +/-	0.068 cpm/gm
TU/cpm/gm	735.71 +/-	4.07

Counting efficiency

total cpm net actvy (cpm) **efficiency %** 63.83 TU of std *0.007088 12.241 (std count - bkgrd count)/wt std 19.18 net actvy/total cpm

DATA FILE JOB # Count dates:	013 12373 CNC 12-24 through	counter 1 12-28-09			
Position #	1	2	3	4	
Sample ID	Blank	NIST 2.0102 g	177010	177011	
		new cocktail	DC	DC	
Cocktail date	23-Dec	23-Dec	24-Dec	24-Dec	
Date counted	24-Dec	25-Dec	26-Dec	27-Dec	

POS	FNCT1	FNCT2	FNCT3	FNCT4	CPMW5	CPMW6	SQPE	SQPI	CPM	CTIME	TIME	DATE	RPT
	1 1.3	9 1.39	1.32	1.32	1.4	3.6	784.43	212.09	3.	6 6000	11:41 AM	12/24/2009	1
	1 1.4	8 1.48	3 1.43	1.43	1.5	4	783.5	213.72		4 6000	1:22 PM	12/24/2009	2
	1 1.3	2 1.32	. 1.27	1.27	1.3	3.8	783.76	217.87	3.	8 6000	3:02 PM	12/24/2009	3
	1 1.5	9 1.59) 1.5	1.5	1.6	3.9	783.81	208.38	3.	9 6000	4:43 PM	12/24/2009	4
	1 1.5	2 1.52	. 1.45	1.45	1.5	4	783.5	205.98		4 6000	6:24 PM	12/24/2009	5
	1 1.7	1 1.71	1.61	1.61	1.7	4	783.39	204.03		4 6000	8:05 PM	12/24/2009	6
	1 1.5	5 1.55	i 1.44	1.44	1.5	3.9	784.01	212.45	3.	9 6000	9:46 PM	12/24/2009	7
	1 16	6 1.66	157	1.57	17	4.5	783.5	213 22	4	5 6000	11.27 PM	12/24/2009	8
	1 17	7 177	1.07	1.07	1.1	4.3	783 14	202 51	4	3 6000	1:08 AM	12/25/2009	9
	1 16	3 163	1.70	1.70	1.0	1.0	783 39	207.78		4 6000	2:49 AM	12/25/2009	10
	1 1.0	8 1.68	1.02	1.61	1.0	13	783.86	201.10	1	- 0000 3 6000	4:30 AM	12/25/2000	10
	1 1.0	2 1.00) 1.01) 1.7	' 17	1.7	4.0	783.7	200.02	4. 1	3 6000	6.11 AM	12/25/2009	12
	1 1.0	Z 1.02 7 1.02	. 1.7	1.7	1.0	4.0	703.7	200.03		5 0000 7 6000	7.61 AM	12/25/2009	12
	1 1.3	I 1.37	1.31	1.31	1.4	3.7	703.03	214.90	J.	0000	7.51 AIVI	12/25/2009	13
	1 1.5	0 1.00 6 1.6) 1.47 : 1.60	1.47	1.0	3.9	703.70	206.44	J.	9 0000	9.32 AIVI	12/25/2009	14
	I I.			1.50	1.0	4.1	763.91	205.71	4.	1 6000	11:13 AIVI	12/25/2009	15
	2 27.3	8 27.42	26.96	26.92	27.4	31.4	783.39	123.08	31.	4 6000	12:54 PM	12/25/2009	1
	2 26.4	2 26.43	26.02	26.01	26.4	30.3	783.34	123.08	30.	3 6000	2:35 PIVI	12/25/2009	2
	2 26.2	4 26.26	25.79	25.77	26.3	29.9	782.77	121.7	29.	9 6000	4:16 PM	12/25/2009	3
	2 25.3	2 25.35	24.93	24.9	25.4	28.8	783.08	121.19	28.	7 6000	5:57 PM	12/25/2009	4
	2 25.3	6 25.4	25.04	24.99	25.4	29.2	783.76	122.54	29.	2 6000	7:38 PM	12/25/2009	5
	2 26.5	4 26.57	26.08	26.05	26.6	30.2	783.55	121.8	30.	2 6000	9:19 PM	12/25/2009	6
	2 25.8	1 25.81	25.42	25.42	25.8	29.6	784.17	123.11	29.	6 6000	11:00 PM	12/25/2009	7
	2 26.0	6 26.08	3 25.64	25.62	26.1	29.5	783.7	120.81	29.	5 6000	12:41 AM	12/26/2009	8
	2 26.3	7 26.4	25.98	25.95	26.4	30	783.39	121.8	3	0 6000	2:21 AM	12/26/2009	9
	2 26.5	7 26.61	26.18	26.13	26.6	30	784.38	119.85	3	0 6000	4:02 AM	12/26/2009	10
	2 25.8	6 25.88	3 25.42	25.4	25.9	29.3	783.55	119.59	29.	3 6000	5:43 AM	12/26/2009	11
	2 25.1	9 25.21	24.72	24.7	25.2	28.7	783.55	121.55	28.	7 6000	7:24 AM	12/26/2009	12
	2 26.3	6 26.39	26.03	26	26.4	29.9	783.65	120.31	29.	9 6000	9:05 AM	12/26/2009	13
	2 26.5	5 26.56	6 26.13	26.12	26.6	30	784.53	121.04	3	0 6000	10:46 AM	12/26/2009	14
	2 26.	7 26.73	26.34	26.32	26.7	30.4	783.29	120.7	30.	4 6000	12:27 PM	12/26/2009	15
	3 1.	5 1.5	5 1.45	1.45	1.5	3.8	783.5	205.86	3.	8 6000	2:08 PM	12/26/2009	1
	3 1.7	1 1.71	1.64	1.64	1.7	4.5	782.88	209.89	4.	5 6000	3:49 PM	12/26/2009	2
	3 1.2	8 1.28	1.25	1.25	1.3	3.7	783.29	217.03	3.	7 6000	5:30 PM	12/26/2009	3
	3 1.	6 1.6	6 1.54	1.54	1.6	4	782.31	210.22		4 6000	7:11 PM	12/26/2009	4
	3 1.	5 1.5	5 1.41	1.41	1.5	3.8	783.34	206.81	3.	8 6000	8:52 PM	12/26/2009	5
	3 1.5	4 1.54	1.45	1.45	1.5	3.6	782.72	209.37	3.	6 6000	10:33 PM	12/26/2009	6
	3 1.4	1 1.41	1.36	1.36	1.4	3.7	782.41	213.18	3.	7 6000	12:13 AM	12/27/2009	7
	3 1.4	7 1.49	1.45	1.44	1.5	4	783.65	205.97		4 6000	1:54 AM	12/27/2009	8
	3 1.	5 1.5	i 1.42	1.42	1.5	3.8	783.7	212.96	3.	8 6000	3:35 AM	12/27/2009	9
	3 1.4	3 1.43	1.36	1.36	1.4	3.8	783.7	213.89	3.	8 6000	5:16 AM	12/27/2009	10
	3 15	9 1.59	15	15	1.6	4.3	784 12	218 68	4	3 6000	6.57 AM	12/27/2009	11
	3 14	3 143	1 34	1.34	1.4	3.9	783.08	214 45	3	9 6000	8:38 AM	12/27/2009	12
	3 15	7 157	1.52	1.52	1.6	3.8	782 47	203 47	3	8 6000	10.19 AM	12/27/2009	13
	3 1	6 16	151	1.51	1.6	4	784 12	209.22	0.	4 6000	12:00 PM	12/27/2009	14
	3 15	1 151	1.01	1.01	1.0	30	783.14	200.22	3	9 6000	1:40 PM	12/27/2009	15
	0 1.0 4 1.4	3 1/3	1.40	1.40	1.0	3.0	783.76	201.42	3	9 6000 9 6000	3.21 DM	12/27/2000	10
	4 1.4	2 1.40	1.07	1.07	1.4	3.0	782.65	211.02	3.	0000 e	5:02 DM	12/27/2009	1
	4 1.5	3 1.00 7 1.57) I.41 / 1.41	1.41	1.0	3.9	703.03	213.14	з.	9 6000	5.02 FIV	12/27/2009	2
	4 1.5	1 1.57	1.44	1.44	1.0	4	703.0	200.17	2	4 0000 9 6000	0.43 FIV	12/27/2009	3
	4 1.5	4 1.54	1.49	1.49	1.0	3.0	703.24	206.32	J.	6 6000 5 6000	0.24 PIVI	12/27/2009	4
	4 1.4	4 1.44	1.30	1.30	1.4	3.5	704.12	210.46	з.	5 6000	10:05 PIVI	12/27/2009	5
	4 1.6	7 1.68	1.56	1.55	1.7	4	783.39	205.39		4 6000	11:46 PIVI	12/27/2009	6
	4 1.6	1.67	1.63	1.63	1.7	4	/84.48	206.73	~	4 6000	1:27 AM	12/28/2009	7
	4 1.3	o 1.36	1.24	1.24	1.4	3.8	/83.6	211.78	3.	в 6000	3:08 AM	12/28/2009	8
	4 1.4	2 1.42	1.38	1.38	1.4	3.8	/83.34	205.33	3.	в 6000	4:48 AM	12/28/2009	9
	4 1.6	5 1.65	1.62	1.62	1.7	3.9	783.7	207.91	3.	9 6000	6:29 AM	12/28/2009	10
	4 1.	5 1.5	5 1.47	1.47	1.5	3.9	783.91	212.73	3.	9 6000	8:10 AM	12/28/2009	11
	4 1.4	8 1.48	3 1.42	1.42	1.5	3.6	783.96	205.77	3.	6 6000	9:51 AM	12/28/2009	12
	4 1.5	3 1.54	1.46	1.45	1.5	3.9	783.86	213.38	3.	9 6000	11:32 AM	12/28/2009	13
	4 1.4	7 1.49	1.43	1.42	1.5	4	783.08	210.38		4 6000	1:13 PM	12/28/2009	14
	4 1.4	8 1.48	1.39	1.39	1.5	3.7	783.03	208	3.	7 6000	2:54 PM	12/28/2009	15

LABORATORY

177010

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	12/25/2009		
Value on above date	1.06385	Bq/gm =	9006 TU
Dilution factor	1		
Concentration of dilution	1.06385	Bq/gm =	9005.54 TU

Standard Activity			
Background count rate	1.576	+/-	0.032 cpm
Standard count rate	26.182	+/-	0.132 cpm
Net activity	24.606	+/-	0.136 cpm
Grams of sample	2.0102		grams
Net standard activity per gram	12.241	+/-	0.068 cpm/gm
TU/cpm/gm	735.71	+/-	4.07

Sample Activity	1			
Background rate	1.576	+/-	0.032	cpm
Sample count rate	1.586	+/-	0.033	cpm
Net activity	0.010	+/-	0.0462	cpm
Grams of sample	10.0175			grams
Net sample activity per gram	0.0010	+/-	0.0046	cpm/gm
TU	0.73	+/-	3.396	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.734 +/-	3.396 TU

LABORATORY # SAMPLE SOURCE:

|--|

177010

water

Sample Activity			
Background rate	1.576 +	-/- 0.0	032 cpm
Sample count rate	1.586 +	-/- 0.0	033 cpm
Net activity	0.010 +	-/- 0.04	163 cpm
Grams of sample	10.0175		grams
Net sample activity per gram	0.0010 +	-/- 0.00)46 cpm/gm
TU	0.74 +	-/- 3.4	126

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.741 +/-	3.426 TU

Report < 10.0 TU

LABORATORY

177011

NIST standard calculations			
Standardization date	9/3/1998		
Standardized value	2.00900	Bq/gm	
Date of measurement	12/25/2009		
Value on above date	1.06385	Bq/gm =	9006 TU
Dilution factor	1		
Concentration of dilution	1.06385	Bq/gm =	9005.54 TU

Standard Activity				
Background count rate	1.576	+/-	0.032	cpm
Standard count rate	26.182	+/-	0.132	cpm
Net activity	24.606	+/-	0.136	cpm
Grams of sample	2.0102			grams
Net standard activity per gram	12.241	+/-	0.068	cpm/gm
TU/cpm/gm	735.71	+/-	4.07	

Sample Activity	1			
Background rate	1.576	+/-	0.032	cpm
Sample count rate	1.586	+/-	0.032	cpm
Net activity	0.010	+/-	0.0454	cpm
Grams of sample	9.9941			grams
Net sample activity per gram	0.0010	+/-	0.0045	cpm/gm
TU	0.74	+/-	3.342	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.736 +/-	3.342 TU

LABORATORY # SAMPLE SOURCE:

Avg Standard Activity

TU/cpm/gm	741.89 +/-	4.22	

177011

water

Sample Activity				
Background rate	1.576	+/-	0.032	cpm
Sample count rate	1.586	+/-	0.032	cpm
Net activity	0.010	+/-	0.0454	cpm
Grams of sample	9.9941			grams
Net sample activity per gram	0.0010 ·	+/-	0.0045	cpm/gm
TU	0.74 ·	+/-	3.371	

Sample Enrichment		
Initial amount of water	1	
final amount of water	1	
Enrichment factor	1 +/-	0.01
Tf/To	1.00 +/-	0.010
TRITIUM CONC. OF SAMPLE	0.742 +/-	3.371 TU

Report < 10.0 TU

ATTACHMENT D

Beta Analytic Quality Assurance and Quality Control Documentation

Consistent Accuracy... Delivered On Time. Beta Analytic Inc. 4985 SW 74 Court Miami, Florida 33155 USA Tel: 305 667 5167 Fax: 305 663 0964 Beta@radiocarbon.com Www.radiocarbon.com

Mr. Ronald Hatfield Mr. Christopher Patrick Deputy Directors

Quality Assurance at BETA;

Beta has been providing routine radiocarbon dating services since 1979. In that time we have produced over 275,000 Radiocarbon results for more than 10,600 researchers' world wide (approximately 145,000 Radiometric (LSC) dates and 130,000 AMS dates). <u>There are arguably more BETA radiocarbon dates in publication today than all of the other radiocarbon laboratories in the world combined.</u>

Beta is and always has been a professional radiocarbon dating laboratory. Our sole mission is to produce accurate, precise, on-time results in a professional and courteous manner and to provide our clients with the highest levels of quality and customer service. We are not distracted by personal research or outside commitments and you have 100% of our attention and efforts applied to every sample we receive.

BETA is the only radiocarbon dating laboratory in the world to have achieved Accreditation to the ISO/ISE 17025:2005 International Laboratory Testing Standard (certificate attached). This accreditation not only attests to our quality in management (laboratories accredited to ISO 17025 also operate in conformance to the ISO 9001:2008 standard) but also and more importantly is an accreditation of our technical competency in all areas of radiocarbon measurements (see scope of testing, certificate 2nd page). This accreditation is performed by an outside technical party who is recognized by ISO and over 60 of the world's leading laboratory accreditation bodies, (Perry Johnson Laboratory Accreditation www.pjlabs.com). We are annually audited for our management, facilities and technical operations by PJLA to insure that we are operating to the required standards of quality management, testing and customer service required by the ISO standard.

Additionally, we are also the only Radiocarbon dating facility to ever be listed as a <u>"Qualified Supplier" of Radiocarbon Determinations to the Yucca Mountain Project</u> overseen by the US Geological Survey and Department of Energy (we have been audited by the USGS/DOE annually since 1994). This site will be used to store all of the radioactive waste created by reactors and defence contractors in the US and is one of the most highly regulated and scientifically important projects in American history.

Beta Analytic Inc. 4985 SW 74 Court Miami, Florida 33155 USA Tel: 305 667 5167 Fax: 305 663 0964 Beta@radiocarbon.com Www.radiocarbon.com

Mr. Ronald Hatfield Mr. Christopher Patrick Deputy Directors

Consistent Accuracy... Delivered On Time.

> BETA has and continues to participate in all International Radiocarbon Intercalibration Studies. Our results are and have always been impeccable (see attached results spanning from 1990 to 2008)

> BETA is the most calibrated and inter-calibrated radiocarbon laboratory in the world. Since 1984 (when we started keeping computer records) we have analyzed more than 50,000 total known age International Standards, Blanks and Internal QA blinds by AMS and over 80,000 by Radiometric counting. This is in addition to the 275,000 unknown dates reported to our client-colleagues. <u>We have run vastly more standards than most other laboratories have run samples.</u>

These standards are run on a daily basis and interspersed between the synthesis and counting of your samples. In addition we cross-count these standards on a daily basis between our Radiometric and AMS divisions, insuring that regardless of the technique chosen, the results are correct and inter-comparable.

<u>Since 1984, approximately 40% of all AMS measurements and 56% of Radiometric</u> <u>measurements have been performed on NIST traceable Standards, Blanks, known age or QA</u> <u>samples.</u>

As you can see we take the quality of our results <u>VERY</u> seriously because they represent your as well as our reputations, livelihoods and in many instances provide man's only irreplaceable glimpse of our past and quite possibly future.

If you have any questions regarding the above or our ISO/ISE 17025:2005 Accredited Testing programs, please feel free to contact me at any time.

Cheers,

Ron

R.E. Hatfield Deputy Director / Quality Manager

Beta Analytic Inc. is an Accredited ISO/ISE 17025:2005 testing laboratory operating in conformance with ISO 9001:2008; having demonstrated both the technical competency and management system requirements necessary to consistently deliver technically valid test results. These standards are universally recognized as the highest level of quality attainable by a testing laboratory.

4.2.2 Quality Policy Statement

Policy:

The policies and objectives for laboratory operations are documented in this Quality Manual. The overall objectives are set out in the Quality Policy Statement and reviewed during management review. The Quality Policy Statement is issued under the authority of the President / Director on the effective date.

Effective Date: September 1, 2010

Quality Policy Statement:

BETA Analytic Inc is committed to the continuous improvement of our Quality Management System, which will insure that we will be able to provide the accurate and on-time delivery of radiocarbon content measurements, while continuously meeting or exceed the stated and/or implied expectations of our customers through day-to-day interactions.

a) *Management is commitment to good professional practices and the quality of services provided to the customer*: Tests are only carried out in accordance with stated standardized methods and/or as requested / required by the customer.

Requests to perform tests that may jeopardize an objective result or have which may have a low validity are not performed.

- b) Standards of Service include:
- Quality BEFORE Delivery test results are only reported when we are sure of the accuracy and precision as stated. Results that have not been verified through the defined quality system will not be reported regardless of stated or required delivery.
- Accuracy and Precision of Results The highest possible accuracy and precision will be required of all testing results reported.
- Timely Delivery of Results, when not at the expense of quality of the results
- Customer Support and Satisfaction before during and after reporting of results

QUALITY MANUAL – CONTROLLED COPY Effective Date 09/01/2010

BETA Radiocarbon Dating Consistent Accuracy Delivered On-Time	Quality Manual BETA Analytic Incorporated	Issue Date: 09/01/2010	Rev.: 2
Section 4.2 – Management System	n		Page #: 2 of 2

Excellence in the workplace will be promoted and maintained by providing all employees with the knowledge, training, and tools necessary to allow for the completion of the highest quality work, reported with accuracy an in and timely manner.

c) *Purpose of management system related to quality*: To manage our business by adhering to the requirements of our stated Quality and Management goals, Technical and Implementing procedures, while meeting the needs and requirements of our customers.

d) *Personnel*: Will be fully trained with regards to all appropriate quality systems and necessary documentation and will implement the defined policies and procedures in all aspects of their work.

e) *Management is committed to complying with ISO 17025 international standards and to continually improve the effectiveness of the management system*: the objective of this Quality Manual is to document the compliant policies and associated procedures that are integrated into our daily activities. Continual improvements are established, implemented, and locked into the management system.

Additional objectives include:

- ➢ to constantly evaluate and improve the level of the laboratory's performance
- to make test method changes to improve performance
- to participate in proficiency testing or quality evaluation programs with peer laboratories and or governing bodies
- ➤ to ensure that all personnel are trained to a level of familiarity with the quality management system appropriate to the individual's degree of responsibility
- to improve and validate laboratory methodologies by participation in method validation collaborative tests
- to establish and report on quality savings

Consistent Accuracy Delivered On-Time

We thought you'd like to know what our Accreditation as a Testing Laboratory to ISO 17025 Standards means for you.

- Your radiocarbon results have been produced by the <u>ONLY</u> Radiocarbon Laboratory in the world that has achieved Accreditation to ISO/IEC 17025:2005 *Testing Standards* and represent the highest level of internationally recognized quality attainable.
- Instant recognition of the technical validity of your radiocarbon test results by other researchers, governmental agencies, international organizations and over 60 of the world's most respected laboratory accreditation bodies, including;

ISO - International Organization for Standardization,
 ILAC - International Laboratory Accreditation Cooperation
 IAF - International Accreditation Forum
 APLAC - Asian Pacific Laboratory Cooperation
 NACLA - National Cooperation for Laboratory Accreditation

• Our on-going commitment to the continuous improvement of our Quality Management System, Technical and Implementing Procedures and Customer Service, through annual surveillance audits by an impartial, internationally recognized laboratory accreditation body; PJLA – Perry Johnson Laboratory Accreditation (www.pjla.com)

"This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system" Refer to the joint ISO-ILAC-IAF Communiqué date 18 June 2005" listed below

Joint ISO-ILAC-IAF Communiqué on the Management Systems Requirements of ISO/IEC 17025:2005

"A laboratory's fulfillment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. Testing and calibration laboratories that comply with this International Standard will therefore also operate in accordance with ISO 9001."

October 29, 2010

Mr. Ronald E. Hatfield BETA Analytic, Inc. 4985 SW 74th Court Miami, Florida 33155

Dear Mr. Ronald E. Hatfield

This letter confirms your ISO/IEC 17025: 2005 re-accreditation assessment was concluded on 10/18/2010 with PJLA assessor, Doug Berg.

As I am sure you are aware, your current ISO/IEC 17025: 2005 Certificate expires on 10/31/2010. This letter extends that certificate, issued to the address above, until December 31, 2010.

A new certificate will be issued following the completion of the ISO/IEC 17025: 2005 assessment, the acceptance of any corrective action, the recommendation of the executive committee for re-accreditation, and/ or full payment for the assessment, as applicable.

If we can be of any further assistance to you, please feel free to contact me directly. Thank you for selecting Perry Johnson Laboratory Accreditation, Inc.

Cordially,

Tracy Szerszen Operations Manager

Certificate of Accreditation

Perry Johnson Laboratory Accreditation, Inc., has assessed the Laboratory of:

BETA Analytic Inc. 4985 SW 74th Court Miami, Florida 33155

(Hereinafter called the Organization) and bereby declares that Organization is accredited in accordance with the recognized International Standard:

ISO/IEC 17025:2005

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (as outlined by the joint ISO-JLAC-PAF Communiqué dated January 2009):

Measurement of Natural Levels of Radiocarbon by Accelerator Mass Spectrometry (AMS), Liquid Scintillation Counting (LSC) and /or Proportional Scintillation-Counter Method (PSM), and the Stable Isotopes Ratios of Carbon, Nitrogen, and Oxygen by Isotope Ratio Mass Spectrometry (IRMS) (As detailed in the supplement)

Such testing and/or calibration services shall only be offered at or from the address given above. This Accreditation is granted subject to the system rules governing the Accreditation referred to above, and the Organization hereby covenants with the Accreditation body's duty to observe and comply with the said rules.

For PJLA: Tracy Szerszen

President/Operations Manager

Perry Johnson Laboratory

Accreditation, Inc. (PJLA) 26555 Evergreen, Suite 1325

Southfield, Michigan 48076

Initial Accreditation Date: November 01, 2008

Issue Date: November 01, 2008

The validity of this certificate is mandated through ongoing surveillance.

Revision Date: December 23, 2009

Expiration Date: October 31, 2010

Accreditation No: 59423

Certificate No: L08-89-R1

Page No: Page 1 of 2

Certificate of Accreditation: Supplement

BETA Analytic Inc. 4985 SW 74th Court Miami, Florida 33155

Accreditation is granted to this facility to perform the following testing:

FIELD OF TEST	ITEMS, MATERIALS OR PRODUCTS TESTED	SPECIFIC TESTS OR PROPERTIES MEASURED	SPECIFICATION, STANDARD METHOD OR TECHNIQUE USED	RANGE (WHERE APPROPRIATE) AND DETECTION LIMIT
Chemical Testing	Archaeological / Geological Materials and Water	Determination of Radiocarbon Age / Activity: Measurement of ^{14/13} C, ^{14/12} C, ^{13/12} C	Determination of Radiocarbon Content: by the Benzene Method (LSC) and Accelerator Mass Spectrometry (AMS)	Range (LSC or AMS): From Present Day back to 47 000 years BP Detection Limit (AMS or LSC): 47 000 BP
2	Organic and Carbonate Materials	Determination of Stable Isotope Ratios: Measurement of ^{13/12} C, ^{15/14} N, ^{18/16} O	Stable Isotope Ratios (by Isotope Ratio Mass Spectrometry – IRMS)	Range: '100 per mil to 100 per mil Detection Limit: 0.05 mV mass 13 output
	Any Carbon containing material; solid, liquid or gaseous forms	Determination of the Biobased Carbon Content of Natural Range	ASTM D6866-B (By AMS Counting)	Range: 0% pMC to 198% pMC Detection Limit: 0.28 pMC
*		Materials: $^{14/13}$ C, $^{14/12}$ C and $^{13/12}$ C	ASTM D6866-C (By LSC Counting)	Range: 0% pMC to 198% pMC Detection Limit: 0.37 pMC
	Solid Materials; Specifically solid recovered fuels (SRF) or refuse derived fuels (RDF)	Determination of Bio-Carbon Content: Measurement of ^{14/13} C, ^{14/12} C and	CEN/TS 15747:2008 CEN/TR 15591:2007	Range (AMS): 0% pMC to 198% pMC Detection Limit: 0.28 pMC
		^{13/12} C		Range (LSC/PSM): 0% pMC to 198% pMC Detection Limit: 0.37 pMC

9ssued: 11/08

This supplement is in conjunction with certificate # 208-89-R1

Joint IAF-ILAC-ISO Communiqué

on the Management Systems Requirements of ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories

A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements and are aligned with its pertinent requirements.

ale

IAF Chair

ILAC Chair

ISO Secretary General

January 2009

BETA IAEA, TIRI, FIRI AND VIRI COMPARATIVE RESULTS

Fifth International Radiocarbon Intercalibration (VIRI) Stage 3 (2008-2009)	EXPECTED or CONSENSUS AGE	BETA RADIOMETRIC AGE	BETA AMS AGE	Statistical Agreement with the Consensus Age
Sample Identifier J - Humic Acid	43230 +/- 140 BP	Sample Available for AMS Labs Only	43850 +/- 1050 BP	Yes
K - Wood 1	59920 +/- 870 BP ("Radiocarbon Dead")	Sample Available for AMS Labs Only	> 47000 BP ("Radiocarbon Dead")	Yes
L - Wood2	2230 +/- 6 BP	Sample Available for AMS Labs Only	2320 +/- 40 BP	Yes
M - Wood 3 Loch Tay	2430 +/- 6 BP	Sample Available for AMS Labs Only	2440 +/- 40 BP	Yes
N - Wood 4 Loch Tay	2440 +/- 6 BP	NA	2450 +/- 40 BP	Yes
O - Cellulose	120 +/- 6 BP	NA	140 +/- 40 BP	Yes
P - Charcoal	1750 +/- 10 BP	Sample Available for AMS Labs Only	We did not receive this VIRI Sample for Measurement	NA
Q - Charcoal	640 +/- 6 BP	Sample Available for AMS Labs Only	620 +/- 40 BP	Yes
R - Shell Murex	2490 +/- 6 BP	NA	2520 +/- 40 BP	Yes
S - Barley Mash	109.96 +/- 0.04 pMC	NA	110.3 +/- 0.4 pMC	Yes
T - Humic Acid	3360 +/- 6 BP	Sample Available for AMS Labs Only	3360 +/- 40 BP	Yes
U - Humic Acid (Same as FIRI - E Above)	11780 +/- 10	11770 +/- 70	11810 +/- 50 BP	Yes
Fifth International Radiocarbon Intercalibration (VIRI)	EXPECTED or	BETA	BETA	Statistical Agreement
Stage 2 (2006-2007) Sample Identifier	CONSENSUS AGE	RADIOMETRIC AGE	AMS AGE	with the Consensus Age
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone	CONSENSUS AGE 39301 +/- 121 BP	RADIOMETRIC AGE Sample Available for AMS Labs Only	AMS AGE 39580 +/- 880 BP	with the Consensus Age Yes
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP	RADIOMETRIC AGE Sample Available for AMS Labs Only Sample Available for AMS Labs Only	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP	with the Consensus Age Yes Yes
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone G - Human Bone	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP 969 +/- 5 BP	RADIOMETRIC AGE Sample Available for AMS Labs Only Sample Available for AMS Labs Only Sample Available for AMS Labs Only	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP 950 +/- 40 BP	with the Consensus Age Yes Yes Yes
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone G - Human Bone H - Whale Bone	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP 969 +/- 5 BP 9528 +/- 7 BP	RADIOMETRIC AGE Sample Available for AMS Labs Only	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP 950 +/- 40 BP 9530 +/- 40 BP	with the Consensus Age Yes Yes Yes Yes
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone G - Human Bone H - Whale Bone I - Whale Bone	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP 969 +/- 5 BP 9528 +/- 7 BP 8331 +/- 6 BP	RADIOMETRIC AGE Sample Available for AMS Labs Only	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP 950 +/- 40 BP 9530 +/- 40 BP 8350 +/- 40 BP	with the Consensus Age Yes Yes Yes Yes Yes
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone G - Human Bone H - Whale Bone I - Whale Bone Fifth International Radiocarbon Intercalibration (VIRI) Stage 1 (2005-2006) Sample Identifier	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP 969 +/- 5 BP 9528 +/- 7 BP 8331 +/- 6 BP EXPECTED or CONSENSUS AGE	RADIOMETRIC AGE Sample Available for AMS Labs Only BETA RADIOMETRIC AGE	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP 950 +/- 40 BP 9530 +/- 40 BP 8350 +/- 40 BP 8350 +/- 40 BP	with the Consensus Age Yes Yes Yes Yes Statistical Agreement with the Consensus Age
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone G - Human Bone H - Whale Bone I - Whale Bone Fifth International Radiocarbon Intercalibration (VIRI) Stage 1 (2005-2006) Sample Identifier A - Barley Mash	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP 969 +/- 5 BP 9528 +/- 7 BP 8331 +/- 6 BP CONSENSUS AGE 109.1 +/- 0.04 pMC	RADIOMETRIC AGE Sample Available for AMS Labs Only BETA RADIOMETRIC AGE 108.0 +/- 0.6 pMC	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP 950 +/- 40 BP 9530 +/- 40 BP 8350 +/- 40 BP 8350 +/- 40 BP 108.4 +/- 0.4 pMC	with the Consensus Age Yes Yes Yes Yes Statistical Agreement with the Consensus Age Yes Yes
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone G - Human Bone H - Whale Bone I - Whale Bone Fifth International Radiocarbon Intercalibration (VIRI) Stage 1 (2005-2006) Sample Identifier A - Barley Mash B - Seed / Grain	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP 969 +/- 5 BP 9528 +/- 7 BP 8331 +/- 6 BP EXPECTED or CONSENSUS AGE 109.1 +/- 0.04 pMC 2820 +/- 3.3 BP	RADIOMETRIC AGE Sample Available for AMS Labs Only BETA RADIOMETRIC AGE 108.0 +/- 0.6 pMC 2920 +/- 60 BP	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP 950 +/- 40 BP 9530 +/- 40 BP 8350 +/- 40 BP BETA AMS AGE 108.4 +/- 0.4 pMC 2840 +/- 40 BP	with the Consensus Age Yes Yes
Stage 2 (2006-2007) Sample Identifier E - Mammoth Bone F - Horse Bone G - Human Bone H - Whale Bone I - Whale Bone Fifth International Radiocarbon Intercalibration (VIRI) Stage 1 (2005-2006) Sample Identifier A - Barley Mash B - Seed / Grain C - Barley Mash	CONSENSUS AGE 39301 +/- 121 BP 2513 +/- 5 BP 969 +/- 5 BP 9528 +/- 7 BP 8331 +/- 6 BP EXPECTED or CONSENSUS AGE 109.1 +/- 0.04 pMC 2820 +/- 3.3 BP 110.7 +/-0.04 pMC	RADIOMETRIC AGE Sample Available for AMS Labs Only BETA RADIOMETRIC AGE 108.0 +/- 0.6 pMC 2920 +/- 60 BP 108.7 +/- 0.6 pMC	AMS AGE 39580 +/- 880 BP 2560 +/- 40 BP 950 +/- 40 BP 9530 +/- 40 BP 8350 +/- 40 BP 8350 +/- 40 BP 108.4 +/- 0.4 pMC 2840 +/- 40 BP 111.0 +/- 0.4 pMC	with the Consensus Age Yes Yes Yes Yes Statistical Agreement with the Consensus Age Yes Yes Yes Yes Yes

BETA IAEA, TIRI, FIRI AND VIRI COMPARATIVE RESULTS

Fourth International Radiocarbon Intercalibration (FIRI) (1999 - 2001)	EXPECTED or CONSENSUS AGE	BETA RADIOMETRIC AGE	BETA AMS AGE	Statistical Agreement with the Consensus Age
Sample Identifier				
A - Kauri Wood	45868 +/- NA	> 43760 BP	45970 +/- 790 BP	Yes Yes
B - Kauri Wood	46504 +/- NA	> 44650 BP	46660 +/- 770 BP	Yes Yes
C - Marine Turbidite	18173 +/- 11 BP	18110 +/- 110 BP	18170 +/- 50 BP	Yes Yes
D - Belfast Pine	4508 +/- 3 BP	4360 +/- 60 BP	4500 +/- 20BP	Yes Yes
E - Humic Acid (Same As VIRI - U Below)	11778 +/- 7 BP	11600 +/- 70 BP	11770 +/- 70 BP	Yes Yes
F - Belfast Pine	4508 +/- 3 BP	4450 +/- 50 BP	4470 +/- 20 BP	Yes Yes
G - Glengoyne Barley Mash	110.69 +/-0.1% Modern	110.4 +/- 0.6% Modern	110.8 +/-0.3% Modern	Yes Yes
H - Hohenheim Oak	2232 +/- 5 BP	2200 +/- 50 BP	2180 +/- 20 BP	Yes Yes
I- Belfast Cellulose	4485 +/- 5 BP	4380 +/- 50 BP	4500 +/- 20 BP	Yes Yes
J - Glengoyne Barley Mash	110.69 +/-0.1% Modern	109.4 +/-0.7% Modern	110.9 +/- 0.3% Modern	Yes Yes
Third International Radiocarbon Intercalibration (TIRI)	EXPECTED or	ВЕТА	BETA	Statistical Agreement
(1991 - 1993)	CONSENSUS AGE	RADIOMETRIC AGE	AMS AGE	Age
(1991 - 1993) Sample Identifier	CONSENSUS AGE	RADIOMETRIC AGE	AMS AGE	Age
(1991 - 1993) Sample Identifier A - Barley Mash	CONSENSUS AGE 116.4 +/-0.1% Modern	RADIOMETRIC AGE 116.7 +/-0.6% Modern	AMS AGE 116.3 +/-0.6% Modern	Age Yes Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP	Yes Yes Yes Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern	Yes Yes Yes Yes Yes Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP	Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat E - Ellanmore Humic	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP 11129 +/- 12 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP 11180 +/- 70 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP 11090 +/- 50 BP	Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat E - Ellanmore Humic H - Ellanmore Whole Peat	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP 11129 +/- 12 BP 11152 +/- 23 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP 11180 +/- 70 BP 10950 +/- 60 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP 11090 +/- 50 BP 10960 +/- 80 BP	Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat E - Ellanmore Humic H - Ellanmore Whole Peat I - Travertine	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP 11129 +/- 12 BP 11152 +/- 23 BP 11060 +/- 17 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP 11180 +/- 70 BP 10950 +/- 60 BP 10990 +/- 60 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP 11090 +/- 50 BP 10960 +/- 80 BP 11260 +/- 50 BP	Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat E - Ellanmore Humic H - Ellanmore Whole Peat I - Travertine J - Crannog Wood	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP 11129 +/- 12 BP 11152 +/- 23 BP 11060 +/- 17 BP 1605 +/- 8 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP 11180 +/- 70 BP 10950 +/- 60 BP 10990 +/- 60 BP 1510 +/- 50 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP 11090 +/- 50 BP 10960 +/- 80 BP 11260 +/- 50 BP 1550 +/- 60 BP	Age Age Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat E - Ellanmore Humic H - Ellanmore Humic I - Travertine J - Crannog Wood K - Turbidite Carbonate	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP 11129 +/- 12 BP 11152 +/- 23 BP 11060 +/- 17 BP 1605 +/- 8 BP 18155 +/- 34 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP 11180 +/- 70 BP 10950 +/- 60 BP 10990 +/- 60 BP 1510 +/- 50 BP 18190 +/- 100 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP 11090 +/- 50 BP 10960 +/- 80 BP 11260 +/- 50 BP 1550 +/- 60 BP 18290 +/- 70 BP	Age Age Age Age Yes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat E - Ellanmore Humic H - Ellanmore Humic H - Ellanmore Whole Peat I - Travertine J - Crannog Wood K - Turbidite Carbonate L - Whalebone	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP 11129 +/- 12 BP 11152 +/- 23 BP 11060 +/- 17 BP 1605 +/- 8 BP 18155 +/- 34 BP 12788 +/- 30 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP 11180 +/- 70 BP 10950 +/- 60 BP 10990 +/- 60 BP 1510 +/- 50 BP 18190 +/- 100 BP 12890 +/- 90 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP 11090 +/- 50 BP 10960 +/- 80 BP 11260 +/- 50 BP 1550 +/- 60 BP 18290 +/- 70 BP 12750 +/- 70 BP	AgeAgeAgeYes
(1991 - 1993) Sample Identifier A - Barley Mash B - Belfast Pine C - IAEA Cellulose D - Hekla Peat E - Ellanmore Humic H - Ellanmore Humic H - Ellanmore Whole Peat I - Travertine J - Crannog Wood K - Turbidite Carbonate L - Whalebone M - Icelandic Peat	CONSENSUS AGE 116.4 +/-0.1% Modern 4503 +/- 6 BP 129.7 +/-0.1% Modern 3810 +/- 7 BP 11129 +/- 12 BP 11152 +/- 23 BP 11060 +/- 17 BP 1605 +/- 8 BP 18155 +/- 34 BP 12788 +/- 30 BP 1682 +/- 15 BP	RADIOMETRIC AGE 116.7 +/-0.6% Modern 4480 +/- 60 BP 129.1 +/-0.6% Modern 3820 +/- 60 BP 11180 +/- 70 BP 10950 +/- 60 BP 10990 +/- 60 BP 1510 +/- 50 BP 18190 +/- 100 BP 12890 +/- 90 BP 1720 +/- 60 BP	AMS AGE 116.3 +/-0.6% Modern 4510 +/- 40 BP 129.8 +/-0.5% Modern 3800 +/- 70 BP 11090 +/- 50 BP 10960 +/- 80 BP 11260 +/- 50 BP 1550 +/- 60 BP 18290 +/- 70 BP 12750 +/- 70 BP	Age Age Age Age Age Yes Yes </td

* TIRI samples F and G gave widely varying results as reported by most laboratories. Sample F has since been shown to be radiocarbon dead (> 50 Ky). Sample G should have been sub-fossil. Both BETA results are consistent with those estimations.

BETA IAEA, TIRI, FIRI AND VIRI COMPARATIVE RESULTS

IAEA Radiocarbon Intercalibration (1990 to 1991)	EXPECTED or CONSENSUS AGE	BETA RADIOMETRIC AGE	BETA AMS AGE	Statistical Agreement with the Consensus Age
Sample Identifier				
C1 - Marble	0.00 +/- 0.02 pMC ("Radiocarbon Dead")	< 0.69 pMC < 0.65 pMC	AMS Dates were not produced at BETA until 1992	YES YES
C2 - Travertine	41.14 +/- 0.3 pMC	41.53 +/- 0.24 pMC 40.79 +/- 0.43 pMC	AMS Dates were not produced at BETA until 1992	YES YES
C3 - Cellulose	129.41 +/- 0.73 pMC	127.28 +/- 0.48 pMC 125.64 +/- 0.69 pMC	AMS Dates were not produced at BETA until 1992	YES NO Sample @ 2.65 Sigma Agreement
C4 - Wood	0.32 +/- 0.02 pMC ("Radiocarbon Dead")	< 0.55 pMC < 0.62 pMC ("Radiocarbon Dead")	AMS Dates were not produced at BETA until 1992	YES YES
C5 - Wood	23.05 +/- 0.24 pMC	22.94 +/- 0.19 pMC 23.53 +/- 0.22 pMC	AMS Dates were not produced at BETA until 1992	YES YES
C6 - Sucrose	150.6 +/- 0.7 pMC	149.76 +/- 0.54 pMC 147.71 +/- 0.88 pMC	AMS Dates were not produced at BETA until 1992	YES YES

ATTACHMENT E

Chain-of-Custody Documents

Send Data	a and Invoice to				÷	ISOTE	°H
Name:	JANES W. HIX		Project:	BUCISO	N AREA WELL MONITARING	fsotach (aboratorion 100	
Company:	CORDILLERAN CONFLIANCE	SERVICES INC.	t-ecation:	E6083	200	1308 Parkland Court	
Address:	4690 TABLE MOUNTAIN D	2. 井200	Sampled by:	T.D.e	(RANSKY	Champain It 64824	
	GOLDEN CO 80403				Analysis Packade Codes on Bi	Changer 217 308 3400	
Phone:	303.237.2072		Circle one:		Analvses Recuesfed	Eav. 217 200 2403	
Fax:	303.237.2659		Standard			1 av. 211-330-3493	
Email:	Jameshix @corolcomp.com	-	Priority		4	mail@isotechlabs.com	
San	nple Description		Rush		1-No 1011		
Container Number	Sample Identification	Date Sampled	Time	<u>s</u> t	Call of the second	Comments	-
214	A11-15B	11 13/08	0850	×	×		
24A	A11-15D	11/13/08	0400	×	×		
1							
	-		Ň	\bigcirc	7		
Cha	nin-of-Custody R	ecord					
	Signature	Ø			Company	Data Timo	Г
Relinquished	d by Tim DOBRANSKY - CORI	DILLERAN		Coar	MERAN COMPLIANT CF	in his los 1 1000	·
Received by	Aher Divin			- Ma	the de	11/14/18 2 622	
Relinquishe	d by					onin battity	
Received by							
Relinquishe	d by						
Received by							
							7

Analyses & Services Requested	Comments	npany <u>a</u> Date Time tact 12/11/2003 4220p
Analysis Requested by <i>CWkMLwwwdL</i> Isotech Laboratories, Inc. 1303 Parkland Court Champaign, IL 61821-1826	Scription of Sample Contraction	Cor Shipped via 156
Samples Submitted to	Sample NumberType or Des $I - i + q + i \leq 1$ $A - 1 - 1 \leq 2$ $I - i + q + i \leq 1$ $A - 1 - 1 \leq 2$ $I - 1 + q + i \leq 1$ $A - 1 - 1 \leq 2$	Chain of Custody Re Signature Relinquished by Signature Received by North With And Received by North With And Received by Received by Received by

ŝ

-

Upon receipt please sign this form and FAX a copy to (217) 398-3493. The original should then be returned with the analytical results.

2 •

Samples Submittec	I to Analysis	Requested by		
(ton	Isotech	Laboratories, Inc.		DTECH
	1308 Pa	arkland Court		
	Champ	aign, IL 61821-1826	alyses & Services Request	ed
Sample	Identification		100 100 100 100 100 100 100 100 100 100	
Sample Number	Type or Description of Samp	ole Carolin with the second se	Cow	mments
エーニキャチョン	A-11-XB 201 .44			
1. 1. 1 6-6 1 1 0	A-11-62 CUM # 0			
I Lindari				
ヨーシッシング	SP411-3- NG-GFTF (11.1081-21	T Z		
ディン シレイ	5 231-13-NG- GPTF. 1144	inj Z		
FISC2X()	×22-13-44-9075 1111	+ +		
14.6. 7.4.1	SPICE - 18 - 19 - 2 Dr. F. Land	4		
Chain of	Custody Record			
	Signature	Company	, Dato	Timo
Relinquished by	···· Lete Var	Shipped via / 5 c t - c L	12/11/201	1111 - C P. W
Received by	hing letter 1	1361	1211176 2	1
Relinquished by				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Received by				
Relinquished by				
Received by	and a second			

Upon receipt please sign this form and FAX a copy to (217) 398-3493. The original should then be returned with the analytical results.

ч (2) и

Send Dati	a and Invoice to				E.	
Name:	JANES W. HIX		Project:	BUCISON ARE	A WELL MONITARING	Induct I chantering to a
Company:	CORDILLERAN CONPLIANCE	SERVICES INC.	t-ocation:	E608360		1308 Parkland Court
Address:	4690 TABLE MOUNTAIN D	2. 井200	Sampled by:	T. Doggads	κγ	Champion II 64001
	GOLDEN CO BOAD3			Analysi	s Package Codes on Back	
Phone:	303.237.2072		Circle one:		Analyses Requested	F11016. 217-333-3430
Fах:	303.237.2659		Standard			Tex. 217-398-3493
Email:	Jameshix@corolcomp.com		Priority			www.isotechiabs.com
San	TPIE Description		Rush	YO'L	-1-N	II Intelligence of the company of th
Container Number	Sample Identification	Date Sampled	Time	1 18	(2000)	Comments
21A	A11-15B	11 13/08	0850	×		
24A	A11-15D	11/13/08	0060	× ×		
1						
			N V			
Cha	iin-of-Custody R	ecord				
	Signature	Ø		Co	mpany	Data
Relinquished	d by Tim DOBRANSICY - CORI	DILLERAN		Conurson	1 (meratre	
Received by	The Divin			JA. C.	N COTYCIAN LE	
Relinquished	d by					0060 9012111
Received by	-					
Relinquished	d by					
Received by						

Upon receipt please sign this form and FAX a copy to (217) 398-3493. The original should then be returned with the analytical results.

8 -

ISOTECH	ervices Requested	Comments							Date Time	12/11/2013 4:20 8:41	1211/0/		
by ries, Inc.	1821-1826 Analyses & S	Coloris Literal		7	7	2 3	7		Company	via /Sct.cl.			
Analysis Requested t isotech Laborato	Champaign, IL 61	Type or Description of Sample	9-11-XB SY #7	THENE COULD # 2	11-3-NG-GPTF CILMAN # 5	2-13-49-976F - 1144 # 3	2-15 -16 - 2 Dir " "	stody Record	lature	Le Le Le Shipped			
Samples Submitted to	Sample Ider	Sample Number	1-147 Set 1 8	I-Ward	I-15.21 × 524	7 15 17 17 5/2 7 15 17 17 5/2	7-162321 502	Chain of Cu	Sign	Relinquisted by Received by	Relinquished by	Received by	Relinquished by

Upon receipt please sign this form and FAX a copy to (217) 398-3493. The original should then be returned with the analytical results.

Received by

а .

Send Data and Invoice to		AISOTECH
Company: Com	RULISON AREA WELL MONITORING	Isotech Laboratories, Inc.
Andrace: 1 and 1 a	008 - 2362	1308 Parkland Court
Sampled by:	T. Dobransky	Champaign, IL 61821
Phone: 202 202 202 202 202 202 202 202 202 20	Analysis Package Codes on Back	Phone: 217-398-3490
Fay: 202.237.2642 Circle one:	Analyses Requested	Fax: 217-398-3493
Email: JHIX @ Oa Consulting. Com Dringity		www.isctechlabs.com
Sample Description	I-Nog	mail@isotechlabs.com
Container Sample Identification Date Sampled	- FR / all	
		Comments
5460 80 E1 21 82 20 244		
	¥.	
	-	
Chain-of-Custody Record		
Signature	Company	
Relinquished by Tim DoggaNSKY - Appressed /		
Received by Naning Drock	LOOVLETAN & division of Ulsson HSOTER H LARS	12/18/08 1000
Relinquished by		00.01
Received by		
Relinquished by		
Received by		

Ð

Sond Data and Invoice to		A ISOTECH
Name: JANS W. Hx Projec	RIVLISON AREA WELL NONITORING	Isotech Laboratories, Inc.
A standard A division of Olsson Associates Location	on: 008 - 2362	1308 Parkland Court
Mudieus: 4610 ARLE MUNITAN DE. # 200 Sampl	ed by: T. Dogransky	Champaign, IL 61821
Phone: 202 00 00403	Analysis Package Codes on Back	Phone: 217-398-3490
Fax: 303. 234. 2659	One: Analyses Requested	Fax: 217-398-3493
Email: JHux D Oa Consultang. Com Priorit		www.isotechlahs.com
Sample Description Rush	Nogo North	THAT CONTRACTOR AND A DESCONT
Container Numbor Sample Identification Date Sampled Tin		Comments
35 A Fuer 7-22 B 12/17/08 085	>	
	-	
	•	
	/	
		- w
Chain-of-Custody Record		
Signature	Company	Date . Time
Relinquished by Tim DoBRANSKY - Corputeran	CORDUCERANT a division of Olsson	n 18/02 1/m
Received by James, Drook	ISOTECH LABS	00:01 30/2r/r/
Received by		
Relinquished by		
Received by		

Ð

II.

Send Data and Invoice to		ISOTECH °
Company: Company: Company: Company: Company	RULISON AREA WELL MONITORING	Isotech Laboratories, Inc.
Address: 4690 Taste Munitary Dr. # 200 Sampled by:	008 - 2362 T. Dobransky	1306 Parkland Court Champaign, IL 61821
Phone: 303.237.2627	Analysis Package Codes on Back	Phone: 217-398-3490
Fax: 303. 237. 2659	Analyses Requested	Fax: 217-398-3493
Email: JHIX & Oa consolting. com Priority	1 1 4	www.isotechlabs.com
Sample Description	Roor EBON	
Container Sample Identification Date Sampled Time	Tr/g/	Comments
38 A FURR 6-22 B 12/17/08 0955		
	u	
	•	
(with the second secon	•	
		3
Chain-of-Custody Record		3 .
Signature	Company	Date . Time
Relinquished by Tim DoBRANSKY - CorDICERAN	COPDUCERAL a division of Alexan	
Received by Manay Wook	ISOTECH LABS	mo: 2/ 80/25/21
Kelinquished by		
Received by		
Relinquished by		
Received by		

Send Data and Invoice to		AISOTECH
Name: JAYES W. HIX Project: Company: Compary: Compary: Company: Company Advison of Olsson Associates Location: Address: 4690 TABLE MouNTAIN N. # 200 Sampled by	Rulison Area Well Monitoring 008 - 2362 T. Dobransky	lsotech Laboratories, Inc. 1308 Parkland Court Champaion, IL 61821
Phone: 303.237.2672 Circle one Eave 202.237.2672	Analysis Package Codes on Back Analyses Requested	Phone: 217-398-3490 Fax: 217-398-3493
Email: JHIX @ Oa consulting. com Priority		www.isotechtabs.com
Sample Description	Nogo N.	1000 000 000 000 000 000 000 000 000 00
Container Sample Identification Date Sampled Time	7 F/ 8/ M	Comments
81A FURE 6-220 12/17/08 1015	. / /	
	-	
		5
Chain-of-Custody Record	ί α .	
Signature	Company	Dato: Time
Relinquished by Tim DograNSKY - Cordiceran	(Dedviseral - 1 f Aleve	a lielab
Received by Janus Krosh	ISGTECH LARS	no: 0/ 30/28/21
Received by		
Relinquished by		
Received by		

€

B
Jata and Invoice to		A ISOTECH
JAMES W. HIX Project CORDILLERAN, a division of Olsson Associates Locati 4690 TABLE MOUNTAIN DR. # 200 Samp 5012EN, CO BOAO3	 t: Rutison AREA WELL MONITORING on: 008 - 2362 led by: T. Dobransky Analysis Package Codes on Back 	Isotech Laboratories, Inc. 1308 Parkland Court [*] Champaign, IL 61821 Phone: 217-398-3490
303.237.2672 Circle 303.237.2659 Circle JHux @ Oa consulting. com Priori	e one: Analyses Requested	Fax: 217-398-3493 www.isotechlabs.com
Sample Identification Date Sampled Tit Furp. 16-22 D 12/17/08 12.0	me FR GSO	Comments
in-of-Custody Record		
Signature	Company	Date
1 by Tim DOBRANSKY - LORDICERAN	CORDUCERNI a division of Olisson ISOTECH LAPES	118/08 10:00
l by		

Send Dala and Invoice to		AISOTECH
Name: Janes W. Hix Project:	RULISON RELA WELL YONTDRING	Isotech Laboratories, Inc.
Company: Coplice Ray, a divisor of Olsson Associates Location:	008 - 2362	1308 Parkland Court
Address: 4610 A&re Wownaw D. # 200 Sampled by:	T. Dogransky	Champaign. It. 61821
GOUDEN, LO BOAOZ	Analysis Package Codes on Back	Phone: 247-349-3400
Phone: 303.231.2612	Analyses Requested	Fax: 217-398-3493
Fax: 303. 237. 2659		www.isotachiabe.com
Email: JHX @ Oa consulting. com Priority	1 4 4	mail@icclechahs.com
Sample Descr ption Rush	Nogo	
Container Sample Identi cation Date Sampled Time	T F &	Comments
83 A Fure 9-22 D 12/14/08 1225		
		1
Chain-of-Custody Record		: 5.
Signature	Company	Date
Ralinquished by Tim DoggaNSKY - (DEDUCEAN)	(manual 1 Colored	
Received by Nancy Droch	TSOTECH LARS	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Relinquished by		
Received by		
Relinquished by		
Received by		

Ð

I	•							-
SOTE(ooratories, Inc. rkland Court gn, IL 61821 17-398-3490 7-308-3493 7-308-3493 7-308-3493 <u>6chlabs.com</u> techlabs.com	S I I I I I I I I I I I I I I I I I I I	1 (Å 1 (ž) (ž)	Time	10,000			-
	Isotech Lat 1308 Pau Champait Phone: 2 Fax: 21 <u>www.isot</u>	Commen	-	Date	12/22/08	•		
	Rutson AKEA WELL MonitoRING 008 - 2362 T. Doggansky Analysis Package Codes on Back Analyses Requested Analyses Requested			Company	CORDWERNIN a division of Olsson ISOTECH LABS			
	Project: Sampled by: Circle one: Standard Priority Rush	Impled Time	a U		3			
l invoice to	IAVES W. HIX ILLERAN, A divison of Olsson Asi O TARLE MOUNTAIN DR. # 200 Denl, LO BO403 5.237.2059 A.X. P. 2059 A.X. P. Description B. Description	varple Identification Date Sample Identification	or-Custody Record	Signature	11.M DOBRANSKY - LORDILLERA			
Send Data and	Company: Contrants: Address: 469 Address: 469 Phone: 501 Fax: 501 Fax: 501 Email: Ju	S2A F		Bolinessiched E.	Received by Received by Relinquished by	Received by	Relinquished by Received by	

S

ł

Send Data and Invoice to		AISOTECH
Name: JANES W. HIX Project:	RULLSON AREA WELL MONITOZING	Isotech Laboratories, Inc.
Company: LOSDILLERAN, a divisor of Olsson Associates Location:	008 - 2362	1305 Parkland Court
Audress: 4640 AALE MAUNTAIN DR. # 200 Sampled by	Y: T. DOBRANSKY	Champaign, IL 61821
501251 (0 80403 ·	Analysis Package Codes on Back	Phone: 217-398-3490
Prione: 303.237.2672 Circle one	Analyses Requested	Fax: 217-398-3493
Email: JHix @ Oa Consultina. (6th Princity		www.ig.techlabs.com
Sample Description	N.NOS	<u>mail@isutechlabs.com</u>
Container Sample Identification Date Sampled Time	T F Q	Promonde
80 FURE 9-22 B 12/13/08 1245		COUNTRALIS
	-	
	-	
Chain-of-Custody Record	\$	4
Signature	Company	L
Relinquished by Tim DoBPANSKY - (DEDILFERAN)	(manual 1 PAL	
Received by Janie, Droch	ISOTECH LABS	12/22/08 1600
Relinquished by		and a large
Received by		
Relinquished by		
Received by		

Send Data and Invoice to		ISOTECH °
Company: Contretant, a divison of Olsson Asserts, Location: Address: 4630 Table Mouthaul No. # 200 Sampled by:	NULLSON AREA WELL MONITORING 008 - 2362 T. DOBRANSKY	Isotech Laboratories, Inc. 1308 Parkland Court ⁻ Champaign, IL 61821
Phone: 303.237.2672 Circle one: 503.237.2659 Standard	Analysis Package Codes on Back Analyses Requested	Phone: 217-398-3490 Fax: 217-398-3493
Email: Jhue Oaconsulting.com Priority Sample Descrimtion Rush	HI.No Han	www.isotechlabs.com
Container Sample Identification Date Sampled Time	FRI CARR	Comments
9 A FURE 10-22D 12/17/08 1255		
	•	
Chain-of-Custody Record		3
Signature	Company	Date Time
Received by Tin DogRANSKY - (OPDICERAN Received by January Durch	CODDUCETAN a division of Olsson I Settech LABS	12/22/08 1600
Refinquished by		
Relinquished by		•
Received by		
		•

Send Data and Invoice to				A ISOTECH	6
Name: Jayes W. Hix	P	oject:	INITOR WELL MONITORIN	Isotech Lahoratories Inc	
Company: Coppleters, a divisor of 0	Jeson Associates La	ocation:	008 - 2362	1308 Parkland Court	
AGGRESS: 4690 TAGE MUNITAIN DE	2. # 200 Si	ampled by:	T. DOBRANSKY	Champaign, IL 61821	
COLORN CO BOAO3			Analysis Package Codes on	3ack Phone: 217-398-3490	
Envi 203.237.2672		ircle one:	Analyses Requested	Fax: 217-398-3493	
Email: 1.1 205. 257. 2054	IS I	tandard		www.isotechlabs.com	
Linall. JHix & Og Consulting. Col	Pr Bi	riority	4	mail@isotechlabs com	
Sample Description	Ϋ́Υ.	ush	Noge		
Container Number Sample Identification	Date Sampled	Time		Commonte	
84 A FUR 15-228	12/17/08	1305		CHERTENDO	
			-		
		•			
	Y	R	/		
			/	9	
Chain-of-Custody R	secord	2			
Signature	e J		Company		
Relinquished by Tim DoggaNsky - /	APALICEDAL		(minim	vaie	
Received by Manual	Mont		TO T	11/18/08	
Relinquished by	1 2 2 4		+201KUH 41763	12/22/28 10 500	
Received by					
Relinquished by					
Received by					
		-			

ISOTECH	Isotech Laboratories, Inc. 1308 Parkland Court Champaign, IL 61821 Phone: 217-398-3490 Fax: 217-398-3493 <u>www.isotechlabs.com</u> mail@isotechlabs.com	Comments	Date Time n/18/08 1600 1/22/08 10:00
	Riverson AREA WELL MONITORING 008 - 2362 T. Dobrawsky Analysis Package Codes on Back Analyses Requested Analyses Requested		Company Corderan a division of Olsson ISOTECH LABS
Send Data and Invoice to	Name: JANES W. HIX Project: Company: Contract Adivison of Olsson Associates Location: Address: 4690 Take Noutraul R. # 200 Sampled by: 600EM, LO B0403 Phone: 303.237.2637 Fax: 303.237.2639 Fax: 303.237.2659 Fax: 303.277 Fax: 303.2777 Fax: 300	Number Sample Identification Date Sampled Time 82.A Furk 15-22b 12/17/08 13/15 82.A Furk 15-22b 12/17/08 13/15	Chain-of-Custody Record Signature Relinquished by Tin Doenwerd Relinquished by Received by Received by Received by Received by Received by

€

Send Data and Invoice to			SOTECH
Narne: Javes W. Hix Company: Coenice and, a divison of Olsson Associated	Project:	HULLSON AREA WELL MONITORING	Isotech Laboratories, Inc.
Address: 4690 TABLE Mountand Dr. # 200	Sampled by:	T. Dogransky	1308 Parkland Court Champaign, IL 61821
Phone: 303.237.2672	Circle one:	Anaiysis Package Codes on Back Analyses Requested	Phone: 217-398-3490 Fax: 217-398-3493
Fax: 503.237.2659 Email: JHix D Oa Consulting. Com	Standard		www.isotechlabs.com
Sample Description	Rush	NOBON.	maingleorechaps.com
Container Sample Identification Date Sampled	Time	TF/S/T	Comments
31A FURE 7-220 12 HB17 08	0920	- / /	
		•	
	•		
	2		
		4	
		1.	
Chain-of-Custody Doorsd		(37)	
Citation of Castory Necola	0		
bignature		Company	Date
Received by 1: M DOBRANSKY - (ORDILLERAN)		CORDUCERAL a divison of Olson	12/18/08 1600
Relinquished by		ISOTECH LABS	12/22/08 10:00
Received by			
Relinquished by			
Received by			

Ð

Americation: Comparison: Comparison: Sampled by: Mail wise Sampled by: J.H.Y. Comparison: 1308 Patkand Count Sampled by: J.H.Y. Comparison: 1308 Patkand Count Sampled by: J.H.Y. Comparison: 1308 Patkand Count Priority Standard Mailyses Requested Priority Sampled by: Mailyses Requested Priority Priority Sampled Time C Mailyses Requested Priority Number Time Comments Comments If 108 0828 I Comments If 108 0829 I I In 1001 I I I In 102 I I I In 103 I I I In 103 I I I In 103 I I I <t< th=""><th></th><th>Project:</th><th></th><th>A ISOT</th><th>ECH</th></t<>		Project:		A ISOT	ECH
Sampled by: J. H.r. Circle one: Analyses Requested Analyses Requested Analyses Requested From: 217-398-3490 Friority Standard Standard Priority Sampled Time Rush Standard Standard Priority Standard Standard Picority Picor Standard P Standard Picor	on Asso	Project: <u>Rultson</u>	b-2362	Isotech Laboratories, I 1308 Parkland Court	្នំ .
Circle one: Analyses Requested Friority Randard Fax: 217-389-3403 Priority Standard Rush Fax: 217-389-3403 Rush Fax: 217-399-3403 Sampled Time Filosoft Fax: 217-399-3403 Rush Fax: 217-398-3404 Rush Fax: 217-391-303 Rush Fax: 217-391-303 <td></td> <td>Sampled by: J. H</td> <td>Analveis Partado Codos on Book</td> <td>Champaign, IL 6182</td> <td></td>		Sampled by: J. H	Analveis Partado Codos on Book	Champaign, IL 6182	
Standard Standard Priority 5 Rush 5 Rush 5 Rush 5 Implied Time Comments Comments Odo3 Comments Implied Time		Circle one:	Analyses Requested	Fnone: 217-398-3493 Fax: 217-398-3493	-
Rush F Comments mpled Time L ² Comments 08 0828 V Comments 08 0828 V Comments 1001 V Comments Comments 1001 V Comments Comments 1239 V Isin Comments 1239 V Distributed Time 1343 Company Isin Company 1343 Company Isin Isin 1343 Sofficial Isin Sofficial		Standard		www.isotechlabs.con	
Impled Time Comments [08<0832		Rush	. woit	mail@isotechlabs.co	C 1
Io8 0828 / 1001 / 1001 / 101 / 102 / 108 / 108 / 1239 / 1239 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 / 1343 /	ample	Time / FC		Comments	
CG07 / / / 1001 / / / / 1001 / / / / / 1001 / / / / / / 1002 / / / / / / / 1108 / / / / / / / / 1108 /	208	0838	-		
III IDO(1 / III IO(2 / IIIOE / IIIIOE / IIIIOE / IIIIOE / IIIIIIOE / IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	14	1 Fopo			
" loig / loig / " 11.0g / " 11.0g / " 11.0g / " 11.254 / " 12.3g / " 12.343 / " 13.10 / " 13.43 / " 13.43 / " 13.43 / " 13.43 / " 13.43 / " 13.43 / " 13.43 / " 13.43 / " ' " ' " '		1001			
" 108 / " 1239 / " 1239 / " 1239 / " 1254 / " 1310 / " 1343 / " 1343 / " 1343 / " 1343 / " 1343 / " 1343 / " 1343 / " 1343 /		1018			
12.13 1 12.39 1 12.54 1 13.10 1 13.10 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1	5	1108		12	
1239 1 1310 1 1310 1 1343 1 1343 1 1343 1 1343 1 1343 1 1344 1 1345 1 1346 1 1347 1 1348 1 1349 1	4	1213			
rd I343 / Iame I343 / Date Time Company Date Time <i>Isolach</i> 12/22/08 0900	×	1239 /			
13.0 13.0 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 13.43 1 14.40 1 15.12 1 17.12 1 17.12 1 17.12 1 17.12 1 17.12 1 17.12 1 17.12 1 17.12 1 17.12 1 17.12 1	2	1254			
d Cd Company Date Time Company Iz/B/08 Company Iz/22/08 Coch ZSofech Iz/22/08 0900	*	1310 /			
d Company Date Time Ileran Iz/B/08 /cbo ZSofech Iz/22/08 0900		1343 /			
Company Date Time Company Date Time Time <td>0</td> <td></td> <td>78</td> <td>: : : : : : : : : : : : : : : : :</td> <td></td>	0		78	: : : : : : : : : : : : : : : : :	
lleran Coelileran Iz/18/08 1600 Iz/22/08 0900			, menuo	Date in the	
IZSOFECS IZ/08/08 1000 ZSOFECS IZ/08 0900	11-			Late	
Isotech 12/22/08 0900	INCLUM		Locultura	12/18/08 1/600	
		ZS	otech	12/22/08 090	0
					ļ
				-	

- - · ·

€

Send Data	a and Invoice to								6
Name:	AMES DIT								
Company:	Carls Nora a desire and	C ALCO A	roject:	rulison An	an Well Monitor.	र	Isotech Lab	oratories, Inc.	
Addrace.		T UNSON PASOCIA	e ocation:	008-2	362		1308 Parl	kland Court	
יאמט נסאל.	4040 Table Mountain Dr.	4200	Sampled by:	J. H.X			Champaig	in, IL 61821	
č	(solden. Co Borloz	(1)		Ant	alysis Package Code	es on Back	Phone: 21	17-308-3400	
Phone:	303.237. 2072		Circle one:		Analyses Reque	ested	Fay: 017	1	
Fax:	303. 237. 2659		Standard					0010000	• 0
Email:	Jhix @ Oa consulting	icom	Priority	4			mail@isote	schlabs.com	4
San	pple Description		Rush .	10,4				III MANAGABITING	
Container Number	Sample Identification	Date Sampled	Time	1 FC /			Comment	S	,
	15-228	80/t1/21	1358				-		
	022.51	14	1435						
			*						
									¥
							2		
Cha	iin-of-Custodv R	PCOrd				e a ^{ra}			
	Signatur		5	~	् • •				
Delinorito		11 2			Company	- 44	Date	- Time	
L'ellinduste	AND THE TOBERNSKY	- (ord: lleran			belilleran	•	80/81/21	0091	
Keceived by	sthir Arm			-Sso	tech		12/22/08	0900	
Reinquishe	d by								
Received by									~
Relinquishe	id by								
Received by		2							
	04 04 04 04					-			

Upon receipt please sign this form and FAX a copy to (217) 398-3493.

The original should then be returned with the analytical results.

& Services Requested		Comments									Date	1 DB/2413 9.200	1/30/2000 11.00	atel fred total			
i Requested by ע Do Anals 1 Laboratories, Inc. arkland Court arkland Court	00 10 10 10 10 10 10 10 10 10 10 10 10 1	ole contraction of the contracti	it Caz V	#2 @2 V	#8. CU2 V	#7. (02 v	#5, Ca2 V	2 43 / as V			Company	Shipped via	1595			9	
to S Ward Isotech 1308 P Champ	dentification	Type or Description of Samp	FURT6-22B, Cylinder #	FURY 6-22 D. Cylindra	Farr 9-22 D 1 11. den	Farr 16-22 B , Cyinde	FUrr 9-22B. Cyinh	TURY 10-22 D , CYIMA		Custody Record	Signature	role Lin	forg Way	n l			
Samples Submitted	Sample Ic	Sample Number	I-152396	T-152397	I-1~23901	7-152400	7-15 2401	2048 SI-I		Chain of		Relinquished by \mathcal{J}_i	Received by	Relinquished by	Received by	Relinquished by	Received by

ø

ISOTECH		wices Requested		Comments	×		Date Time	4/14/09 1600	4/15/05 0500	
ame Barray Rucison Area Wel Mouther No. 2362 WAR Holded	The second se	Analyses & Sei	1.32 (32) (32) (32) (32)	Date 60,40,40,40,40,40,40,40,40,40	t [14] 09		Company	Idillases, - divisian of Obsen Associates	Isotich	
Analysis Requested by Name Janes Hint Company Contract Address Acgo Table Foundary Dr. STE 200 Location F	Goulden, Co 80403 Sampled by	Jhix @ Oacconsu Hing .com	Sample Description	Cylinder Number Source or Description of Sample S	- FURE 16-222 (20 1100	Chain of Custody Record	Signature	Relinquished by	Received by When Numer Relinquished by	Received by

Signature	Company	Date	Time
Relinquished by	Cardillow a drive can of Diero Accorates	4/14 109	1000
Received by attin aur	restrict	4/15/09	0050
Relinquished by			and the second se
Received by			a
Relinquished by			and the animality of the state
Received by		and the second se	to the fighting with the second second trade of the second s

nples Submitted to	nalysis Requested by <u>O W 20 Дониа L</u> sotech Laboratories, Inc. 308 Parkland Court thampaign, IL 61821-1826	Analyses & Service	ISOT Requested	ECH
ple Number Type or Description o	Sample		Comme	ents
60503 CO2, c/indu	# 1 7			
Chain of Custody Record				
Signature	Con	ıpany	Date	Time
vished by gack fire	Shipped via Z S	ر <i>ہ</i> خ	4/22/20.9	10-15 ANY
ed by Critical William	5	c, 5	412214	10 20 14

Upon receipt please sign this form and FAX a copy to (217) 398-3493. The original should then be returned with the analytical results.

Relinquished by

Received by

Relinquished by Received by .

Send Dat	ta and Invoice to			ADAN FACES RELEASE ADE	ם שלעי מסטירהפיי	A ISOTECH	-
Name:	JAMES HIX		Project:	008-2362		Isotech Laboratories, Inc.	
Company	" LODULERN' - division of 0	ISSON ASSOCIATES	Location:	FURR HAGEN		1308 Parkland Court	
Address:	4090 TABLE MOUNTHIN DAIVE, S	5TE. 200	Sampled by:	¢,		Champaion. II 61821	
	COLDEN, (D BOAD3	Ŷ		Analysis Package	Codes on Back	Phone: 217-398-3490	
Phone:	203. 237. 2072		Circle one:	Analyses R	tequested	Fax: 217-398-3493	
Fax:	305. 237. 2659		Standard			www.ientarblabs.com	*
Email:	hix Oce consulting . com		Priority	Þ1.		mult@isolechiabs.com	
San	nple Description		Rush	NOS SON			
Container Number	Sample Identification	Date Sampled	Time	L Fa		Comments	
IOA	FURR 16-22D	4/14/09	1115	×			
/							
-							
			A				
					1		
						1	
Cha	ain-of-Custody Re	ecord		2			
	· · · Signature			Company		Date · Time	
Kelinquishe	C C A A A A A A A A A A A A A A A A A A	\wedge		Cordice RAN, a division	of ólson	4/14/09 (600	
Received by	V Coller, Risper			I Sofect / An	SS	4/16/09 1000	
Relinquishe	d by						
Received by							
Relinquishe	id by						
Received by						•	

Ð

Seni Dau	araisera to					9	A IS	OTEC	° T
Name Demogra	MARCE NIS		Project:	LARANS 11	Arra West Auros		Isotech Labora	itories, Inc.	
2.4 stores	LE & Les Real and a long and a lo		Location:	1. 2. M. M. M.	77	a a sea o	oper stre	nd Court	
	4610 TAKE TONTAL DR		Sampled by:	10 A. L.	N EV		Champaign, I	IL <u>61821</u>	
	DIE 20 CALAN CO 80	23		~~ 1	nalysis Package Co	les on Back	Phone: 217-5	368-3490	
- Prove:	237. 1292		Circle one:		Analyses Req	lested	Fax: 217-39	98-3493	
¥0 10.	205 233 2659		Standard				Strates States	[a] S. CORS	¥
Email:	And an and the second they can	The second secon	Priority			_	the started at	the starts	,
Sam	ple Description		Rush '		A CIT				
Container Number	Sample Identification	Date Sampled	Time	5	1 for		Comments		
	4-128	6/24 00	di N	×	×	* 1.P Tau	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6 under	
	16-228	6 24 00	MZG	*	×	5			
	1 - 1 - 1 Co	(2) 24 109	1EQ.	×	×				
					direct + Mulleon				
	A . M M.								
	THEED DEANK NEC ON					100	- hour		
	also J. MIL					- In Acce	and a second		
	Sarrele to he					HZG	Jampe	9	
3	RAN BR Tritium					three	= 5151		3
	dieler Count also					Tait	undire	æ	
							20Mm C		
Chai	n-of-Custody Re	ecord			<u>.</u>				
	Signature				Company	-v.	Date	Time	
Relinquished	A A A A A A A A A A A A A A A A A A A	(Marth Real			148 Lee		
Received by	Whee Drain				4- 1 - X		100/00/		
Reinquished	Â								
Received by									
Palinauisheri									
Frederood Ly							la 1		
			-						

Chain of Custody Record

Signature	Company	Date	Time
Relinquished by	Shipped via	3/20/4.4	1 5 . 16 4 24
Received by Hors & W. way	1565	1-20/20/2	latte at all
Relinquished by			a manufacture terms from the state
Received by			
Relinquisted by			
Received by			

Signature	Company	Date	Time
Relinquished by	Shipped via	71:2 10.0	1 - A ad
Received by How & Whing	1565	64/20/2.	11:00 Mil
Relinquished by		Inher.	MU
Received by			
Relinquished by			
Received by			

Send Dati	a and Invoice to							OTECH	•
Nume:	JAMES HIX		Project:	LARAMIE II	AREA WELL NOWIT	00 NG	Isotech Labo	oratories, Inc.	
Company:	OLSON ASKY, ATCS	and and a second second second second	Location:	Eure HAG	74		1308 Park	land Court	
Address:	4690 TABLE MONTAIN DR		Sampled by:	T. DoffRai	1544		Champaiyr	1, IL 61821	
	SUTE ZOU : COUNEN CO BO'	· 503		A	, Talysis Package C	odes on Back	Phone: 21	7-398-3490	
Phone:	303. 237. 2012		Circle one:		Arialyses Re	quested	Fax: 217	-398-3493	
Fax:	203.237 2 2.79	and the second	Standard		. / .		<u>www.isole</u>	chlabs.com	
Email:	this oscinariting ion		Priority		.1		mail@isote	chlabs.com	
San	nple Description		Rush .	1 ado	×0.2				
Container Number	Sample Identification	Date Sampled	Time	5	10		Comments		
415	6-228	6/24 09	N10	×	×	# LP To	1.977 - 571 N	er Sundles	
419	16-220	62409	1120	×	×		in Supervice	shi oments .	
22A	ay1 - 6- 22	624109	1150	×	×				
		<pre>{e f 008- Dep</pre>	-2352 Dat	e 06/24/2005	SHIPPING SPECIAL HONDI ING	800 800 800 800 800 800 800 800 800 800			
			DV :		O GS TOTAL	50 53			
			Sves: PI TRCK	RIORITY OVER C: 9660 0451	3100	-			
			1						
	2 D							μ	
Cha	ain-of-Custody R	lecord				÷. 6	2	2 2 2	
	Signatur	٩		-	Company	4.4	Date	Time	
Relinquishe	C	$\left(\right)$		Ausen Astron	TEC		2/24/09	0041	
Received b	" alker Din			Iset	ch Lab	-	6/29/09	6830	
Relinquishe	ed by								
Received b	y.						3		
Relinquishe	ari by								
Received b	yy								

	ISOTECH	Analyses & Services Requested		Contraction of Comments					
Analysis Requested by Co wen DOMMA	Isotech Laboratories, Inc. 1308 Parkland Court	Champaign, IL 61821-1826	cation	be or Description of Sample	2D, Cylinder # 7 V	5-22B cylinder # 6			
Samples Submitted to	Dr. Hang Mang		Sample Identifi	Sample Number Typ	172337 16-2	122358 201			

Chain of Custody Record

	Signature		Company	Date	Time
Datinguishad hu	a.t.	Shipped via	is ofted	Lo.02/21/01	(1:400 m
	ft bus i	And here and the second se		10/0/01	S.
Received by	1.2.1. W. Cours		7 52 52 50 50 50 50 50 50 50 50 50 50 50 50 50	17/12-1	
Relinquished by					
Received by			nn jerne sektoren er en		
Relinquished by					
Received by					

Send Date	a and invoice to							IIS	DTECI	T
Name:	JAMES HIX		Project:	LARAMIE I	. נוסציושיי	AREA VELL MONTON	zuve Isol	lech Laborat	ones, Inc	
Company:	DISSON ASSOCIATES	and the second sec	Location:	FUER HA	GEN			308 Parklan	d Court	
Address:	4690 TABLE MOULTAIN DOI	NE	Sampled by:	T. Dogo	MSRY		0	hampaign, II	. 61821	
	STE 200, (SOLDEN, CO BOAC	. 20		V	nalysis Pacl	kage Codes on B_i	ick P	hone: 217-36	06-3490	
Phone:	303.237.2072		Circle one:		Analys	ses Requested		Fax: 217-39	8-3493	
Fax:	303.237.2459		Standard		1			ww.isotechta	mon.ede	(4):
Email:	Jhix @ caconsult.ng.com		Priority		4			ail@isotechi	uico-sqe	
San	nple Description		Rush	-NO	L'UN					
Container Number	Sample Identification	Date Sampled	Time	CARR	TRI		ŭ	mments		
65 A	16-22 D	10/1/00	1200	×	×		660 4	2.11	R.5410	
9A	16-22 8	10/100	1210	×	×			K		
-							5	LP tar	vks	
						and the second sec				
				ł						
			101		/					
						/				•
								(3)		
Cha	in-of-Custody R	ecord								
	. Signatur	φ			Compi	any	Dê	ite	Time	
Relinquishe	d by Contraction of the	A		0220	J ASSOCIA	тес	11/01	6	1600	
Received by	When Alwan			N	Sotec	6 Cabs	10/	2/09	0900	
Relinquisher	d by							wente faar in d		
Received by										
Relinquisher	d by									
Received by										

ių.

ISOTECH	s Requested	Comments						Date Time	1 18 hold	1/1/10	
111a/s	-1826 Analyses & Service Analyses & Service	Calification of the second						Company	150 tech	I365	
Analysis Requested by	Champaign, IL 61821-	n of Sample	4 # 9	71 + 100					Shipped via		
I to Brig Wang	dentification	Type or Description	16-22 D Cylind	10 0 / CY/IN			Custody Record	Signature	Tack Lin	trange Whenig	12 11
Samples Submitted	Sample I	Sample Number	7-136921-2	e C O'Line F	and a second and a s		Chain of		Relinquished by	Received by	Relinguished by

	Signature		Company	Date	Time
Relinquished by	Jack Liu	Shipped via	ISatech	1 12 1010	
Received by	sterry Winig		13055	01/15/1	
Relinquished by					
Received by					
Relinquished by					
Received by					

Analysis Requested by		
Name "Aves H1K. Project L	008-23 4.2 100 100001 MANIE II PIOLISAM MAKI MAVTO RAIG	ISOTECH
Company used reserves to the Manute Manue Location	FURE NADEN	
Address The W LANK I WANTED A DARAGE		
205.237.2072(6) 508.233.2659(f) Sampled by	T. DOGRANSKY	
Jhiz Don consulting.com	Analyses	c Services Requested
Sample Description	25 / 55 / 55 / 55 / 55 / 55	25 25 25 25 25 25 25
Cylinder Number Source or Description of Sample	Date Var	ere to the Comments
62 A 16-22D	12 14 109	××
32 A 1628		<
	2.5.2	
Chain of Custody Record		
Signature	Company	Date Time
Relinquished by	OLSSON ALSOLIATES	12/16/09 (500
Received by Share A	ISOTECH LASS	1212409 8454
Relinquíshed by		
Received by		
Relinquished by		
Received by		

	ICOTECU				ss & Services Requested	le le l'alle	Comments	X	× 0. 11 11 10			cond cool com		e After tritium is	afa Trinc		12/21/09 1000			
	0.09-2362-100-100001 1444/16 11 - Polits Alta Hell Polits Puits	FURR WADEN		T. DOGRANSKY	Analyse	te la la la	Date Date Sampled	12/16/29	[2](G]M			237		Stake will dispose	Company	OUSSON ASSOCIATES	Isotech LABS			
Analysis Requested by Name	Company 06550Å Associates	Address 4690 TABLE HOWSTAN DRIVE Location	\$7E 200, 60020 60 0003	303.237.2072(p) 302.233.2659(f) Sampled by	Jhiz D ca consulting com	Sample Description	Cylinder Number Source or Description of Sample	62 A 16-22D	32 A 16-22B				Confirmed by Phane	Chain of Custody Record C.	Signature	Relinquished by	Heceived by Coller Ningh	Received by	Relinquished hy	Received by

Send Date	a and Invoice to					MISOTECH
Name:	AMES HIX	and the second second	Project:	LARATIE I - RULIS	ON AREA WELL MONTARING	Isotech Laboratories, Inc.
Company:	DUSSON ASSOCIATES		Location:	FURR HAGEN		1308 Parkland Court
Address:	4690 TABLE MOUNTAIN DEW	Æ.	Sampled by:	T. DOBRANSKY	/ J. VANN	Champaign, IL 61821
	STE 200, GOLDEN CO BOACH	209		Analysi	/ s Package Codes on Back	Phone: 217-398-3490
Phone:	303.237.2072		Circle one:		Analyses Requested	Fax: 217-398-3453
Fax:	303. 237. 2659		Standard			<u>www.isqiechlabs.com</u>
Email:	yhix bitaconsulting. com		Priority	Ы		mail@isplachlabs.com
San	The Description		Rush	NOSS	L'INST	
Container Nuinber	Sample Identification	Date Sampled	Time	m /	1	Comments
95A	FURR 22-15A	01-20-01	1355	×	- d7 *	TANKS + Water Samples
31A	FURR 22-15C	01- 63 - 61	1340	×	t A	rive in Separate
96 A	FURR 22-09A	01-20-01	1350	×	Ski	prents.
SOA	FURR 22-10A	10-01-10	1355	×		
48A	FURE 22-10C	01-60-01	1400	×		
53A	FURR 16-22D	01-50-01	1430	×		
74 A	FURE 16-22X	01-20-01	1430	×		
93A	FURR 22-09C	(J)-20-01	1435	× ×		
A TP	FURR 22-16A	01-20-01	1440	×		
948	FUER 16-228	01-20-01	1500	×		
Ċ						

ġ)

unain-ot-Custody Record

			-			1
Time	1630	2 103.				
Date	10-12-10	10/28/100	2			
Company	OLSSON ASSOCIATES	Jotech lebs				
Signature	elinquished by	aceived by	elinquished by	eceived by	elinquished by	eceived by