Phase III Hydrogeologic Study of the Mamm Creek Area Garfield County, Colorado

November 12, 2013

Tetra Tech, Inc. Louisville, CO

Project History

- Phase I Hydrogeologic Study (URS, 2006)
 - Broad review of historical data
- Phase II Hydrogeologic Study (S.S. Papadopulos & Assoc., 2008)
 - Sample collection and data evaluation

Project Objectives

- Gather additional data through installation of nested monitoring wells
- Clarify the nature of the hydrologic flow system and water quality in the study area
- Evaluate the possible effects, if any, of oil and gas development on the Wasatch Formation water quality

Monitoring Wells

- Coordinated with Garfield County to locate three sets of nested wells
- Local water wells are generally 200 feet deep or less
- Wells installed during 2010 in Atwell Gulch member of Wasatch Formation
- Well Screens (bgs):
 - A: 390-405 feet
 - B: 590-605 feet

Monitoring
Wells in
Geologic
Context

Basemap from URS Phase I Study Report

Natural Gas Wells in Vicinity of Monitoring Wells

Water-Level Measurements

- Slow rates of recharge indicate tight matrix
- Rapid water-level rise after spring indicates fracture contributions
- Stable lower water levels indicate deeper potentiometric equilibrium

Water-Level Elevations

Vertical Hydraulic Gradients

Water-Quality Sampling

- Four sampling events:
 - January 2011
 - May 2011
 - August 2012
 - December 2012

Chloride Distribution

Legend

Data from Prior Studies

o 50 - 175

175 - 500

500 - 1000

300 - 1000

1000 - 2000

Concentrations are an average of data from years 2004 and 2005 in mg/L.

Phase III Well Data

0 - 50

O 50 - 175

0 175 - 500

Concentrations are from December 2012 data in mg/L.

Chloride Time-Series Data

Methane Distribution

Legend

Data from Prior Studies

0.000820 - 0.5

0.5 - 3

3 - 5

7 - 15

5 - 7

ND

ND (non-detect values are reported at half the detection limit)

Concentrations are an average of data from years 2004 and 2005 in mg/L.

Phase III Well Data

5 - 13

130

Concentrations are from December 2012 data in mg/L.

Study Area

Methane Time-Series Data

December 2012 Methane Isotopes

December 2012 Wet-Gas Analysis

Elevated Methane in MW-2A

- Methane concentrations in MW-2A:
 - 66 140 mg/L
 - Isotopes consistently indicate biogenic source
- As observed in Currie Well with similar isotopic signature, indications of carbonate-reduction environment:
 - Reducing groundwater chemistry
 - Oxidation-reduction chemistry measured during sampling
 - "Rotten-Egg" odor observed during sampling at MW-2A and Currie Well

Elevated Methane in MW-2A

 Likely source of methane in subsurface is carbon dioxide being reduced via microbial processes to methane

 Carbon dioxide origin is unknown, may be naturally occurring in Wasatch Formation

Benzene Concentrations

- Not detected conclusively in MW-1A, MW-2A, MW-3A
- MW-1B concentrations ranged from ND to 5.3 ug/L
- MW-2B concentrations ranged from 1.4 to 3.4 ug/L
- MW-3B concentrations ranged from ND to 1.5 ug/L
- Currie Well concentrations ranged from 1.3 to 1.8 ug/L
- Benzene concentrations greater with depth

Summary of Groundwater Flow Interpretation

- Bedrock is combination of low-permeability siltstones and sandstones
- Significant fractures exist, probably associated with structural anticline feature
- Water flows within this "dual-porosity" geology
- Water levels in wells may vary seasonally due to infiltration of snowmelt or rain into fracture network

Summary of Water Quality Interpretation

- Chloride is locally elevated in concentration
 - Consistent with concentrations in domestic wells near Phase III study
 - In general, concentrations appear to increase with depth
 - Exception is MW-2 well nest
- TDS, pH, alkalinity not useful in water quality interpretation
 - Grout-fluid intrusion into adjacent fractures
 - Piper diagrams used for evaluation of other wells not appropriate evaluation tool because of high alkalinity

Summary of Water Quality Interpretation, cont.

- Benzene present in low concentrations (ND to 5.3 μg/L)
 - Consistency of detected concentrations suggests benzene is not derived from localized source, but likely naturally occurring within Wasatch Formation
- Methane in shallow wells possesses biogenic signature different from that of Williams Fork Formation
- Methane in deep wells possesses thermogenic signature

Summary of Water Quality Interpretation, cont.

- Higher concentrations of methane in initial samples at certain wells
- After multiple rounds of development and sampling, methane concentrations are more consistent from well to well
 - Suggests that methane is typically present in groundwater
 - Methane concentrations do not specifically point to gas production source, instead likely naturally occurring
 - Higher concentration and biogenic at surface
 - Lower concentration and thermogenic signature in deeper interval
 - Methane may be moving to wells through fractures, or trapped in intercepted isolated pockets in the Wasatch Formation

Conclusion

- The Phase III Study provided a understanding of groundwater chemistry in the hydrogeologic layers located about 200 feet deeper than those typically utilized for domestic purposes
- The Phase III Study did not show clear evidence of oil and gas impacts on Wasatch Formation water quality