Piceance Basin Coalbed Methane Stream Depletion Assessment: Plan of Study January 26, 2007

FITT

Summary of Presentation

1. Study motivation and goals

2. Background

- a. CBM extraction industry
- b. Regulating agencies and jurisdiction
- c. Geologic setting

3. Plan of study

- a. Key study elements
- b. Schedule
- c. Communications

Study Team

Colorado Division of Water Resources

Colorado Oil and Gas Conservation
Commission

Colorado Geological Survey

• S.S. Papadopulos & Associates, Inc.

Colorado Oil and Gas Conservation Commission

Water Resource and Environmental Consultants

1. Study Motivation and Goals

Motivation for Stream Depletion Assessment Study

Local concerns

- Impact of coal bed methane extraction on water availability
- Potential beneficial uses of extracted water

State responsibility

- Protection of existing water rights
- Maintain compliance with interstate stream compacts and Water Rights Acts

Potential for connection of coal interval to surface water

Goals for

Stream Depletion Assessment Study

- Determine magnitude of stream depletion, if any, from extraction of water and methane
 - Current and post-pumping
 - Regional and interstate
- Define areas from which extraction would be considered tributary vs. non-tributary, for purposes of regulating groundwater extraction under provisions of Colorado water law
- Provide framework for decision-makers regarding suitability of present level of regulation, primarily with respect to impacts on stream-related water rights

Other important issues, but not evaluated in this study

Environmental impacts of CBM

- Undesirable or hazardous methane migration
- Mitigation or remediation

Local, site-specific impacts

- Questions regarding specific wells or springs
- Detailed migration or depletion patterns

Wellfield longevity or production issues

- Spacing of wells
- Operational procedures

Study Resources

- Knowledge of participating agencies
- Information provided by basin property owners/ public
- Data provided by oil and gas operators
- Other public domain reports

2. Background

Background: a) Coal Bed Methane Extraction Industry

3,909 Coalbed Methane (CBM) Wells in Colorado

1,836 CBM Wells in San Juan Basin 1,994 CBM Wells in Raton Basin 79 CBM Wells in Piceance Basin

CBM Wells in the Piceance Basin, Colorado

Historic Annual Colorado Drilling Permits

COLORADO GAS PRODUCTION 1995-2006 BILLION CUBIC FEET (BCF) PER DAY

 CONVENTIONAL NATURAL GAS
COALBED METHANE TOTAL NATURAL GAS

NOTE: Chart Does Not Include Carbon Dioxide Production

CBM and Water Production Volumes, Piceance Basin, Colorado

Background: b) Regulatory Setting and Jurisdiction

Who Regulates Produced Water?

These water disposal methods are under the jurisdiction of the **Colorado Oil and Gas Conservation Commission**.

Approval to discharge water to surface streams is under the jurisdiction of the **Colorado Department of Public Health and Environment - Water Quality Control Division**.

After the water is discharged it is under the jurisdiction of the **Division of Water Resources** for issues concerning water rights. Subject to the Water Rights Act under the jurisdiction of the **Division of Water Resources**.

Regulatory Considerations

- CBM wells are treated just like any other O&G wells in Colorado
- Water quality is often poor
- Unreliable as long-term source

Oil and Gas Commission Regulates:

- Location of wells
- How wells are constructed
- Production operations
- Management of E&P waste
- Plugging wells
- Restoration of the surface

Methods of Use and Disposal

COGCC Rule 907

- Inject into a disposal well
- Place in lined or unlined pit
- Dispose at a commercial facility
- Road spreading
- Discharge into waters of the state
- Reuse for recovery, recycling and drilling
- Mitigation

DWR regulates groundwater withdrawal for beneficial use:

Types of Beneficial Uses

- Irrigation
- Municipal
- Domestic
- Stock watering
- Minimum streamflows
- Augmentation

- Doctrine of Prior Appropriation (First in timefirst in right)
- DWR has jurisdiction over administration of water – right of use
- Comply with the "Water Rights Acts"
 - Ground Water Management Act
 - Water Right and Determination and Administration Act

Surface Water Discharge

– Must comply with Water Rights Act

- Must have intent to use
- Must be diverted in priority
- Must be beneficially used
- Must not waste
- Must prevent material injury to vested water rights

Beneficial Use by Well-Tributary

- §37-90-137(1) & (2), CRS (2005)
 - Permit required
 - Must determine if unappropriated water is available
 - Must prevent material injury to vested water rights (may require augmentation)

Beneficial Use by Well-Nontributary

- §37-90-137(7), CRS (2005)
 - No permit required unless beneficially used
 - Use not based on land ownership
 - Do not need to determine if unappropriated water is available
 - Must determine by modeling if nontributary

Background c) Geologic Setting

How is Coalbed Methane Extracted?

- Methane gas is trapped in the coal beds by the pressure of water in the cleats (fractures)
- To release methane gas, water pressure is reduced by removing water from coal-bearing intervals
- Coal-bearing intervals can be interbedded with known aquifers, may be aquifers themselves, or are connected with surface water systems

Typical CBM Well Completion

Potential for connection of coal interval to surface water

Ron Blakey, Northern Arizona University (http://jan.ucc.nau.edu/~rcb7/)

Cretaceous Interior Seaway Coastal Environments

Cretaceous Interior Seaway Coastal Environments of Deposition

Single Cretaceous Coal Seam

Stratigraphic correlations and facies relationships in the Mesaverde Group, southern part of the Piceance Basin, Colorado. Line of section drawn perpendicular to depositional strike; stratigraphy is based on Gill and Hail (1975), Dunrud (1989a, 1989b), and Kirschbaum and Hettinger (1998). Modified from Hettinger and others (2000).

Ron Blakey, Northern Arizona University (http://jan.ucc.nau.edu/~rcb7/)

Main Piceance Basin Structural Features

Piceance Basin Diagrammatic Cross-Sections

Generalized West-East Cross Section through the South Part of the Piceance Structural Basin (Modified from Tweto, 1983)

12000-

8000-

4000

4000-

8000

Sea Level

Steeply Dipping Coal Seam at Grand Hogback

Oil and Gas Wells in Piceance Basin Region

Piceance Basin-Centered Gas Model - Present Day

S. Cumella & D. Ostby (2003)

USGS CBM Resource Assessment Areas

CBM Stream Depletion Study Sub-Units

CBM Stream Depletion Study Outcrop Map

Coal-Bearing Sequence, SE Piceance Basin

OR

C.J. Carroll (2003)

3. Plan of Study

Scope of Work Stream Depletion Assessment Study

- Review available data and studies
- Describe regulatory framework
- Describe hydrogeologic setting
- Characterize extraction activity
- Assess impact of extraction on regional water conditions, particularly, impacts to streams
- Provide analysis and assessment in report
- Provide framework for decision-makers regarding suitability of present level of regulation, primarily with respect to streamflow impacts

Simplified Modeling Analysis

- Lead agencies have specified an analytical approach, if plausible, based on Glover method
- Analysis set-up:

 Characterize the flow geometry and flow barriers

•Quantify aquifer properties

Quantify produced water volumes, present and projected

Conceptual Model Development, Step 1

Identify potentially impacted surface water features:

- River valley alluvium of major streams?
- Locally incised streams?
- Springs, seeps?
- Outcrops traversed by streams?

Conceptual Model Development, Step 2

Characterize hydraulic connection between CBM water production intervals and potentially impacted surface water features

- Horizontal, vertical, or both?
 - Internal or external formation boundaries?

Preliminary Observations

- The timing and magnitude of stream depletion from CBM water production will be dependent on "effective average" horizontal and vertical hydraulic conductivity, and formation storage characteristics
- Spatial differences exist among preliminary sub-units
- The quantity of produced water at present is low; present impacts to streams will be similarly low
- COGCC will provide possible scenarios for future development and based on these, the potential for future impacts will be assessed.

Work in Progress

- Compilation and review of data
 - Well tests
 - Shut-in pressures
 - Formation properties
 - Shallow aquifer conditions
- Evaluation of horizontal and vertical hydraulic conductivity; storage properties
- Evaluation of formation geometry with reference to surface streams

Related Analyses

- Suitability of Glover method for regulatory purposes (regional emphasis, not sitespecific)
- Other methods, correlations, or indicators that might serve to identify tributary vs. nontributary zones
- Issues unanswered areas for further study

Report

Stream Depletion Assessment Study

- Summary of available data and studies
- Regulatory framework
- Hydrogeologic setting
- Extraction activity and projections
- Stream depletion assessment
- Conclusions / Recommendations

Schedule

- Project start, December 2006
- Public Meeting, Rifle, January 26
- Compile, assess data, through April
- Report to lead agencies, June
- Report posted on website, TBD
- Final public presentation, TBD

Communications

- Public Meeting, Rifle, January 26, 2007
- Concerns, observations or information from any interested party is of value to the study team and will be reviewed – best to submit within next 2 weeks, boulder@sspa.com
- Study report will be available through links on DWR and COGCC websites
- Post-study comments will be received by DWR and COGCC
- Post-study meeting will be scheduled

Your interest is appreciated, contact us at: Deborah Hathaway or Bryan Grigsby <u>boulder@sspa.com</u> 303-939-8880

FITT