Laramie Energy II, LLC Tier II Gas Wells Quarterly Production Monitoring Report Furr 16-22D and Furr 16-22B Rulison Field, Garfield County, Colorado April 2009

Prepared for:

Laramie Energy II, LLC 1512 Larimer Street, Suite 1000 Denver, Colorado 80202

Prepared by:

Olsson Associates 4690 Table Mountain Drive, Suite 200 Golden, Colorado 80403

June 2009

Project #008-2362

Table of Contents

Table of Contents		i
Tables		ii
Figures		ii
Appendices		ii
1.0 Introduction		1
1.1 Tier II Zone Monito	pring Requirements	2
1.2 Laramie Energy II	Furr 16-22B and Furr 16-22D Gas Wells	3
1.3 Tier II Zone Drilling	g Monitoring Requirements	4
1.4 Application for Per	mit to Drill and Conditions of Approval	5
1.5 Data Verification a	nd Validation	6
2.0 Natural Gas and Pro	duced Water Sampling	7
2.1 Quarterly Production	on Sampling - Tier II Furr 16-22D Gas Well	7
2.2 Natural Gas Samp	le Analysis	7
2.3 Produced Water S	ample Analysis	8
3.0 Laboratory Analytica	I Results	10
3.1 Natural Gas Samp	le Results	10
3.2 Produced Water S	ample - Radiochemistry Results	10
3.2.1 Tritium Result	S	10
3.2.2 Gross Alpha F	Radiation Results	11
3.2.3 Gross Beta Ra	adiation Results	11
3.2.4 Strontium-90 a	and Technetium-99 Results	12
3.2.5 Chlorine-36 re	sults	12
3.2.6 Gamma-Emitti	ing Radionuclide Results	12
4.0 Summary		13
5.0 References		15

i

- Table 1 Furr Gas Well Information
- Table 2 Gas Sample Data
- Table 3 Tritium Analytical Results for Produced Water Samples
- Table 4 Radiochemistry Gas Flow Proportional County/Liquid Scintillation/ Total Uranium for Produced Water Samples
- Table 5 Gamma Spectroscopy Results for Produced Water Samples

FIGURES

Figure 1 - Rulison Area Gas Well Locations Figure 2 - Laramie Energy II Rulison Area Well Locations

APPENDICES

Appendix A - Isotech Laboratories Inc. Sample Results Appendix B - GEL Laboratories LLC Sample Results Appendix C - Furr 16-22D Well Logs

1.0 Introduction

Laramie Energy II, LLC (Laramie Energy II) is developing natural gas resources in the vicinity of Jack's Pocket on the north flank of Battlement Mesa in Garfield County, Colorado. These gas wells were originally drilled by Petrohunter Operating Co. and GSL Energy Corp. and were purchased and completed by Laramie Energy II in 2008. Laramie Energy II retained Cordilleran, a division of Olsson Associates (Olsson Associates) to collect natural gas and produced water sampling for the Furr Wells to comply with the requirements of the Colorado Oil and Gas Conservation Commission (COGCC) Sampling and Analysis Plan (SAP) requirement developed by URS Corporation (URS) for all natural gas wells within a three-mile radius of the former Project Rulison site.

The Laramie II natural gas wells discussed in this report are all located within a 3-mile radius of the Project Rulison underground nuclear test site conducted in September 1969 by the Atomic Energy Commission, a predecessor agency to the Department of Energy (DOE), and Austral Oil, a private oil company. Project Rulison was a subsurface natural gas stimulation nuclear test to produce natural gas from tight gas sands in the Cretaceous age Williams Fork Formation.

In general, the SAP requires all companies drilling or producing natural gas wells within specified zones and sectors surrounding the former Rulison site to review certain drilling data (gamma ray logs) and to sample certain production media (natural gas and produced water) to document the presence or absence of potential impacts associated with Project Rulison. Section 1.2 of this Report provides additional details of the SAP requirements.

All known natural gas wells within the three mile radius of Project Rulison (including Laramie Energy II wells) are shown on Figure 1. Laramie Energy II's Furr Gas wells are shown more specifically on Figure 2.

The drilling and baseline monitoring activities for the Furr wells was conducted in November and December 2008 with the results presented in a report titled Laramie Energy II, LLC Tier II Gas Well Baseline Monitoring and Production Report, Rulison Field, Garfield County, Colorado November - December 2008 issued in May 2009 once all of the laboratory analytical data had been received. The results of this drilling and baseline monitoring indicate that no Project Rulison related radionuclides were detected in any of the gas or produced water samples. Copies of the report, including the December 17, 2008 baseline/production data for the Furr 16-22B and Furr 16-22D wells, were provided to Laramie Energy II, the Colorado Oil and Gas Conservation Commission (COGCC), the Colorado Department of Public Health and

Environment (CDPHE) Hazardous Materials and Waste Management Division -Radiation Management Unit, S.M. Stoller/DOE, the Garfield County Oil and Gas Liaison, and URS Corporation.

The subject of this document is to report the first quarter, 2009 production monitoring results for the Laramie Energy II Furr 16-22D well conducted on April 14, 2009. The Furr 16-22B Tier II gas well was shut-in and could not be sampled on April 14, 2009.

For purposes of classifying the Laramie Energy II wells within the context of the approved SAP, both the Furr 16-22D and Furr 16-22B are considered Tier II wells located respectively in Sectors 10 and 11. The Furr 16-22B is currently considered to be the closest natural gas wells to the former Project Rulison site in sector 11. The Furr 16-22D has a surface location in sector 11 and a bottom hole location in sector 10, but the bottom hole location is very close to the sector dividing line. This well was sampled as a voluntary measure as Noble Energy has wells in sector 10 closer to the former Project Rulison site. Based on this, the Furr 16-22D may be dropped from future quarterly sampling if another well on the same pad location is determined to be more suitable for quarterly monitoring. All of the wells on this well pad were sampled on December 17, 2008 during baseline/production monitoring.

As with the drilling and baseline sampling conducted in November and December of 2008, the first quarter laboratory analytical results for 2009 do not indicate the presence of any Project Rulison related radioactivity. A summary table of Laramie Energy II well locations and sampling activities is presents as Table 1.

1.1 Tier II Zone Monitoring Requirements

URS Corporation (URS) is working for Noble Energy, EnCana Oil & Gas (USA), Inc., and Williams Production RMT who are also conducting natural gas well drilling operations in the vicinity of Project Rulison. URS has developed a Rulison Sampling Analysis Plan (SAP), Revision 2 issued in March 2008. The URS Rulison SAP defines Tier II wells as those gas wells located outside the 1-mile radius, but within the 3-mile radius of Project Rulison; whereas Tier I wells are defined as those gas wells located within the 1-mile radius of Project Rulison. This SAP has been adopted by the COGCC, and outlines the required sampling and analysis for all operators within a three-mile radius or Project Rulison.

According to the March 2008 Revision 2 of the URS SAP the Tier II well monitoring includes:

- Drilling Monitoring;
- Production Monitoring; and
- Baseline produced water and natural gas monitoring.

A discussion of these monitoring activities was presented in the May 2009 report. According to the URS Rulison SAP <u>Table 2 - Tier I and II Sampling and</u> <u>Analysis Scheme for Gas Wells within a Three Mile Radius of Project Rulison</u> well production sampling provisions require that Tier II wells be sampled and analyzed as follows:

- A one-time sampling and analysis of produced water for the radiological and non-radiological analytes listed in Table 3 and Table 4 of the Rulison SAP. The Tier II wells are to be sampled as soon as possible after frac-ing but no later than 30-days after the first gas delivery from a new gas well;
- If a Tier II gas well is the closest well in a sector (i.e. no Tier I well), produced water and natural gas will be sampled and analyzed for the radiological analytes listed in Table 3 quarterly during the first year, semi-annually (twice a year) during the second and third year, and annually thereafter; and
- Further testing contingent on verified Project Rulison-related radionuclide detection in Tier I zone wells.

1.2 Laramie Energy II Furr 16-22B and Furr 16-22D Gas Wells

Both the Furr 16-22B and Furr 16-22D are directionally drilled wells meaning that the bottom of the well is located several hundred feet or thousands of feet away from the surface location. The Laramie Energy Furr 16-22B well is the closest Tier II well in Sector 11, and as such is required to be sampled quarterly. However, it was shut-in on April 14, 2009, and could not be sampled. The Furr 16-22D has a surface location in sector 11 and a bottom hole location in sector 10. The Furr 16-22D was sampled on April 14, 2009 in lieu of the Furr 16-22B as it is the next closest Tier II well to Project Rulison operated by Laramie Energy II. Noble Energy has Tier I and Tier II wells located in sector 10 that are closer to the dividing line between sector 10 - sector 9 but are closer to the former Project Rulison site than any of the Furr wells.

Olsson Associates conducted the 1st quarter 2009 sampling trip for the Furr 16-22D on April 14, 2009. Both of the Furr 16-22D and Furr 16-22B wells were sampled as part of the baseline sampling program on December 17, 2008. The Furr 16-22B was shut-in at that the time of the 1st quarter 2009 sampling event and could not be sampled. These wells are reportedly yielding less produced water than during the initial production phase and may not be able to be sampled in the future due to a lack of produced water volume.

This report presents the results from Furr 16-22D gas and produced water samples collected on April 14, 2009. Copies of the Isotech Laboratories Inc. laboratory reports for the Furr 16-22D gas analysis and tritium in produced water from are included as Appendix A. The analytical results for the produced water sample from the Furr 16-22D analyzed by GEL Laboratory LLC are presented as Appendix B.

1.3 Tier II Zone Drilling Monitoring Requirements

The drilling monitoring requirements in the SAP consist of a review of the openor cased-hole gamma-ray logs through the Williams Fork Formation interval for evidence of elevated gamma radiation. This review is conducted to determine whether there is potential evidence of Project Rulison-related gamma radiation observed in the formation during gas well drilling. The gamma-ray logs also detect naturally occurring radionuclides such as potassium-40, uranium, and thorium isotopes. According to the URS Rulison SAP, the logs will be reviewed for evidence of above normal gamma-ray signatures. A gamma radiation measurement greater than 500 API gamma units or any other gamma readings that appear to be anomalous are to be noted by the drilling supervisor or his designated representative and immediately reported to the Company management and the [radiation safety officer] RSO for review and guidance.

A review of the well logs for the Furr 16-22B and Furr 16-22D wells on the COGCC website database shows that gamma-ray signatures were typically less than 200 API gamma units. Special attention was paid to the well log intervals below 6,000 feet to the bottom of each the wells. Copies of these logs are presented in Appendix C.

A "spike" was noted at approximately 8,445 feet on the Reservoir Monitor Tool Elite (RMTE) log for the Furr 16-22D well; however, there was no corresponding spike through this interval on the gamma track on the cement bond log for the Furr 16-22D well. This anomaly does not appear to be related to Project Rulison based on the analytical data for the two produced water and natural gas samples collected from this well.

Olsson Associates contacted Halliburton who ran the RMTE log and cement bond log to ask about the anomaly. According to Halliburton, the anomaly appears to be caused by the RMT Tool and not the formation. It occurred very near the total depth [of the Furr 16-22D well], when the neutron generator was turned on for logging which is suspected as the cause of the anomaly. The gamma-ray track on the cement bond log for the same interval did not show anything out of the ordinary, and the cement bond log that was run later. If there had been radioactive material present it would have been recorded on the bond log. The repeat on the bond log also suggests that there is no radioactive material present.

Laramie Energy II re-ran the RMTE logging tool in the Furr 16-22D on June 3, 2009; but could not make it down to the interval and was about 50 feet short.

1.4 Application for Permit to Drill and Conditions of Approval

The COGCC may attach Conditions of Approval (COA) to the Application for Permit to Drill (APD) that parallel or are additional to what is contained in the URS SAP for Tier II wells. According to the copies of the APDs for the Furr 16-22B and Furr 16-22D wells found on the COGCC's internet website database, the additional COA requirements are as follows:

`To prevent the loss of drilling fluid to shallow formations and to protect shallow groundwater and surface waters, conductor pipe shall be set at a depth sufficient to insure absolute wellbore integrity during the drilling operations. Conductor pipe must be set at a minimum depth of 200', or at a depth at which formation integrity is sufficient to prevent a loss of drilling fluid, whichever is greater, on the first well on each pad and cemented by the pumped plug method. Conductor pipe setting depths on subsequent wells on the pad may be increased or decreased based on geologic conditions encountered in the first well so as to insure absolute wellbore integrity.'

'Submit a radionucleide (sic) monitoring program via Sundry Notice Form 4 for this well and obtain approval of the plan prior to spudding the well.'

The Furr 16-22B and Furr 16-22D wells were sold by GSL Energy Corporation to Petrohunter Operating Company in late 2006 and sold in turn to Laramie Energy II in 2008. As with other operators in the Rulison area, Laramie Energy II follows the URS developed Rulison SAP, Revision 2, March 2008 as the radionuclide monitoring program for the area. This SAP has been accepted by the COGCC, CDPHE, DOE and Garfield County.

1.5 Data Verification and Validation

Olsson retained Diane Short & Associates of Lakewood, Colorado to perform the independent data validation on the November and December 2008 radiochemistry and non-radiochemistry baseline and production data, and also on the radiochemistry parameters for the first quarter 2009 production data for the Furr 16-22D well.

The data validation will be provided as an addendum to the <u>Laramie Energy II,</u> <u>L.L.C. Tier II Gas Well Baseline Monitoring and Production Monitoring Report,</u> <u>Rulison Field, Garfield County, Colorado November - December 2008</u> which was submitted to the COGCC, Colorado, CDPHE-HMWMD Radiation Control, S.M. Stoller/DOE, Garfield County, and URS Corp. in May 2009.

2.0 Natural Gas and Produced Water Sampling

Laramie Energy II authorized sampling of the Furr 16-22D and Furr 16-22B wells, are both Tier II wells located in sectors 10. The Furr 16-22B has a bottom of hole location that is also located in sector 10; however, it was shut-in and could not be sampled. The Furr 16-22D has a surface location in sector 10 and a bottom of hole location in sector 11. Olsson performed the sampling of the natural gas and produced water by following the URS Rulison SAP, Revision 2, March 2008. There are no Tier I wells within Sector 10; therefore, the Furr 16-22B is the closest Tier II well in this sector. The Furr 16-22D is the next closest Tier II well to Project Rulison operated by Laramie Energy II. Noble Energy has completed Tier II wells and Tier I wells in Sector 10 that are closer to Project Rulison that any of the Laramie Energy II wells. However, these Noble Energy wells are located near the dividing line between sectors 9 and 10.

2.1 Quarterly Production Sampling - Tier II Furr 16-22D Gas Well

Well Identification:	Well Surface Location:
 Furr 16-22B 	SE ¼, SE ¼, Section 22, T7S, R95W; and

• Furr 16-22D SE ¹/₄, SE ¹/₄, Section 22, T7S, R95W.

Olsson Associates personnel sampled natural gas and produced water the Furr 16-22D well on April 14, 2009 for the radiochemistry parameters listed in Table 3 of the URS Rulison SAP. The samples consisted of natural gas and produced water collected from the Furr 16-22D well separator with the assistance of Laramie Energy II's pumper. Olsson Associates collected the gas sample using a two-stage regulator and obtaining the gas from the separator. Olsson Associates collected the produced water samples from the dump line on the separator. Since there are multiple wells on these pads and production fluids are co-mingled in the onsite tank batteries, it is not possible to collect representative produced water samples for individual wells from the onsite production tanks as described in the URS Rulison SAP sampling protocols.

2.2 Natural Gas Sample Analysis

A natural gas sample was collected from the Furr 16-22D on April 14, 2009 and was submitted to Isotech in Champaign, Illinois for gas compositional analysis including carbon-14 (¹⁴C) and tritium (³H), a radioactive form of hydrogen. The natural gas sample was collected in an evacuated, propane tank provided by Isotech, using a two-stage pressure regulator connected to the separator or the natural gas wellhead.

Isotech reported the ³H in tritium units (TU). One TU is equivalent to 3.19 picocuries per liter (pCi/L); therefore, any tritium present in the gas would be less than 32 pCi/L. The tritium analysis measures counts above background, and if the concentration is high enough the laboratory can report a finite value with a calculated uncertainty. If the concentration is low relative to the standard deviation of the measurement then the values are reported as "less than" the laboratory reporting limit, meaning that tritium was not detected. Isotech's reporting limit for tritium ranges from 10 TU to 15 TU.

Beginning in about 1954, atmospheric tritium levels rose in excess of 1,000 TU due to nuclear weapons testing, and have declined back to natural background levels since then as a result of the ban on nuclear testing. Current natural background levels for tritium in the atmosphere range from 5 TU to 50 TU (15.9 pCi/L to 159.5 pCi/L). The isotopic composition of hydrogen is compared relative to the Vienna Standard Mean Ocean Water (VSMOW) standard.

Isotopic composition of carbon is relative to the Vienna Peedee Belemnite (VPDB) δ^{13} Standard and is based on the carbon isotopes in the shell of a marine fossil. The laboratory detection limit is 1 percent modern carbon (pMC). The result indicates that carbon-14 is not present in the natural gas and the natural gas has been isolated from sources of modern carbon.

Krypton-85 (⁸⁵Kr) was the only other radionuclide that was identified in the Project Rulison estimated inventory potentially present in the natural gas. Isotech is not able to analyze the gas samples for the presence of ⁸⁵Kr. Krypton-85 (⁸⁵Kr) disintegrates by beta decay to form stable rubidium-85 (⁸⁵Rb). Analysis of ⁸⁵Kr beta decay activity in groundwater is restricted to a limited number of research laboratories worldwide due to complications in sampling which require large sample volumes, long counting times, and specialized analytical methods (Clark and Fritz, 1997) (Gholam, Lehr, and Perrochet, 2006).

2.3 Produced Water Sample Analysis

A produced water sample was collected from the dump line on the Furr 16-22D separator unit located on the well pad and was submitted for analysis of radiochemistry parameters as listed in Table 3, as specified for Tier II wells in Table 2 of the URS Rulison SAP. The produced water sample collected on April 14, 2009 was submitted to Isotech for tritium analysis and to GEL Laboratory in Charleston, South Carolina for radiochemistry analysis (gamma spectroscopy, gas flow proportional counting for gross alpha and gross beta, chlorine-36 (³⁶CI), strontium-90 (⁹⁰Sr), liquid scintillation analysis for Technetium-99 (⁹⁹Tc), and total

uranium). The laboratory analytical results are discussed in the following section and the results are summarized in Table 1 through Table 4.

According to the USGS Open File Report Geohydrology - Project Rulison (Voegeli, West, Cordes, 1970), intervals below 6,000 feet bgs in the R-EX hole were analyzed in 1968 for the presence of gross alpha as Uranium equivalent and gross beta, as 90 Sr- 90 Y. The alpha activities ranged from < 0.4 µg/L to 9.8 µg/L, and gross beta activities ranged from 29 pCi/L to 70 pCi/L (Voegeli, 1969).

3.0 Laboratory Analytical Results

The following sections present the laboratory analytical results for natural gas samples and produced water samples. Radionuclide results are presented first followed by the results for inorganic and organic analyses. The laboratory analytical results for the natural gas and produced water sample show that there are no Project Rulison related radionuclides present in the natural gas or produced water collected from the Furr 16-22D Tier II gas well.

3.1 Natural Gas Sample Results

The natural gas sample results are presented in Table 1 and copies of the Isotech laboratory gas sample reports are presented in Appendix A. The Isotech laboratory reports present the compositional analysis reported in mol percent for components in each of the gas samples. The results show that the samples are predominantly composed of methane with lesser concentrations of helium, hydrogen, oxygen, carbon dioxide, nitrogen, ethane, propane, iso-butane, N-butane, iso-pentane, and hexanes. Argon, carbon monoxide, hydrogen sulfide, and ethylene gas were not detected. The gas samples were also analyzed for the radionuclides tritium (³H) and carbon-14 (¹⁴C).

3.1.1 Tritium Resuts

The tritium $({}^{3}H)$ in the gas sample was reported as < 10 TU, and was not detected above the laboratory method detection limit.

3.1.2 Carbon-14 Results

The carbon-14 result was reported for the gas sample from the Furr 16-22D as 0.5 ± 0.1 percent modern carbon (pMC). The method detection limit is 1 pMC, so the ¹⁴C pMC is less than the detection limit which indicates that the gas sample has been isolated from sources of modern carbon.

3.2 Produced Water Sample - Radiochemistry Results

The following sections present the laboratory analytical results for the produced water sample collected from the Furr 16-22D gas well on April 14, 2009. Copies of the laboratory report from Isotech and GEL are included as Appendix B and Appendix C.

3.2.1 Tritium Results

The laboratory result for tritium $({}^{3}H)$ in produced water reported by Isotech was less than ten (< 10.0 TU) or less than 32 pCi/L. The minimum detectable

concentration (MDC) that Isotech is able to achieve for ³H using this method is 10.0 TU. The tritium results in produced water are summarized in Table 2.

For comparison Olsson converted TU to pCi/L by multiplying by 3.19 and the resulting range of tritium results were from less than 31.9 pCi/L. Natural background tritium levels in precipitation typically range from 10 TU to 20 TU (32 pCi/L to 64 pCi/L). The CDPHE basic groundwater quality standard for tritium is 20,000 pCi/L referenced as the level of activity that could potentially result in an annual dose of 4 millirems of beta radiation.

3.2.2 Gross Alpha Radiation Results

The laboratory results for gross alpha activities show that alpha radiation was detected in the Furr 16-22D produced water sample with an alpha activity of 33.0 \pm 16.3 pCi/L. The laboratory detection limit (DL) was 21.8 pCi/L and the laboratory reporting limit (RL) was 5.00 pCi/L.

The detected gross alpha activity is due to high total dissolved solids (TDS) concentrations present in the sample. The alpha activity is within the expected range of natural background radiation for the area and is likely due to the presence of naturally occurring uranium, thorium, and their daughter products present in the produced water from the producing formation. One part per million (ppm) uranium (²³⁸U) equals 0.33 picocuries per gram (pCi/g); and one ppm thorium (²³²Th) equals 0.11 pCi/g.

The results for the gross alpha activities in the produced water sample are summarized on Table 3 and copies of the laboratory report are presented in Appendix B.

3.2.3 Gross Beta Radiation Results

The laboratory results for gross beta activities in produced water samples indicated that gross beta activities were detected in the Furr 16-22D sample with a beta activity of 79.4 \pm 23.0 pCi/L. The laboratory DL was 34.8 pCi/L and the RL was 5.00 pCi/L.

The gross beta results are within the expected range of natural background radiation for the area and are likely due to the presence of naturally occurring potassium-40 (⁴⁰K). Potassium-40 (⁴⁰K) was not detected in the April 14, 2009 Furr 16-22D produced water sample submitted for gamma spectroscopy, but it was detected in the December 2008 Furr 16-22D sample.

The results for the gross beta activities are summarized on Table 3 and copies of the laboratory reports are presented in Appendix B for the April 2009 sample.

3.2.4 Strontium-90 and Technetium-99 Results

The produced water sample was submitted to GEL Laboratories and was analyzed for Strontium-90 (⁹⁰Sr) and Technetium-99 (⁹⁹Tc). The laboratory results show that Strontium-90 (⁹⁰Sr) and Technetium-99 (⁹⁹Tc) were not detected. The results for the ⁹⁰Sr and ⁹⁹Tc activities are summarized on Table 3 and copies of the laboratory reports are presented in Appendix B.

3.2.5 Chlorine-36 results

Chlorine-36 (³⁶Cl) analysis was submitted to GEL for ³⁶Cl analysis and the results show that ³⁶Cl activities were not detected above the laboratory reporting limits. The results for the ³⁶Cl activities are summarized on Table 3 and copies of the laboratory reports are presented in Appendix B.

According to the January 2005 DOE Rulison Site End State Vision document, the estimated inventory of ³⁶Cl is 2.82 curies (Ci), and according to the URS 3rd Quarter 2008 Report, ³⁶Cl is a less common radionuclide in the inventory at Project Rulison.

3.2.6 Gamma-Emitting Radionuclide Results

The majority of the results for the gamma-emitting radionuclides show that activities were not detected above laboratory reporting limits. This is indicated with a letter 'U' in the results and also in the first row of Table 4. The laboratory results for gamma-emitting radionuclides in the Furr 16-22D produced water sample show that Bismuth-214 and Lead-214 results were qualified as 'UI' Gamma Spectroscopy - 'Uncertain Identification.' Both ²¹⁴Bi and ²¹⁴Pb are daughter products of the naturally occurring uranium-238 (²³⁸U) decay series. Lead-212 (²¹²Pb) was also reported in the Furr 15-22B produced water sample, and ²¹²Pb is a daughter product of the naturally occurring thorium-232 (²³²Th) decay series. Copies of the laboratory reports for gamma spectroscopy results are included in Appendix B.

Potassium-40 (⁴⁰K) was previously detected in seven of the fourteen produced water samples, submitted in November and December 2008 including the sample from the Furr 16-22D. Potassium-40 is one of the most common radionuclides in nature and is frequently found in sedimentary rocks high in clay minerals which contain potassium in their chemical formulas. Potassium-40 was not detected in the Furr 16-22D produced water sample collected in April 2009; however, the gross beta results for this sample indicated beta activity was detected. Krypton-85 (⁸⁵Kr) was also not detected in the produced water sample collected in the Furr 16-22D well analyzed by gamma spectroscopy analysis.

4.0 Summary

The Furr 16-22B and Furr 16-22D gas wells are both located in Section 22, Township 7S, Range 95 West of the Sixth Principal Meridian. The Furr 16-22B and Furr 16-22D are Tier II wells in URS Sectors 10 and 11 and are located within the 3-mile radius of Project Rulison as shown on Figure 1 and Figure 2.

Olsson Associates reviewed the gamma-ray well logs for Laramie Energy II's Furr 16-22B and Furr 16-22D. An anomaly was noted in the Furr 16-22D Halliburton RMTE well log at an approximate depth of 8,445 feet. According to Halliburton personnel, the anomaly was most likely caused by the RMT tool, and was not due to radioactivity in the formation. Since it occurred near the total depth of the well where the neutron generator was turned on for logging, Halliburton suspects that this was the cause of the anomaly. No anomalies were observed in the cement bond log for this interval in the Furr 16-22D well which was run after the RMTE log. No anomalies were observed in the Furr 16-22B well logs.

Two Tier I wells owned by Noble Energy are shown within Sector 11 on the COGCC online GIS database. However, these wells were never drilled and the locations were subsequently abandoned, making the Furr 16-22B the closest Tier II well in Sector 11. On April 14, 2009, The Furr 16-22B was shut-in and could not be sampled. The Furr 16-22D surface location is in sector 11, but the bottom hole location is in sector 10. The Furr 16-22D is the next closest Tier II well to Project Rulison operated by Laramie Energy II. Noble Energy has Tier I and Tier II wells located in sector 10 that are closer to Project Rulison than any of the Furr wells. However, these Noble Energy wells are located closer to the dividing line between sector 10 and sector 9 as shown on Figure 1.

Olsson Associates conducted quarterly production sampling of the Furr 16-22D well on April 14, 2009. The Furr 16-22B and 16-22D wells were previously sampled for baseline radiochemistry and non-radiochemistry parameters on December 17, 2008 once they were brought into production. These wells are scheduled to be sampled again in June 2009.

The laboratory analytical results for the natural gas and produced water sample show that there are no Project Rulison related radionuclides present in the natural gas or produced water collected from the Furr 16-22D Tier II gas well. The analytical results for samples collected from the Furr 16-22D well in April 2009 and December 2008 are presented in the attached tables.

The analytical results show that tritium (³H), reportedly the most abundant and most mobile radionuclide in the Project Rulison estimated inventory, was not detected in the gas sample or in produced water sample analyzed by Isotech in Champaign, Illinois. Krypton-85 (⁸⁵Kr) is a Project Rulison radionuclide potentially present in the gas; however, Isotech is not able to analyze for ⁸⁵Kr. The GEL laboratory results indicate that ⁸⁵Kr was not detected in the produced water sample analyzed by GEL for gamma-emitting radionuclides.

Carbon-14 (¹⁴C) was also identified in the Project Rulison estimated inventory as a radionuclide that potentially could be present in natural gas. The Isotech analytical results for the natural gas sample collected from the Furr 16-22D well show that ¹⁴C was reported at 0.5 ± 0.1 pMC. The laboratory detection limit for this method is 1.0 pMC which shows the sample has been isolated from modern carbon sources.

Naturally occurring radionuclides, such as Bismuth-214 and Lead-214 were reported as uncertain identification in the Furr 16-22D produced water sample. Other gamma emitting radionuclides were reportedly not detected. Laboratory analytical results for gross alpha and gross beta indicate that alpha activities and beta activities were within the range of natural background and these low level activities are most likely due to naturally occurring radionuclides such as ²¹⁴Bi and ²¹⁴Pb. Gross alpha activities in the produced water are likely to due to high TDS detected in the baseline samples. The gross beta activities may be related to naturally occurring ⁴⁰K. The laboratory analytical results indicate that, ³⁶Cl, ⁹⁰Sr, ⁹⁹Tc, and total Uranium results were reported as 'not detected' in the Furr 16-22D sample.

5.0 References

- Clark, I.D. and Fritz, P., Environmental Isotopes in Hydrogeology, 1997, CRC Press, LLC, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431,
- Gholam, K.A.; Lehr, J.H., PhD.; Perrochet, P., Groundwater Age, 2006, John Wiley & Sons, Inc., Hobken, NJ.
- URS Corp. Rulison Sampling and Analysis Plan, Revision 2, March 2008 Denver, Colorado
- Voegeli, P.T., Sr.; West, S.W.; Geohydrology of Project Rulison, Garfield County, Colorado with a section on Aquifer Response by Cordes, E.H., 1970, U.S.G.S. Open File Report USGS-474-68, 56 pages;
- Voegeli, P.T., Sr.; Geology and Hydrology of the Project Rulison Exploratory Hole, Garfield County, Colorado, 1969, USGS-474-16;

TABLES AND FIGURES

FURR GAS WELL INFORMATION Furr 16-22B and Furr 16-22D Tier II Wells - First Quarter 2009 Laramie Energy II Rulison Area Gas Well Monitoring

				Surface L	ocation					
							TOTAL DEPTH	COMPLETION		
COUNT	WELL	PAD	QTR/QTR	SEC	TWP	RNG	(FT.)	INITIATION DATE	4th Quarter 2008	1st Quarter 2009
1	Furr A11-15B	Furr A-11	NE SW	15	7S	95W	7,643	9/22/08	B (11/13/08)	N/A
2	Furr A11-15D	Furr A-11	NE SW	15	7S	95W	7,645	9/29/08	B (11/13/08)	N/A
3	Furr Hagen 6-22B	F-1	SW NE	22	7S	95W	8,225	10/3/08	B (12/17/08)	N/A
4	Furr Hagen 6-22D	F-1	SW NE	22	7S	95W	8,225	10/3/08	B (12/17/08)	N/A
5	Furr 7-22B	F-1	SW NE	22	7S	95W	8,077	10/8/08	B (12/17/08)	N/A
6	Furr 7-22D	F-1	SW NE	22	7S	95W	8,110	10/8/08	B (12/17/08)	N/A
7	Furr 10-22B	F-1	SW NE	22	7S	95W	8,130	10/13/08	B (12/17/08)	N/A
8	Furr 9-22B	F-2	SE SE	22	7S	95W	8,820	10/24/08	B (12/17/08)	N/A
9	Furr 9-22D	F-2	SE SE	22	7S	95W	8,720	10/30/08	B (12/17/08)	N/A
10	Furr 16-22B	F-2	SE SE	22	7S	95W	8,520	10/24/08	B (12/17/08)	QP (NS)
11	Furr 16-22D	F-2	SE SE	22	7S	95W	8,540	10/30/08	B (12/17/08)	QP (4/14/09)
12	Furr 10-22D	F-3	SW SE	22	7S	95W	8,606	11/6/08	B (12/17/08)	N/A
13	Furr 15-22B	F-3	SW SE	22	7S	95W	9,172	11/6/08	B (12/17/08)	N/A
14	Furr 15-22D	F-3	SW SE	22	7S	95W	8,476	11/6/08	B (12/17/08)	N/A

B - Baseline Data Collection Date

QP - Quarterly Production Data Collection Date.

N/A - Not Applicable (See explanation below)

NS - Not Sampled. The Furr 16-22B was shut-in and could not be sampled.

According to the URS Rulison SAP, Revision 2, March 2008, Table 2 - *Tier I and Tier II Sampling and Analysis Scheme for Gas Wells within a Three-Mile Radius of Project Rulison*, Tier II Zone wells require a One-Time sampling and analysis (Baseline) for the radiological and non-radiological analytes in SAP Tables 3 and 4 and natural gas for the radiological analytes listed in SAP Table 3 as soon as possible after fracing but no later than 30 days after first gas delivery form a new gas well. If a Tier II well is the closest well in a sector (i.e., no Tier I well), produced water and natural gas will be sampled and analyzed for the radiological analytes listed in Table 3 quarterly during Year 1, semiannually during Years 2 and 3, and annually thereafter.

The Furr 16-22B and Furr 16-22D are the two Tier II wells closest to Project Rulison in Sector 11, and there are no Tier I wells in this sector.

GAS SAMPLE DATA Rulison Area Well Monitoring

Furr 16-22B and Furr 16-22D Wells Natural Gas Samples - Laramie Energy II - Rulison Field, Garfield County, Colorado

	Sample								Isotech	Sample	Date	He	H ₂	Ar	O ₂	CO ₂	N ₂	C ₁	C ₂	C ₃	iC ₄	nC ₄	iC₅	nC₅	C ₆ +	¹⁴ C ₁	Std. Dev.	Tritium C ₁	Std. Dev.
Well Name/ No.	Source	Latitude/	Longitude	Qtr/Qtr	Section	Township	Range	P.M.	Lab No.	Name	Sample	%	%	%	%	%	%	%	%	%	%	%	%	%	%	рМС	(±)	TU	(±)
Furr 16-22B	Separator	39.41662	-107.97507	SE SE	22	7S	95W	6th	152400	Furr 16-22B	12/17/2008	0.0029	0.0036	ND	ND	2.97	0.029	89.26	5.12	1.50	0.335	0.322	0.139	0.0981	0.220	< 0.4	N/A	< 10.0	N/A
Furr 16-22D	Separator	39.41662	-107.97512	SE SE	22	7S	95W	6th	152398	Furr 16-22D	12/17/2008	0.0029	0.0033	ND	0.0060	3.25	0.053	88.76	5.35	1.52	0.337	0.307	0.128	0.0895	0.192	< 0.8	N/A	< 10.0	N/A
									160503		4/14/2009	0.0029	0.0042	ND	0.0098	3.39	0.086	88.87	5.24	1.45	0.309	0.278	0.117	0.0789	0.167	0.5	0.1	< 10.0	N/A
<u>Accronyms:</u> pMC - Percent Mode TU - Tritium Units (O < - Not Detected	rn Carbon. ne TU is equiva	alent to 3.19	pCi/L of water)	I		He - Helium H ₂ - Hydroge Ar - Argon O ₂ - Oxyger	en		¹⁴ C ₁ - Carbo Tritium Std. Dev./	on 14 (±)	Carbon-14 (14C) Tritium (³ H) Standard Deviatio	Detection Detection	Limit is 1 _imit 10.0 e range ac	.0 pMC TU. Is dded to	. Isotopic otopic cor	compos npositior cted fron	sition of c n of hydro n result)	arbon is ogen is r	relative elative to	to the V o Vienna	/ienna P a Standa	Peedee B ard Mear	elemnite n Ocean V	(VPDB). Vater (VSI	MOW).				
Std. Dev. (±) - Standa N/A - not applicable	ard Deviation					CO_2 - Carbo N_2 - Nitroge	n Dioxide n e		Chemical c	ompositions are no	rmalized to 100%.	Mol. % is a	pproxima	tely equ	ual to vol.9	6 Chem	iical anal	ysis bas	ed on st	andards	s accura	te to with	in 2%.						
ND - Hol delected						C_1 - Internal C_2 - Ethane C_3 - Propan- iC_4 - Iso-But nC_4 - N-But iC_5 - Iso-Per- nC_5 - n-Per- C_5 - Hexar	e ane ane atane cane		Table prese	ents 1st Quarter 20	09 laboratory analy	iical results	for the Fu	urr 16-2	2D well (0)4/14/09)) and als	o the ba	seline re	esults ob	otained f	for the Fu	ırr 16-22B	and Furr	16-22D ((12/17/0	8)		

TRITIUM ANALYTICAL RESULTS FOR PRODUCED WATER SAMPLES Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II, Rulison Field, Garfield County, Colorado

															Tritium	
Well	Sample			QTR/						DATE	TIME		Tritium	Tritium	Result ± 2s	Tritium
Name/Number	Source	Latitude	Longitude	QTR	Section	Township	Range	P.M.	SAMPLE ID	SAMPLED	SAMPLED	Laboratory	(TU)	(pCi/L)	TPU (pCi/L)	MDC
Furr 16-22B	Separator	39.41669	-107.97507	SE SE	22	7S	95W	6th	Furr 16-22B	12/17/2008	12:54	ISO	< 10.8	< 34.5	NR	NR
	-															
E (0.00D			407.07540	05.05			0514		E 40.00D	12/17/2008	12:13	ISO	< 10.0	< 31.9	NR	NR
Furr 16-22D	Separator	39.41662	-107.97512	SE SE	22	75	9577	6th	Furr 16-22D							
										4/14/2009	11:00	ISO	< 10.0	< 31.9	NR	NR

Table presents 1st Quarter 2009 laboratory analytical results for the Furr 16-22D well (04/14/09) and also the baseline results obtained for the Furr 16-22B and Furr 16-22D (12/17/08)

The Furr 16-22B well was shut-in and was not sampled.

Tritium (³H) Detection Limit 10.0 TU. Isotopic composition of hydrogen is relative to Vienna Standard Mean Ocean Water (VSMOW).

Abbreviations:

ISO - Isotech Laboratories, Inc. of Champaign, Illinois

TU - Tritium Units (One TU is equivalent to 3.19 pCi/L of water) Note: Isotech reported the tritium results in TU and Cordilleran converted to equivalent picocuries per liter.

pCi/L - picocuries per liter

TPU - total propogated uncertainty

< - Result is less than the method detection limit

The TPU is 2s or two standard deviations

NR - Not Reported (Laboratory did not report parameter in this manner)

Radiochemistry Gas Flow Proportional Counting/Liquid Scintillation Analysis/Total Uranium for Produced Water Samples Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II - Rulison Field, Garfield County, Colorado

												GFPC	Result ±	Detection	GFPC	Result ±	Detection		Result ±	Detection		Result ±	Detection			Detection		Result ±	Detection
WELL NAME/	Sample		QTR/						DATE	TIME		Gross	Uncertainty	Limit	Gross	Uncertainty	Limit	GFPC	Uncertainty	Limit	GFPC	Uncertainty	Limit	LSA	Result	Limit	Total	Uncertainty	Limit
Sample ID	Source	Latitude/ Longitue	e QTR	Section	Townshi	p Rar	nge P.M.	SAMPLE ID	SAMPLED	SAMPLED	Laboratory	Alpha	(pCi/L)	(pCi/L)	Beta	(pCi/L)	(pCi/L)	Chlorine-36	(pCi/L)	(pCi/L)	Strontium-90	(pCi/L)	(pCi/L)	Technetium-99	(pCi/L)	(pCi/L)	Uranium	(μg/L)	(µg/L)
Furr 16-22B	Separator	39.41669 -107.97	51 SE SE	22	7S	95	5W 6th	16-22B	12/17/2008	12:54	GEL	U	5.88 ± 16.8	30.4	U	15.9 ± 27.6	46.8	U	-98.4 ± 152	271	U	0.817 ± 0.781	1.27	U	8.00 ± 17.5	29.7		0.548 ± 0.116	0.267
Furr 16-22D	Separator	. 39.41662 -107.97	51 SE SE	22	7S	95	5W 6th	16-22D	12/17/2008	12:13	GEL	U	-40 ± 27.6	56.2	U	0.428 ± 30.6	52.5	U	195 ± 210	353	U	-0.727 ± 0.945	1.92	U	9.98 ± 17.6	29.8		0.394 ± 0.0727	0.267
									4/14/2009	11:00	GEL		33.0 ± 16.3	21.8		79.4 ± 23.0	34.8	U	47.7 ± 72.7	124	U	-0.567 ± 0.476	1.17	U	-7.01 ± 22.5	39.5	U	0.00 ± 0.00	0.289
										April 2009 GE	EL Reporting L	imits:		5.00	0		5.00			100			2.00			50.0			1.00

Table presents 1st Quarter 2009 laboratory analytical results for the Furr 16-22D well (04/14/09) and also the baseline results obtained for the Furr 16-22B and Furr 16-22D (12/17/08) The Furr 16-22B well was shut-in and was not sampled.

Abbreviations:

pCi/L - picocuries per liter (activity in parts per trillion) µg/L - micrograms per liter (concentration in parts per billion)

U - Result is less than the sample specific Minimum Detectable Concentration (MDC) or Minimum Detectable Activity (MDA), Method Detection Limit (MDL), Limits of Detection (LOD), total propagated uncertainty (TPU), or laboratory reporting limit (RL).

GFPC - Gas Flow Proportional Counting LSA - Liquid Scintillation Analysis

GAMMA SPECTROSCOPY RESULTS FOR PRODUCED WATER SAMPLES Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II - Rulison Field, Garfield County, Colorado

		Sample											Gamma	Ac-228	Am-241	Sb-124	Sb-125	AI-26	Ba-133	Ba-140	Be-7	Bi-212	Bi-214	Ce-139	Ce-141	Ce-144	Cs-134	Cs-136	Cs-137	Cr-51	Co-56	Co-57	Co-58	Co-60	Eu-152	Eu-154	Eu-155	I-131	lr-192	Fe-59	Kr-85
		Collection							S	SAMPLE	DATE	TIME	Emitting	Result																											
WELL NA	ME/No.	Point	Latitude/	Longitude	QTR/QTR	SEC	TWP	RNG	P.M.	ID	SAMPLED	SAMPLED	Radionuclides	(pCi/L)																											
Furr 16-	-22B	Separator	39.4167	-107.9751	SE SE	22	7S	95W	6th [·]	16-22B	12/17/2008	12:54	Qualifier	U	U	U	U	NA	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	NA	U	U	U
													Result	3.91	0.459	1.22	-1.04	NA	-0.923	16.6	-4.13	-3.67	4.67	0.590	-0.838	-6.11	1.19	11.4	0.177	6.72	-0.858	0.0899	-3.17	0.181	-5.17	-0.406	-7.3	NA	-0.128	-2.27	-1760
													Uncertainty (±)	15.7	11.6	4.83	5.60	NA	3.29	25.1	20.1	15.9	5.23	2.03	4.96	14.1	2.41	9.13	2.18	31.3	2.24	1.78	2.47	2.39	5.88	5.55	7.85	NA	2.49	4.80	638
													MDC	15.6	17.3	8.58	9.02	NA	4.63	44.1	34.0	25.9	8.60	3.55	8.54	22.2	4.20	17.6	3.41	52.8	3.52	2.90	3.47	3.54	9.11	9.20	11.3	NA	4.13	7.62	928
Furr 16-	-22D	Separator	39.4166	-107.9751	SE SE	22	7S	95W	6th ′	16-22D	12/17/2008	12:13	Qualifier	U	U	U	U	NA	U	C	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	NA	U	U	U
													Result	6.57	10.3	0.498	-6.79	NA	-5.81	-30.8	-26	-3.97	6.13	-1.31	-1.39	-2.9	2.66	-2.31	-1.74	-19.8	1.70	0.0278	1.50	1.43	0.715	-6.94	0.437	NA	-1.18	-4.79	-2410
													Uncertainty (±)	10.1	22.4	5.76	5.66	NA	2.79	26.3	24.1	20.4	6.34	2.20	6.31	16.2	2.31	11.2	1.90	32.4	2.33	1.92	2.25	1.97	5.84	6.17	8.57	NA	2.44	7.67	690
													MDC	16.6	37.9	9.76	8.29	NA	3.75	36.6	35.6	29.3	9.09	3.71	8.90	25.9	4.37	18.0	2.90	52.2	4.23	3.12	4.07	3.69	9.84	8.75	14.1	NA	3.96	8.56	852
											4/14/2009	11:00	Qualifier	U	U	U	U	NA	U	U	U	U	UI	U	U	U	U	U	U	U	U	U	U	U	U	U	U	NA	U	U	U
													Result	3.93	-10.6	0.632	-1.06	NA	0.308	3.77	13.1	3.89	0.00	-1.36	-0.631	17.5	-0.322	0.121	-0.996	-12.4	1.67	-0.601	-1.09	-0.177	-2.33	2.46	-9.25	NA	-0.574	0.757	-1490
													Uncertainty (±)	9.67	10.2	4.64	5.56	NA	2.84	10.5	16.5	18.5	7.94	1.87	3.96	16.0	2.39	3.24	2.14	18.0	1.88	1.75	2.02	2.26	5.99	5.39	7.58	NA	1.87	3.70	638
													MDC	15.5	16.5	7.82	9.28	NA	4.25	17.9	29.4	29.1	9.5	2.97	6.02	24.6	3.87	5.52	3.39	29.5	3.50	2.87	3.11	3.74	9.37	9.62	12.0	NA	3.14	6.42	930

(Table Continued	from Above)																																				
										_											Pa-	_			_	Ag-											_	
	Sample									Gamma	Pb-210	Pb-212	Pb-214	Mn-54	Hg-203	Nd-147	Np-239	Nb-94	Nb-95	K-40	234m	Pm-144	Pm-146	Ra-228	Ru-106	110m	Na-22	Sc-46	TI-208	Th-227	Th-230	Th-234	Sn-113	U-235	U-238	Y-88	Zn-65	Zr-95
	Collection						SAMPLE	DATE	TIME	Emitting	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
WELL NAME/No.	Point	Latitude/ Longitud	e QTR/QTR	SEC	TWP RN	G P.M.	ID	SAMPLED	SAMPLED	Radionuclides	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)
Furr 16-22B	Separator	39.4167 -107.975	1 SE SE	22	7S 95\	V 6th	16-22B	12/17/2008	12:54	Qualifier	U	U	U	U	U	U	U	U	U	U	NA	U	U	U	U	U	U	NA	U	NA	U	U	U	U	U	U	U	U
										Result	31.4	-3.14	3.30	0.333	2.44	-16.7	3.69	0.251	-1.36	27.2	NA	-0.00461	0.616	3.91	13.6	-1.81	-0.146	NA	-0.272	NA	802	134	-0.35	-19.5	134	-0.221	-0.378	1.72
										Uncertainty (±)	347	4.74	6.03	1.84	2.87	58.5	12.9	1.97	3.27	34.0	NA	2.04	2.29	15.7	17.4	1.83	2.00	NA	2.57	NA	5220	128	2.97	16.4	128	2.39	4.28	4.19
										MDC	517	6.62	8.61	3.10	5.04	97.2	21.3	3.33	5.21	27.3	NA	3.42	4.02	15.6	31.4	2.75	3.31	NA	3.92	NA	1300	140	4.84	23.2	140	3.97	7.16	7.26
Furr 16-22D	Separator	39.4166 -107.975	1 SE SE	22	7S 95\	V 6th	16-22D	12/17/2008	12:13	Qualifier	U	U	U	U	U	U	U	U	U		NA	U	U	U	U	U	U	NA	U	NA	U	U	U	U	U	U	U	U
										Result	-315	0.140	7.30	0.566	-0.0842	63.1	10.1	-2.03	3.15	82.8	NA	-1.15	-0.113	6.57	-6.7	-0.317	-2.18	NA	-0.229	NA	320	115	-0.121	10.6	115	0.554	-4.33	-0.501
										Uncertainty (±)	648	5.38	5.73	2.14	2.90	59.3	15.1	2.06	3.29	39.1	NA	2.59	2.46	10.1	19.6	1.82	2.18	NA	2.73	NA	2430	182	3.01	20.6	182	2.54	5.20	4.21
										MDC	1070	7.16	9.15	3.69	4.89	111	25.4	3.16	6.06	32.2	NA	3.66	4.03	16.6	32.5	3.04	3.16	NA	4.30	NA	2230	293	4.98	23.5	293	4.38	7.61	7.01
								4/14/2009	11:00	Qualifier	U	U	UI	U	U	U	U	U	U	U	NA	U	U	U	U	U	U	NA	U	NA	U	U	U	U	U	U	U	U
										Result	-190	0.756	0.00	1.22	1.25	10.4	10.2	0.598	-1.38	27.8	NA	0.421	-0.895	3.93	-21.9	2.41	0.825	NA	0.916	NA	910	-2.78	-0.26	1.04	-2.78	0.687	-6.48	0.509
										Uncertainty (±)	240	4.68	7.21	2.00	2.13	20.0	12.8	1.92	2.84	47.5	NA	2.04	2.45	9.67	21.7	1.99	1.91	NA	2.61	NA	5900	110	2.50	17.0	110	2.17	5.04	3.95
								1		MDC	357	7.16	9.00	3.62	3.78	34.8	22.2	3.27	3.64	32.3	NA	3.44	4.01	15.5	31.0	3.65	3.41	NA	4.26	NA	1170	158	4.22	23.8	158	3.88	7.36	6.59
Table sussesses de	A Owner and a m	000 leherater i erel	منابيه مترامه المماني	fariles	F 40.00		04/44/00)	مام مما ما م	a haaalina n	امم من مغما مر مغان ب م م	far the E	1C 00D		10 000 /4	0/47/00)																							

Table presents 1st Quarter 2009 laboratory analytical results for the Furr 16-22D well (04/14/09) and also the baseline results obtained for the Furr 16-22B and Furr 16-22D (12/17/08) The Furr 16-22B well was shut-in and was not sampled.

Samples were all analyzed by GEL Laboratories, LLC in Charleston, SC

Four Rows:

1) Qualifier	The laboratory data qualifers are designated by one or two letters to provide information about the reported results.
2) Result	Results are the level of activity reported for the individual produced water sample.

A MDC
 A

If the result is less than the reporting limits the radionuclide is reported as 'not detected' (U).

The qualifiers used in the laboratory reports are listed below: U - Result is less than the sample specific Minimum Detectable Concentration (MDC) or Minimum Detectable Activity (MDA), Method Detection Limit (MDL), Limits of Detection (LOD), total propogated uncertainty (TPU), or laboratory reporting limit (RL). UI - Gamma Spectroscopy Uncertain Identification

Note: Values shown in blue represent a detection. The gamma emitting radionuclides that were detected are naturally occurring potassium-40 (⁴⁰K), lead-212 (²¹²Pb), lead-214 (²¹⁴Pb), and bismuth-214 (²¹⁴Bi) in a few of the samples.

DATE:

APPENDIX A ISOTECH LABORATORIES INC. SAMPLE RESULTS

ANALYSIS REPORT

Lab #:	160503		Jo	b#: 112	299	
Sample Name/Number:	Furr 16-22D					
Company:	Cordilleran, D	iv. of Olsson	n Assoc.			
Date Sampled:	4/14/2009					
Container:	Steel tank					
Field/Site Name:	008-2362					
Location:	Furr Hagen					
Formation/Depth:	-					
Sampling Point:						
Date Received:	4/16/2009		Date Reported	. 5/2	9/2009	
	1, 10, 2000			. 0,2	.0,2000	
Component	Chemical	Delta C-13	B Delta D	C-14 cor	nc. Tritiu	ım
	mol. %	per mil	per mil	pMC	TU	J
Carbon Monoxide	nd					
Hydrogen Sulfide	nd					
Helium	0.0029					
Hydrogen	0.0042					
Argon	nd					
Oxygen	0.0098					
Nitrogen	0.086					
Carbon Dioxide	3.39					
Methane	88.87			0.5 ± 0.1	< 10.0	
Ethane	5.24					
Ethylene	nd					
Propane	1.45					
Iso-butane	0.309					
N-butane	0.278					
Iso-pentane	0.117					
N-pentane	0.0789					
Hexanes +	0.167					
Total BTU/cu.ft. dry @ 60de	g F & 14.7psia	, calculated:	1066			
Specific gravity, calculated:	0.643					

nd = not detected. na = not analyzed. Isotopic composition of carbon is relative to VPDB. Isotopic composition of hydrogen is relative to VSMOW. Calculations for BTU and specific gravity per ASTM D3588. Chemical compositions are normalized to 100%. Mol. % is approximately equal to vol. % Chemical analysis based on standards accurate to within 2%

ANALYSIS REPORT

Water Analysis

Lab Number:	160371			Job Number:	11289
Submitter Sample Name:	Furr 16-2	2D			
Submitter Sample ID:					
Submitter Job #:					
Company:	Cordillera	n, Div. of (Olsson As	SSOC.	
Field or Site:	008-2362	2			
Location:	Furr Hage	ən			
Depth/Formation:					
Container Type:	Plastic Bo	ottle			
Sample Collected:	4/14/200	9	Results	Reported:	4/30/2009
Delta D of water		na			
Delta O-18 of water		na			
Tritium content of water		< 10.0 T	U		
Delta C-13 of DIC		na			
Carbon-14 content of DIC		na			
Delta N-15 of nitrate		na			
Delta O-18 of nitrate		na			
Delta S-34 of sulfate		na			
Delta O-18 of sulfate		na			

Remarks:

APPENDIX B GEL LABORATORIES LLC SAMPLE RESULTS

a member of The GEL Group INC

P 843.556.8171 F 843.766.1178

www.gel.com

May 12, 2009

Mr. James Hix Cordilleran Compliance Services 4690 Table Mountain Drive Suite 200 Golden, Colorado 80403

Re: Cordilleran Compliance Services, Inc Work Order: 228075

Dear Mr. Hix:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on April 16, 2009. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4297.

Sincerely,

Cheryl Jones signing for Amanda Rasco Project Manager

Purchase Order: Signed Quote Enclosures

Page: 0f 1			GEL Laboratories, LLC
Project #: 008 - 2362	GEL Chain of Custody and A	nalytical Request	2040 Savage Road
GEL Quote #:	•	l.	Charleston, SC 29407
COC Number ⁽¹⁾ ; GEL Woi	ork Order Number:	32 8075	Phone: (843) 556-8171
Client Name: Concernent A:	CEAC 202 221 2A3	Samule Analysis Requested (5) (1	ill in the number of containers for each test)
TUDEN TO POISIVILLE KHN, AUTONO TO POISIVILLE	HSCCIATES LOJ. COT. HSCCIATES		
Project/Site Name: FURR HAGEN 16-22D	Fax #: 303. 231. 2659 Shou	ld this inners Huld (< Preservative Type (6)
O Address: 4690 TABLE MOUNTAIN DRIVE SE	200, (DUDE), CO 80403	dered: tered: tered: tered:	
Collected by: T.DoBQANSKY Send Resul	its To: JAMES HIX	ber of	Comments Note: extra sample is
Sample ID * For composites - indicate start and stop date/time	*Date Collected *Time Filed Sample (mm-dd-yy) (2) Filed (3) Matrix (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	elugan AOS' MMA), BA NMA), BA NMA), BA	required for sample specific QC
FURR 16-22D	04-14-09 1100 N N W	2 X X	
			Z
TAT Requested: Normal: K Rush: Specify:	(Subject to Surcharge) Fax Results:	o Circle Deliverable: C of A / QC ?	ummary / Level 1 / Level 2 / Level 3 / Level 4
Remarks: Are there any known hazards applicable to	o these samples? If so, please list th e hazar ds		Sample Collection Time Zone Eastern Dooifio
			Central Other Mountain
Chain of Custo	ody Signatures	Sample Shi	ping and Delivery Details
Relinquished By (Signed) Date Time	Received by (signed) Date Time $\int_{0}^{1} \int_{0}^{1} \int_{$	GEL PM:	
I I NA 1600	1. Kild Suley 4/16/69 0930	Method of Shipment:	Date Shipped:
2	2	Airbill #:	
3	3	Airbill #:	
 Chain of Custody Number = Client Determined OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EF 	3B = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Dup	icate Sample, G = Grab, C = Composite	For Lab Receiving Use Only
 Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample w 4 Matrix Codes: DW=Drinkine Water. GW=Groundwater. SW=Surface Wate 	was field filtered or - N - for sample was not field filtered. ter. WW=Waster W=Water. SO=Soil, SD=Sediment. SL=Sludge. SS=S.	lid Waste. O=Oil. F=Filter. P=Wipe. U=Urine. F=Fecal. I	ENaral Cuerral Seal Intact?
5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010	0B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B	7470A - 1).	Cooler Temp:
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodiun WHITE = LABOR	m Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = S RATORY YELLOW = FILE	odium Thiosulfate, If no preservative is added = leave field PINK = CLIENT	

GEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

Client: LORD					SDG/ARCOC/Work Order: 228075
Received By: Ricky	Alber				Date Received: 4/16/0 9
Suspected Hazard Inform	ation	Yes	°N	*If C the F	Counts > x^2 area background on samples not marked "radioactive", contact Radiation Safety Group of further investigation.
COC/Samples marked as rad	dioactive?		1	Max	imum Counts Observed*: Ap CPM
Classified Radioactive II or	III by RSO?		v		
COC/Samples marked conta	aining PCBs?		1		
Shipped as a DOT Hazardou	us?		~	Haza	ard Class Shipped: UN#:
Samples identified as Foreig	gn Soil?		\checkmark		
Sample Receipt	Criteria	Yes	NA	No	Comments/Qualifiers (Required for Non-Conforming Items)
1 Shipping containers researched?	eceived intact and	~			Circle Applicable: seals broken damaged container leaking container other (describe)
2 Samples requiring col within $0 \le 6$ deg. C?	ld preservation		~		Preservation Method: dry ice none other (describe) $dry ice = 10^{72}$
3 Chain of custody docu with shipment?	aments included	~			
4 Sample containers inta	act and sealed?	/			Circle Applicable: seals broken damaged container leaking container other (describe)
5 Samples requiring che preservation at proper	emical pH?			✓ I	Sample ID's, containers affected and observed pH: 1-gallan Container- PH 5 if Preservation added, Lot#: #07.076 - 20.001 - 120.001
6 VOA vials free of hear < 6mm bubble)?	dspace (defined as		1	S	Sample ID's and containers affected: -4/16/09 /2 A
7 Are Encore containers	present?			/	If yes, immediately deliver to Volatiles laboratory)
8 Samples received with	in holding time?	/.		I	d's and tests affected:
9 Sample ID's on COC n bottles?	natch ID's on		,	~	No 105 on containers
10 Date & time on COC n on bottles?	natch date & time			~ S	ample ID's affected: no date/fine ou containers
11 Number of containers a number indicated on C	received match			S	ample ID's affected:
12 COC form is properly s relinquished/received s	signed in sections?	~			
Comments: FedEx	9660 0	45	51	2	870
PM (or PM	MA) review: Initials	i		×	HYL Date

Subject: RE: Samples received today 4/16/09 From: "James Hix" <jhix@oaconsulting.com> Date: Thu, 16 Apr 2009 13:54:15 -0500 To: "Amanda Rasco" <amanda.rasco@gel.com>

Amanda,

Thanks for the update. Please preserve the sample prior to analysis. James

James W. Hix, PG Cordilleran Compliance Services, Inc. | A division of Olsson Associates 4690 Table Moutain Drive, Suite 200 | Golden, CO 80403 | <u>jhix@oaconsulting.com</u> TEL 303.237.2072 | CELL 303.589.1572 | FAX 303.237.2659

A division of Olsson Associates

From: Amanda Rasco [mailto:amanda.rasco@gel.com] Sent: Thursday, April 16, 2009 11:55 AM To: James Hix Subject: Samples received today 4/16/09

James,

The gallon container for Sample FURR 16-22D was received at a pH=5. Please confirm it is acceptable for us to preserve this sample prior to analysis. Let me know if you have any questions.

Thanks, Amanda

--

Amanda J. Rasco Project Manager GEL Laboratories, LLC 2040 Savage Road Charleston, SC (USA) 29407 Direct: 843.769.7373 Main: 843.556.8171 x4297 Fax: 843.766.1178 E-mail: Amanda.Rasco@gel.com Web: www.gel.com

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

CORD001 Cordilleron Compliance Services, Inc

Client SDG: 228075 GEL Work Order: 228075

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the detection limit.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Amanda Rasco.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address : Contact: Project:	4690 Table Mountain Drive Suite 200 Golden, Colorado 80403 Mr. James Hix Cordilleran Compliance Services, Inc										
	Client Sampl Sample ID: Matrix: Collect Date: Receive Date Collector:	le ID: : ::	FURR 16–22I 228075001 Water 14–APR–09 1 16–APR–09 Client) 1:00		Proje Clier	ect: nt ID:	CORD00100 CORD001			
Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Gamma Spec Anal	lysis										
Gammaspec, Gamma, Li	quid "As Received	d''									
Actinium-228	U	3.93	+/-9.67	15.5		pCi/L		KXG3 04/21/09	0914 8	59857	1
Americium-241	U	-10.6	+/-10.2	16.5		pCi/L					
Antimony-124	U	0.632	+/-4.64	7.82		pCi/L					
Antimony-125	U	-1.06	+/-5.56	9.28		pCi/L					
Barium–133	U	0.308	+/-2.84	4.25		pCi/L					
Barium-140	U	3.77	+/-10.5	17.9		pCi/L					
Beryllium-7	U	13.1	+/-16.5	29.4		pCi/L					
Bismuth-212	U	3.89	+/-18.5	29.1		pCi/L					
Bismuth-214	UI	0.00	+/-7.94	9.50		pCi/L					
Cerium-139	U	-1.36	+/-1.87	2.97		pCi/L					
Cerium-141	U	-0.631	+/-3.96	6.02		pCi/L					
Cerium-144	U	17.5	+/-16.0	24.6		pCi/L					
Cesium-134	U	-0.322	+/-2.39	3.87		pCi/L					
Cesium-136	U	0.121	+/-3.24	5.52		pCi/L					
Cesium-137	U	-0.996	+/-2.14	3.39	5.00	pCi/L					
Chromium-51	U	-12.4	+/-18.0	29.5		pCi/L					
Cobalt-56	U	1.67	+/-1.88	3.50		pCi/L					
Cobalt-57	U	-0.601	+/-1.75	2.87		pCi/L					
Cobalt-58	Ū	-1.09	+/-2.02	3.11		pCi/L					
Cobalt-60	Ū	-0.177	+/-2.26	3.74		pCi/L					
Europium-152	Ū	-2.33	+/-5.99	9.37		pCi/L					
Europium–154	Ū	2.46	+/-5.39	9.62		pCi/L					
Europium–155	Ū	-9.25	+/-7.58	12.0		pCi/L					
Iridium–192	U	-0.574	+/-1.87	3.14		pCi/L					
Iron-59	U	0.757	+/-3.70	6.42		pCi/L					
Krypton-85	U	-1490	+/-638	930		pCi/L					
Lead-210	U	-190	+/-240	357		pCi/L					
Lead-212	U	0.756	+/-4.68	7.16		pCi/L					
Lead-214	UI	0.00	+/-7.21	9.00		pCi/L					
Manganese-54	U	1.22	+/-2.00	3.62		pCi/L					
Mercury-203	U	1.25	+/-2.13	3.78		pCi/L					
Neodymium-147	U	10.4	+/-20.0	34.8		pCi/L					
Neptunium-239	U	10.2	+/-12.8	22.2		pCi/L					
Niobium-94	U	0.598	+/-1.92	3.27		pCi/L					
Niobium-95	U	-1.38	+/-2.84	3.64		pCi/L					
Potassium-40	Ū	27.8	+/-47.5	32.3		pCi/L					
Promethium-144	U	0.421	+/-2.04	3.44		pCi/L					
Promethium-146	U	-0.895	+/-2.45	4.01		pCi/L					

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: May 12, 2009

Certificate of Analysis

Project:	Cordilleran Compliance Services, Inc
Contact:	Mr. James Hix
	Golden, Colorado 80403
	Suite 200
Address :	4690 Table Mountain Drive
Company :	Cordilleran Compliance Services

	Client Sample Sample ID:	e ID:	FURR 16-22I 228075001	D		Proj Clie	ect: nt ID:	CORD00100 CORD001			
Parameter	Qualifier	Result	Uncertainty	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Rad Gamma Spec Analys	is										
Gammaspec, Gamma, Liqu	id "As Received	! "									
Radium–228	U	3.93	+/-9.67	15.5		pCi/L					
Ruthenium-106	U	-21.9	+/-21.7	31.0		pCi/L					
Silver-110m	U	2.41	+/-1.99	3.65		pCi/L					
Sodium-22	U	0.825	+/-1.91	3.41		pCi/L					
Thallium–208	U	0.916	+/-2.61	4.26		pCi/L					
Thorium-230	U	910	+/-5900	1170		pCi/L					
Thorium-234	U	-2.78	+/-110	158		pCi/L					
Tin-113	U	-0.26	+/-2.50	4.22		pCi/L					
Uranium–235	U	1.04	+/-17.0	23.8		pCi/L					
Uranium–238	U	-2.78	+/-110	158		pCi/L					
Yttrium–88	U	0.687	+/-2.17	3.88		pCi/L					
Zinc–65	U	-6.48	+/-5.04	7.36		pCi/L					
Zirconium–95	U	0.509	+/-3.95	6.59		pCi/L					
Rad Gas Flow Proportion	al Counting										
GFPC, Chlorine–36 liquid	"As Received"										
Chlorine-36	U	47.7	+/-72.7	124	100	pCi/L		AF1 05/01/09	0837 8	361846	2
GFPC, Gross A/B, liquid "A	As Received"										
Alpha		33.0	+/-16.3	21.8	5.00	pCi/L		DXF3 04/21/09	0819 8	359776	3
Beta		79.4	+/-23.0	34.8	5.00	pCi/L		Diff 5 0 21/0)	0017 0		U
GFPC, Sr90, liquid "As Red	ceived"		.,			P ====					
Strontium–90	U	-0.567	+/-0.476	1.17	2.00	pCi/L		JXR1 05/04/09	1425 8	363398	4
Rad Liquid Scintillation A	Analysis					1					
Liquid Scint Tc99, Liquid ".	As Received"										
Technetium–99	U	-7.01	+/-22.5	39.5	50.0	pCi/L		SXL4 05/03/09	1635 8	359894	5
Rad Total Uranium	C					1					
KPA, Total U, Liquid "As R	Received"										
Total Uranium	U	0.00	+/-0.00	0.289	1.00	ug/L		KXG3 04/24/09	0 1021 8	359936	6

The following Analytical Methods were performed Method Description

Method	Description	Analyst Comments
1	EPA 901.1	
2	GL-RAD-A-033	
3	EPA 900.0	
4	EPA 905.0 Modified	
5	DOE EML HASL-300, Tc-02-RC Modified	
6	ASTM D 5174	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Cordilleran Compliance	Services								
Address :	4690 Table Mountain Dr	ve								
	Suite 200									
	Golden, Colorado 80403					Report Date: Ma	ay 12, 2009			
Contact:	Mr. James Hix									
Project:	Project: Cordilleran Compliance Services, Inc									
	Client Sample ID: Sample ID:	FURR 16–22D 228075001			Project: Client ID	CORD00100 : CORD001				
Parameter	Qualifier Resu	lt Uncertainty	DL	RL	Units I	OF AnalystDate	Time Batch Method			
Surrogate/Tracer recover	ry Test			Result	Nominal	Recovery%	Acceptable Limits			
Potassium Chloride Carrie	r GFPC, Chlorine–3	6 liquid "As Receive	d"			55.3	(25%-125%)			
Strontium Carrier	GFPC, Sr90, liquid	l "As Received"				93.8	(25%-125%)			
Technetium–99m Tracer	Liquid Scint Tc99,	Liquid "As Received	1"			96.2	(15%-125%)			

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Contact:	Cordilleran Complian 4690 Table Mountain Suite 200 Golden, Colorado Mr. James Hix	nce Services Drive	×					Report Dat	e: May 12, 2009 Page 1 of 10	
Workorder:	228075									
Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gamma Spe Batch	e c 859857								-	
QC12018210	61 228075001 DUP									
Actinium-228		U	3.93 +/-9.67	U	8.21 +/-13.7	pCi/L	70.5		N/A KXG3	04/21/09 14:09
Americium-241		U	-10.6	U	-11.8	pCi/L	10.8		N/A	
			+/-10.2		+/-11.1					
Antimony-124		U	0.632	U	-1.18	pCi/L	661		N/A	
			+/-4.64		+/-4.74					
Antimony-125		U	-1.06	U	-1.46	pCi/L	31.3		N/A	
			+/-5.56		+/-5.26					
Barium-133		U	0.308	U	-0.309	pCi/L6	.17E+05		N/A	
			+/-2.84		+/-2.80					
Barium-140		U	3.77	U	-0.189	pCi/L	221		N/A	
			+/-10.5		+/-9.61					
Beryllium-7		U	13.1	U	4.64	pCi/L	95.2		N/A	
			+/-16.5		+/-16.7	~ ~				
Bismuth-212		U	3.89	U	4.30	pCi/L	10.1		N/A	
			+/-18.5		+/-15.6	~ ~				
Bismuth-214		UI	0.00	UI	0.00	pC1/L	16.6		N/A	
G · 100		••	+/-7.94	••	+/-6.77	~~~~	10.0			
Cerium-139		U	-1.36	U	-1.63	pC1/L	18.2		N/A	
G · 141			+/-1.8/	• •	+/-1.81	C' 7	17.6		27/4	
Cerium-141		U	-0.631	U	1.55	pC1/L	476		N/A	
Q · 144		TT	+/-3.96		+/-3.48	- C:/I	504		NT / A	
Cerium-144		U	17.5	U	-8.30	pC1/L	584		N/A	
Casimum 124		TT	+/-10.0	TT	+/-13.3	mC:/I	221		NT/A	
Cesium-134		U	-0.322	U	1.38	pC1/L	321		N/A	
Cocium 126		TT	+/-2.39	TT	+/-2.49	nCi/I	260		NI/A	
Cestum-150		U	0.121	U	-0.926	pci/L	200		IN/A	
Cosium 137		T		IT	+/-3.45	nCi/I	22.7		N/A	
Cestuin-157		0	-0.990	U	-1.20 $\pm / 2.12$	pci/L	23.1		IN/A	
Chromium-51		II	_12.14	I	-8.04	nCi/I	42.8		N/Δ	
Chronnun-51		U	+/-18.0	U	+/-18 2	pei/L	42.0		11/24	
Cobalt-56		II	1 67	IJ	0 181	nCi/I	161		N/A	
200000 20		0	+/-1.88	U	+/-1.88	PCI/L	101		1 1/ 2 1	
Cobalt-57		U	-0.601	U	0.783	pCi/L	1520		N/A	
		5	+/-1.75	c	+/-1.70	r				
Cobalt-58		U	-1.09	U	-1.74	pCi/L	46.3		N/A	
		č	+/-2.02	J	+/-2.05	r				
Cobalt-60		U	-0.177	U	0.134	pCi/L	1450		N/A	
						-				

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 228075							Page 2 of 10			
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time	
Rad Gamma Spec Batch 859857										
Europium-152	IJ	+/-2.26	II	+/-2.56	pCi/I	228		N/A KXG3	04/21/09 14:09	
Europium-152	U	+/-5.99	U	+/-5.53	pent	220		IVA IMOS	04/21/07 14.07	
Europium-154	U	2.46	U	-0.933	pCi/L	445		N/A		
Europium-155	U	-9.25	U	+/-5.66	pCi/L	337		N/A		
Iridium-192	U	+/-7.58 -0.574	U	+/-7.45	pCi/L	29300		N/A		
Iron-59	U	+/-1.87 0.757	U	+/-1.91 -5.02	pCi/L	271		N/A		
Krypton-85	U	+/-3.70 -1490	U	+/-4.02 -2040	pCi/L	31.0		N/A		
Lead-210	U	+/-638 -190	U	+/-626	pCi/L	106		N/A		
Lead-212	U	+/-240 0.756	U	+/-277 3.42	pCi/L	128		N/A		
Lead-214	UI	+/-4.68	UI	+/-6.19	pCi/L	32.5		N/A		
Manganese-54	U	+/-7.21	U	+/-6.62 -1.26	pCi/L	15500		N/A		
Mercury-203	U	+/-2.00	U	+/-1.92	pCi/L	19.1		N/A		
Neodymium-147	U	+/-2.15	U	+/-2.10	pCi/L	1.72		N/A		
Neptunium-239	U	+/-20.0	U	+/-18.7	pCi/L	2850		N/A		
Niobium-94	U	+/-12.8	U	+/-15.5	pCi/L	52.3		N/A		
Niobium-95	U	-1.38	U	+/-1.92	pCi/L	5400		N/A		
Potassium-40	U	+/-2.84		+/-2.17 68.5	pCi/L	84.6		(0% - 100%)		
Promethium-144	U	+/-47.3	U	+/-39.7 0.198	pCi/L	72.3		N/A		
Promethium-146	U	-0.895	U	-0.69	pCi/L	25.9		N/A		
Radium-228	U	+/-2.43 3.93	U	+/-2.00 8.21 +/ 13.7	pCi/L	70.5		N/A		
Ruthenium-106	U	-21.9 +/-21.7	U	0.629	pCi/L	212		N/A		
Silver-110m	U	+/-21.7 2.41 +/-1.90	U	1.09	pCi/L	75.5		N/A		
Sodium-22	U	0.825	U	-0.357	pCi/L	506		N/A		

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 228075			Page 3 of 10						
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gamma Spec									
Batch 859857									
		. / 1.01		. / 2.01					
Thallium 208	II	+/-1.91	ш	+/-2.01	nCi/I	151		N/A KYC3	04/21/00 14:00
Thanhum-208	0	+/-2.61	01	+/-3 45	pert	151		N/A KAOS	04/21/09 14.09
Thorium-230	U	910	U	-256	pCi/L	357		N/A	
	-	+/-5900		+/-1840	1				
Thorium-234	U	-2.78	U	-132	pCi/L	192		N/A	
		+/-110		+/-110					
Tin-113	U	-0.26	U	-0.877	pCi/L	108		N/A	
		+/-2.50		+/-2.42					
Uranium-235	U	1.04	U	-3.89	pCi/L	346		N/A	
		+/-17.0		+/-14.4	~ ~				
Uranium-238	U	-2.78	U	-132	pCi/L	192		N/A	
With the second se	T	+/-110	TT	+/-110	- C: /I	(2,7)		NT / A	
1 ttrium-88	U	0.087	U	1.31	pC1/L	62.7		N/A	
Zinc 65	II	-6.48	IJ	-0.981	nCi/I	147		N/Λ	
Zine-05	U	+/-5.04	U	+/-4.18	pei/E	147		14/24	
Zirconium-95	U	0.509	U	-0.456	pCi/L	3700		N/A	
	-	+/-3.95		+/-3.42	1				
QC1201821063 LCS									
Actinium-228			U	16.4	pCi/L				04/21/09 14:10
				+/-35.6					
Americium-241	1240			1400	pCi/L		113	(75%-125%)	
Antimory 124			TT	+/-166	тC:/I				
Anumony-124			U	-0.000	pCI/L				
Antimony-125			II	-11.9	nCi/I				
Tutuliony-125			U	+/-21.8	pent				
Barium-133			U	-0.643	pCi/L				
				+/-9.45	1				
Barium-140			U	13.1	pCi/L				
				+/-29.9					
Beryllium-7			U	9.88	pCi/L				
				+/-70.4					
Bismuth-212			U	67.3	pCi/L				
				+/-70.4					
Bismuth-214			U	-0.234	pCi/L				
G : 130				+/-13.9	C' /				
Cerium-139			U	6.63	pC1/L				
Cerium-141			IT	+/-0./9	nCi/I				
CUTUIII-141			U	-2.17 +/-107	PCI/L				
Cerium-144			U	-3.23	pCi/L				
			e	+/-49.7	r				

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 228075					Page 4 of 10							
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time			
Rad Gamma Spec												
Batch 859857												
Cesium-134		U	-3.21	pCi/L								
			+/-10.8									
Cesium-136		U	0.280	pCi/L				KXG3	04/21/09 14:10			
			+/-13.7									
Cesium-137	440		466	pCi/L		106	(75%-125%))				
			+/-36.7									
Chromium-51		U	12.6	pCi/L								
			+/-61.1									
Cobalt-56		U	-4.5	pCi/L								
			+/-8.75									
Cobalt-57			39.0	pCi/L								
~			+/-11.4	~ ~								
Cobalt-58		U	-4.23	pCi/L								
			+/-8.20	<i></i>		0.5	(220) 1020()					
Cobalt-60	553		530	pC1/L		96	(75%-125%))				
F 172		**	+/-51.8	0.4								
Europium-152		U	9.54	pC1/L								
F : 154		TT	+/-21.2	C:/I								
Europium-154		U	9.69	pC1/L								
Europium 155		TT	+/-13.0	nC:/I								
Europium-155		U	-0.17	pci/L								
Iridium 102		IT	+/-20.0	nCi/I								
Indium-192		U	-4.42 +/ 6.97	pci/L								
Iron-59		II	-8 38	nCi/I								
101-57		0	+/-18 5	pei/L								
Krypton-85		II	-1610	nCi/I								
		0	+/-1840	pei/L								
Lead-210		U	-911	pCi/L								
Loud 210		U	+/-1060	PCI/L								
Lead-212		U	14.4	pCi/L								
			+/-14.4	1								
Lead-214		U	-0.463	pCi/L								
			+/-16.0	-								
Manganese-54		U	-4.26	pCi/L								
C			+/-8.14	-								
Mercury-203		U	-0.307	pCi/L								
			+/-7.98									
Neodymium-147		U	-13.5	pCi/L								
			+/-58.4									
Neptunium-239		U	38.5	pCi/L								
			+/-53.4									
Niobium-94		U	-2.05	pCi/L								
			+/-7.57									
Niobium-95		U	2.37	pCi/L								

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 228075							Page 5	of 10	
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gamma Spec Batch 859857									
Potassium-40		U	+/-8.30 34.3	pCi/L				KXG3	04/21/09 14:10
			+/-60.8	1					
Promethium-144		U	0.350	pCi/L					
Promethium-146		U	0.0394	pCi/L					
			+/-10.3	r					
Radium-228		U	16.4	pCi/L					
D (1) 107		T	+/-35.6	0.4					
Ruthenium-106		U	-58.3	pCi/L					
Silver-110m			+/-08.7	nCi/I					
			+/-10.5	perE					
Sodium-22		U	3.45	pCi/L					
			+/-5.52	•					
Thallium-208		U	6.33	pCi/L					
			+/-8.32						
Thorium-230		U	4140	pCi/L					
T			+/-26500	C : 7					
Thorium-234		U	-385	pCi/L					
Tin-113		ĨĬ	-1 31	nCi/I					
111-115		0	+/-9.62	pci/L					
Uranium-235		U	-70.1	pCi/L					
			+/-51.1	1					
Uranium-238		U	-585	pCi/L					
			+/-412						
Yttrium-88		U	7.10	pCi/L					
			+/-6.91	~ ~ ~					
Zinc-65		U	-2.89	pCi/L					
Ziraanium 05		TT	+/-19.7	nCi/I					
Zircollulli-95		0	+/-14.8	pci/L					
QC1201821060 MB			1/-14.0						
Actinium-228		U	-4.7	pCi/L					04/21/09 09:15
			+/-7.91						
Americium-241		U	-17.1	pCi/L					
		**	+/-8.84	<i>C</i> : <i>T</i>					
Antimony-124		U	-1.//	pC1/L					
Antimony-125		ĨĬ	+/-3.43 3.95	pCi/I					
2 maniony-125		0	+/-4.55	PCI/L					
Barium-133		U	-3.09	pCi/L					
			+/-2.34						

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

			<u>v</u> ess	J	-											
Workorder: 228075								Page 6	of 10	10 <u>lst Date Time</u> XG3 04/21/09 09:1						
Parmname		NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time					
Rad Gamma Spo Batch	ec 859857															
Barium-140			U	-1.66 +/-6.41	pCi/L											
Beryllium-7			U	7.74 +/-13.9	pCi/L				KXG3	04/21/	09 09:15					
Bismuth-212			U	5.96 +/-12.4	pCi/L											
Bismuth-214			U	5.40 +/-6.75	pCi/L											
Cerium-139			U	-0.687 +/-1.47	pCi/L											
Cerium-141			U	-1.2 +/-2.39	pCi/L											
Cerium-144			U	6.99 +/-10 1	pCi/L											
Cesium-134			U	0.0125	pCi/L											
Cesium-136			U	1.29	pCi/L											
Cesium-137			U	0.943	pCi/L											
Chromium-51			U	12.5	pCi/L											
Cobalt-56			U	0.0872	pCi/L											
Cobalt-57			U	0.381	pCi/L											
Cobalt-58			U	1.62	pCi/L											
Cobalt-60			U	-1.74	pCi/L											
Europium-152			U	0.922	pCi/L											
Europium-154			U	-1.5 +/-5.27	pCi/L											
Europium-155			U	-1.37 +/-5.62	pCi/L											
Iridium-192			U	0.0787 +/-1.70	pCi/L											
Iron-59			U	1.64 +/-3.27	pCi/L											
Krypton-85			U	-1840 +/-644	pCi/L											
Lead-210			U	-127 +/-256	pCi/L											
Lead-212			UI	0.00	pCi/L											

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

Workorder: 228075							Page 7	of 10	
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gamma Spec Batch 859857									
			+/-6.76						
Lead-214		U	3.14 +/-4.87	pCi/L				KXG3	04/21/09 09:15
Manganese-54		U	0.0853	pCi/L					
Mercury-203		U	+/-1.69 0.609	pCi/L					
Neodymium-147		II	+/-1.79 -6.94	nCi/I					
		0	+/-11.9	pel/L					
Neptunium-239		U	-4.91 +/-9.96	pCi/L					
Niobium-94		U	2.08	pCi/L					
Niobium-95		U	+/-1.82	pCi/L					
Potassium-40		UI	+/-1.81	pCi/L					
Promethium-144		U	-1.52	pCi/L					
Promethium-146		U	0.211	pCi/L					
Radium-228		U	-4.7	pCi/L					
Ruthenium-106		U	12.6	pCi/L					
Silver-110m		U	-0.263	pCi/L					
Sodium-22		U	-0.582 +/-1.87	pCi/L					
Thallium-208		U	-0.269 +/-2.19	pCi/L					
Thorium-230		U	-635 +/-4100	pCi/L					
Thorium-234		U	-48.4 +/-89.2	pCi/L					
Tin-113		U	-1.98 +/-2.05	pCi/L					
Uranium-235		U	-1.83 +/-10.8	pCi/L					
Uranium-238		U	-48.4 +/-89.2	pCi/L					
Yttrium-88		U	1.86 +/-1.74	pCi/L					
Zinc-65		U	-1.47	pCi/L					

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder:	228075										Page 8 of	f 10	
Parmname			NOM	[Sample	Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gamma SpecBatch85	9857												
Zirconium-95						U	+/-4.06 -1.51 +/-3.07	pCi/L			1	KXG3	04/21/09 09:15
Rad Gas Flow Batch 85	9776												
QC1201820810 Alpha	228134001	DUP		U	-0.588	U	-0.00173	pCi/L	0.00		N/A	DXF3	04/21/09 08:19
Beta					+/-0.741 10.3 +/-1.93		+/-1.65 12.8 +/-2.51	pCi/L	21.6		(0% - 100%)		
QC1201820813 Alpha	LCS		77.9				75.5 +/-8 56	pCi/L		96.9	(75%-125%)		04/21/09 08:19
Beta			261				233 +/-9.95	pCi/L		89.2	(75%-125%)		
QC1201820809 Alpha	MB					U	-1.14 +/-0.718	pCi/L					04/21/09 08:19
Beta						U	0.252 +/-0.765	pCi/L					
QC1201820811 Alpha	228134001	MS	234	U	-0.588 +/-0.741		267 +/-29.7	pCi/L		114	(75%-125%)		04/21/09 08:19
Beta			784		10.3 +/-1.93		814 +/-32.7	pCi/L		102	(75%-125%)		
QC1201820812 Alpha	228134001	MSD	234	U	-0.588 +/-0.741		271 +/-29.1	pCi/L	1.44	116	(0%-20%)		04/21/09 08:19
Beta			784		10.3 +/-1.93		830 +/-32.6	pCi/L	2.05	105	(0%-20%)		
Batch 86	1846												
QC1201825606 Chlorine-36	228075001	DUP		U	47.7 +/-72.7	U	65.6 +/-64.7	pCi/L	0.00		N/A	AF1	05/01/09 08:37
QC1201825608 Chlorine-36	LCS		16000				19900	pCi/L		124	(75%-125%)		05/01/09 08:37
QC1201825605 Chlorine-36	MB					U	+/-302 66.0	pCi/L					05/01/09 08:37
QC1201825607 Chlorine-36	228075001	MS	47900	U	47.7		+/-59.0 49000	pCi/L		102	(75%-125%)		05/01/09 08:37
Batch 86	3398				+/-72.7		+/-776						

QC1201829019 228075001 DUP

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder:	228075						•/	•			Page 9 of 10	
Parmname			NOM	[Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rad Gas Flow Batch 86	3398											
Strontium-90				U	-0.567 +/-0.476	U	0.0519 +/-0.721	pCi/L	0.00		N/A JXR1	05/04/09 14:26
QC1201829021 Strontium-90	LCS		65.3				71.3	pCi/L		109	(75%-125%)	05/04/09 14:26
QC1201829018 Strontium-90	MB					U	-0.10 +/-0.729	pCi/L				05/04/09 14:26
QC1201829020 Strontium-90	228075001	MS	131	U	-0.567 +/-0.476		82.7 +/-6.74	pCi/L		63.2*	(75%-125%)	05/04/09 14:26
Rad Liquid Scintilla Batch 859	ation 9894											
QC1201821168 Technetium-99	228139001	DUP		U	-10.4 +/-44.0	U	-19.7 +/-42.8	pCi/L	0.00		N/A SXL4	05/03/09 17:39
QC1201821170 Technetium-99	LCS		1300				1320 +/-50.9	pCi/L		102	(75%-125%)	05/03/09 18:22
QC1201821167 Technetium-99	MB					U	-5.61 +/-22.0	pCi/L				05/03/09 17:18
QC1201821169 Technetium-99	228139001	MS	2590	U	-10.4 +/-44.0		2690 +/-103	pCi/L		104	(75%-125%)	05/03/09 18:01
Rad Total U Batch 859	9936											
QC1201821295 Total Uranium	228050001	DUP			2.71 +/-0.385		3.10 +/-0.626	ug/L	13.2		(0% - 100%) KXG3	05/01/09 09:09
QC1201821297 Total Uranium	LCS		25.0				21.8 +/-2.00	ug/L		87.1	(75%-125%)	04/24/09 10:50
QC1201821298 Total Uranium	LCS		2.50				2.05 +/-0.0833	ug/L		82	(75%-125%)	05/01/09 09:14
QC1201821294 Total Uranium	MB						0.310 +/-0.033	ug/L				04/24/09 10:39
QC1201821296 Total Uranium	228050001	MS	25.0		2.71 +/-0.385		23.6 +/-1.02	ug/L		83.5	(75%-125%)	05/01/09 09:12

Notes:

The Qualifiers in this report are defined as follows:

** Analyte is a surrogate compound

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workor	der 228	075				•				-			
	ucr. 220	075								Page 1	10 of 10		
Parmnai	me		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
<	Result is les	ss than value reported	d										
>	Result is gr	eater than value repo	orted										
А	The TIC is	a suspected aldol-co	ndensation proc	luct									
В	For Genera	l Chemistry and Org	anic analysis th	e target analy	te was de	etected in the	associated	l blank.					
BD	Results are	either below the MD	C or tracer reco	overy is low									
С	Analyte has	been confirmed by	GC/MS analysi	s									
D	Results are	reported from a dilu	ted aliquot of th	e sample									
F	Estimated V	/alue											
Н	Analytical l	nolding time was exc	eeded										
J	Value is est	imated											
М	M if above	MDC and less than l	LLD										
М	Matrix Rela	ated Failure											
N/A	RPD or %F	ecovery limits do no	ot apply.										
ND	Analyte con	ncentration is not det	ected above the	detection lin	nit								
NJ	Consult Ca	se Narrative, Data Su	ımmary packag	e, or Project l	Manager	concerning t	his qualifi	er					
R	Sample rest	ults are rejected											
U	Analyte wa	s analyzed for, but n	ot detected abov	ve the MDL,	MDA, or	LOD.							
UI	Gamma Sp	ectroscopyUncertai	n identification										
Х	Consult Ca	se Narrative, Data Su	ımmary packag	e, or Project l	Manager	concerning t	his qualifi	er					
Y	QC Sample	s were not spiked wi	th this compou	nd									
^	RPD of san	ple and duplicate ev	aluated using +	/-RL. Conce	ntrations	are <5X the	RL. Qual	ifier Not Ap	plicable for	Radiochem	istry.		

h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

	COMPAN	Y – WIDE NONCONFORMAN	ICE REPORT	
Mo.Day Yr. 05–MAY–09	Division: Radiochemistry	Quality Criter Specifications	ria: Type: Process	
Instrument Type: GFPC	Test / Method: EPA 905.0 Mod	ified Matrix Type: Liquid	Client Code: CORD	
Batch ID: 863398	Sample Number See Below	ers:		
Potentially affected	l work order(s)(SDG): 228075			
Application Issues	:			
Failed Recovery for	MS/PS			
Specification and I Nonconformance I	Requirements Description:	NRG Disposit	ion:	
1. The matrix spike due to the matrix o similar to the previo	1201829020 did not meet the reco f the sample. The matrix spike reco ous prep.	1. Reporting n	esuits	
Originator's Name		Data Validato	or/Group Leader:	
Nat Long	05-MAY-09	Layota Yom	11-MAY-09	

	COMPANY – WIDE NON	CONFORMANCE RE	PORT
Mo.Day Yr. 08–MAY–09	Division: Radiochemistry	Quality Criteria: Specifications	Type: Process
Instrument Type: GFPC	Test / Method: GL-RAD-A-033	Matrix Type: Liquid	Client Code: CORD
Batch ID: 861846	Sample Numbers: See Below		
Potentially affected work order	(s)(SDG): 228075		
Application Issues:			
RDL less than MDA			
Specification and Requirement Nonconformance Description:	S	NRG Disposition:	
1. The sample and the duplicate meet the required detection limit samples were counted for 500 n	e, 228075001 and 1201825606, did not t due to reduced sample aliquots. The ninutes.	1. Reporting results	
Originator's Name:		Data Validator/Group	Leader:
Nat Long 08–MAY	-09	Layota Yom	09-MAY-09

State	Certification
Arizona	AZ0668
Arkansas	88-0651
CLIA	42D0904046
California – NELAP	01151CA
Colorado	GEL
Connecticut	PH-0169
Dept. of Navy	NFESC 413
EPA Region 5	WG-15J
Florida – NELAP	E87156
Georgia	E87156 (FL/NELAP)
Georgia DW	967
Hawaii	N/A
ISO 17025	2567.01
Idaho	SC00012
Illinois – NELAP	200029
Indiana	C-SC-01
Kansas – NELAP	E-10332
Kentucky	90129
Louisiana – NELAP	03046
Maryland	270
Massachusetts	M-SC012
Nevada	SC00012
New Jersey – NELAP	SC002
New Mexico	FL NELAP E87156
New York – NELAP	11501
North Carolina	233
North Carolina DW	45709
Oklahoma	9904
Pennsylvania – NELAP	68–00485
South Carolina	10120001/10120002
Tennessee	TN 02934
Texas – NELAP	T104704235-07B-TX
U.S. Dept. of Agriculture	S-52597
Utah – NELAP	GEL
Vermont	VT87156
Virginia	00151
Washington	C1641

List of current GEL Certifications as of 12 May 2009

APPENDIX C Furr 16-22D WELL LOGS

		THREE 7 875"	TWO 12.25"	ONE 20"	Run Number Bit			And Type / Mind What	omulation	Sement Tune / Weight	Compressive Outriger	-xpecied	nmary / Squeeze)ate / Time Cemented		EMENTING DATA	Aax. Recorded Temp.	op - Log Interval	Sottom - Logged Interval)epth - Logger)epth - Driller	Run No.)ate @ Time Logged	Unilling Measured From	og Measured From		Jermanent Datum	Compa Well Field County	ny L F F	ARAMI URR 10 ARACH BARFIE	E E 6-22 1UT LD	NER(2D E State	II YEI CC	DL(OR.	AD	0		HALLIE	
		954	200'	SURFACE	From			-						NA	String	Surface	228 DEG F	4500"	8601'	8484"	8540'	ONE	07-12-08 @ 18:4	K.B.	7.0. ,		GROUND	Sec: 22	BOTTO 0330' FS	0310' FS	1 No.: 050451261	ounty GA	ield PA		Vell FU		ompany LA			
		8540'	854'	200	10	•					10	77		NA	String	Protect							5 HRS		24 Ht. a00		IFVEI	Twp:07	M HOLE:	3E HOLE: 3L & 0295		RFIE	RACT		RR 10		RAMI		Z	
		47	12.25"	16"	Size	>		••				nei hre				lon	Witnessed by	Recorded by	Equipment / Lo	Cement Top E	Fluid Level	Density of Huk	Type Fluid in H		ove perm. datur		Flevation	S Rge: 95	FEL	FEL	Serv #: 60	6			5-22D			с.		RESI
		11 6#	32#	65#	Weight	DI SO DINSPO	Conina B T.	1			1	nsia		NA	String	Production			ocation	st. Logged	10.04		de e			ļ	7115	¥			26025	Silve	3	UEL	222	HEC		CORRE	TOOL	ERVOIF
		SIRFACE	SURFACE	SURFACE	From	DIMAN MECH	hing Doornal					hre		NA		Liner	WA	JAMES ZLOMH	10549604 /	RECORDED	80	8.34#	FRESH WATE	GL 7115		KR 7130'	Eleva		CB		Other Se	- COL	500	0007 T T			EIVED	CTED	ELITE	
		8540	854	200'	10	,				_		ncian hre						ĥ	G.J.					A	4741	145	tion		r		rvices	ORADO						, *		OR
F	<<<	F				e	>>	>								 							<u></u>	A.N.I			00	DETAT						: D (FLOG		O PHYS	
	R C R F	AL O(TH ES RC			AR FO ISI HE		ME M. LE		IY KCI HE	S N S O US EP1 RE	R F ER W	GL REC OF HE	SL RE	IMI ICH DU			TIC A, II GR	NTI NTI	ER SS	HIC PR	CH ET	M/ AT	AY IOI EN	AN BE (NS, (CE (GIV COI OR	EN NVI WI	BY ER	HALLIE SIONS, UL MIS	ON OF SURTON OR REC CONDU	N PERSO COMMEN		LOR IONS LOS	MHC AGRI 5, DA	IH / EES	APP S TH GE	EA IAT S, C	HALLI DR EXF	HE LOO BURTO PENSES	NISNOT RESUL	ANY T TING
				0		D		0	- C	»\ /			N A		VII.	τ/) T	·^	$\mathbf{}$						Co Co	mr 2 r			V 12	20		٨/۵٩	2 (۲O	R				
	г (1.1)N	⊑. 1	3 B(. I D'	T	E T(=r / `	TC		H.E	1VI 2.S	5.,)U	IS'	TI	C	L C	E	ME	EN	TI	30		ID LO	G DA	TED	JU	_Y 1	2, 2)8.	1 1 1	∖⊾⊾₽			
	ç	:-	łC)F	21	۳.	10	ווכ	N1	rs	۰¢	354	14'		85	5	8'	&	57	72	2'		57	35	5'					•										
							_		•••	_							-	•			_			•																
	Y	Ċ)(ル	((Ç	R	E١	N	10	O	JA	Y:	J	IM	J	O:	SE	۲:	H,	, N	/11	ĸĿ	: 3		IM	U	NS												
	*	**	T	Ή		N	IK	Y	'C	U	F	OF	२ (CH	10	0	SI	N	G	Η	AL	L	IB	UF	R	01	NI	ENEF	RGY S	SERVI	CE	S **	*							
																																			The second					

m.

11-

TWO THREE	Dun Number	Mud Type / Mud	Cement Type /\	Cement Volume	Expected Compressive St	Primary / Squee	Nate / Time Can	CEMENTING D	Max. Recorded	Top - Log Intervi	Bottom - Loggec	Depth - Logger	Depth - Driller	Run No.	Date @ Time Lo	Drilling Measured	Log Measured Fi	Permanent Datur	Company Well Field	LA FU PA	RAM RR 1 RAC	IE EI 6-22 HUT	NERG D E					
20" 12.25" 7.875"	Boreho	Wgt.	Neight		rength	65 191191	hented	ATA	emp.		Interval				gged	From	0 M	3	County	. G#		A i		Fie	N/A	Co Co		
877'	le Record	1			psi@			Surrace	23/ DEG F	SURFACE	84/6	8484	04 49 J096	ONE	07-14-08 @ 13	К.В.	K.B.	GROUND	c: 22 Twp: 75	Bottor	cation: Surface		unty GA	Id PA	f FU	mpany LAI		
200' 877'	70		-		hrs		NA N	Shine	Dive						45 HRS	5	24 Ft.at		Rge 95	n Hole: a	Hole: 31	110000	RFIE	RACH	RR 16	RAMI		Ž
16" 8.625" 4.5"	Size	~			psi@ hrs				A Desseinia	Necolued by	Equipriserit / L		Fluid Level	Density of Fill	Type Fluid in		oove perm. dat	Elevation	sw sw	500 F3L & 330	0' FSL & 295'	V,	6		5-22D	EENER		
65# 32#	Weight	· · ·		~	psi@		NA	String	Production		OCauO1	noninn	Est I paned				J	7115'			FEL		State	COG	DEC 11	BECE		BOND
SURFA	From	- -			hrs	-	K			NA	JAMES Z	1054960	4350'		R 34#	G.L.						Othe	g	C C	2008	VED		LOG
CE 200' CE 877' CE 8800'				-	psi@ hr		Þ					A GJ				NATER IN		ואנאים. בו ואנ גושעמוטוו		RMT		r Services	JLORADO					
<<< Fold) >> ON		ESI	NOT	GU/											OF A	NY WH			on of En B	- The Y hai		DATA	, CON PERS	VERSIO	N OF LOG OR WHC	∋ D∕ IH

H.E.S. ACOUSITC CEMENT BOND LOG DATED JULY 14, 2008 IS THE PRIMARY LOG FOR THIS WELL.

SHORT JOINT: 8314' - 8328' & 6212' - 6226'

YOUR CREW TODAY: JIM JOSEPH, MIKE SIMMONS

*** THANK YOU FOR CHOOSING HALLIBURTON ENERGY SERVICES ***

