# Laramie Energy II, LLC Tier II Gas Wells Quarterly Production Monitoring Report Furr 16-22D and Furr 16-22B Rulison Field, Garfield County, Colorado October 2009

Prepared for:

Laramie Energy II, LLC 1512 Larimer Street, Suite 1000 Denver, Colorado 80202

Prepared by:

Olsson Associates 4690 Table Mountain Drive, Suite 200 Golden, Colorado 80403

February 2010

Project #008-2362

# **Table of Contents**

| Table of Co | ntents                                               | i  |
|-------------|------------------------------------------------------|----|
| TABLES      |                                                      | ii |
| FIGURES     | §                                                    | ii |
| APPEND      | ICES                                                 | ii |
| 1.0 Introc  | luction                                              | 1  |
| 1.1 Tie     | r II Zone Monitoring Requirements                    | 2  |
| 1.2 Lar     | amie Energy II Furr 16-22B and Furr 16-22D Gas Wells | 3  |
| 1.3 Tie     | r II Zone Drilling Monitoring Requirements           | 4  |
| 1.4 Dat     | ta Verification and Validation Requirements          | 5  |
| 1.5 Bao     | ckground Radiation Studies                           | 5  |
| 1.6 Rul     | lison Path Forward                                   | 6  |
| 1.7 Ra      | dionuclides of Concern                               | 7  |
| 2.0 Natur   | al Gas and Produced Water Sampling                   | 9  |
| 2.1 Qu      | arterly Production Sampling                          | 9  |
| 2.2 Nat     | tural Gas Sample Analysis                            | 9  |
| 2.3 Pro     | duced Water Sample Analysis                          | 10 |
| 2.4 Per     | formance and Monitoring Criteria                     | 11 |
| 3.0 Labo    | ratory Analytical Results                            | 12 |
| 3.1 Nat     | tural Gas Sample Results                             | 12 |
| 3.1.1       | Tritium Results                                      | 13 |
| 3.1.2       | Carbon-14 Results                                    | 13 |
| 3.2 Pro     | duced Water Sample - Radiochemistry Results          | 13 |
| 3.2.1       | Tritium Results                                      | 13 |
| 3.2.2       | Gross Alpha Radiation Results                        | 13 |
| 3.2.3       | Gross Beta Radiation Results                         | 14 |
| 3.2.4       | Strontium-90 and Technetium-99 Results               | 14 |
| 3.2.5       | Chlorine-36 results                                  | 14 |
| 3.2.6       | Gamma-Emitting Radionuclide Results                  | 15 |
| 3.3 Dat     | ta Verification and Validation                       | 16 |
| 3.3.1       | Isotech Results                                      | 16 |
| 3.3.2       | GEL Results for GFPC, LSC, and Total Uranium         | 16 |
| 3.3.3       | GEL Results for Gamma Spectroscopy                   | 16 |
| 4.0 Sumr    | mary                                                 | 20 |
| 5.0 Refer   | ences                                                | 22 |

i

- Table 1- Furr Gas Well Information
- Table 2 Gas Sample Data
- Table 3 Tritium Analytical Results for Produced Water Samples
- Table 4 Radiochemistry Gas Flow Proportional Counting/Liquid Scintillation

   Analyses/Total Uranium for Produced Water Samples
- Table 5 Gamma Spectroscopy Results for Produced Water Samples

# FIGURES

- Figure 1 Rulison Area Gas Well Locations
- Figure 2 Laramie Energy II Rulison Area Well Locations

# APPENDICES

Appendix A - Isotech Laboratories Inc. Sample Results Appendix B - GEL Laboratories LLC Sample Results Appendix C - Furr 16-22B and Furr 16-22D Well Production Data Appendix D - Data Verification and Validation Report

# 1.0 Introduction

Laramie Energy II, LLC (Laramie Energy II) is developing natural gas resources in the vicinity of Jack's Pocket on the north flank of Battlement Mesa in Garfield County, Colorado. These gas wells were originally drilled by Petrohunter Operating Co. and GSL Energy Corp. and were purchased and completed by Laramie Energy II in 2008. Laramie Energy II retained Olsson Associates Inc. (Olsson) to collect natural gas and produced water samples from the Furr Wells to comply with the requirements of the Colorado Oil and Gas Conservation Commission (COGCC) Rulison Sampling and Analysis Plan (RSAP) requirement developed by URS Corporation (URS) for all natural gas wells within a three-mile radius of the former Project Rulison site.

The Laramie II natural gas wells discussed in this report are all located within a 3-mile radius of the Project Rulison underground nuclear test site conducted in September 1969 by the Atomic Energy Commission, a predecessor agency to the Department of Energy (DOE), and Austral Oil, a private oil company. Project Rulison was a subsurface natural gas stimulation nuclear test designed to produce natural gas from tight gas sands in the Cretaceous age Williams Fork Formation.

In general, the RSAP requires all companies drilling or producing natural gas wells within specified zones and sectors surrounding the former Rulison site to review certain drilling data (gamma ray logs) and to sample certain production media (natural gas and produced water) to document the presence or absence of potential impacts associated with Project Rulison.

All known natural gas wells within the three mile radius of Project Rulison (including Laramie Energy II wells) are shown on Figure 1. Laramie Energy II's Furr Gas wells are shown more specifically on Figure 2. This report presents the third quarter, 2009 production monitoring results for the Laramie Energy II Furr 16-22B and 16-22D well conducted on October 1, 2009. These samples were collected one day after the end of third quarter.

The drilling and baseline monitoring activities for the Furr wells were conducted in November and December 2008 with the results presented in a report titled <u>Laramie Energy II, LLC Tier II Gas Well Baseline Monitoring and Production</u> <u>Report, Rulison Field, Garfield County, Colorado November - December 2008</u> (May 2009). The results of this drilling and baseline/quarterly monitoring indicate that no Project Rulison related radionuclides were detected in any of the gas or produced water samples. An addendum to this report (July 2009) was provided for data verification and validation performed by Diane Short and Associates. Copies of the reports, including the December 17, 2008 baseline/production data, data validation addendum, the first quarter (April 2009) and second quarter (June 2009) data reports for the Furr 16-22B and Furr 16-22D wells, were provided to Laramie Energy II, the Colorado Oil and Gas Conservation Commission (COGCC), the Colorado Department of Public Health and Environment (CDPHE) Hazardous Materials and Waste Management Division - Radiation Management Unit, S.M. Stoller/DOE, the Garfield County Oil and Gas Liaison, and URS Corporation.

For purposes of classifying the Laramie Energy II wells within the context of the current RSAP, both the Furr 16-22D and Furr 16-22B are considered Tier II wells located respectively in Sectors 10 and 11. The Furr 16-22B is currently considered to be the closest natural gas well to the former Project Rulison site in sector 11. The Furr 16-22D has a surface location in sector 11 and a bottom hole location in sector 10, but the bottom hole location is near the sector dividing line.

As shown by the baseline sampling conducted in November and December of 2008, the first quarter laboratory analytical results collected in early April 2009, and the second quarter laboratory analytical results for samples collected in June 2009 do not indicate the presence of any Project Rulison related radioactivity. No Project Rulison related radioactivity was detected in the natural gas or produced water samples collected on October 1, 2009. A summary table of Laramie Energy II well locations and sampling activities is presents as Table 1.

### 1.1 Tier II Zone Monitoring Requirements

URS Corporation (URS) is working for Noble Energy, EnCana Oil & Gas (USA), Inc., and Williams Production RMT who are also conducting natural gas well drilling operations in the vicinity of Project Rulison. URS has developed a Rulison Sampling Analysis Plan (RSAP), Revision 2 issued in March 2008. The URS RSAP is currently in revision, and Revision 3 should be issued in the spring of 2010, but any changes will need to be approved by the Colorado Oil and Gas Conservation Commission.

The URS RSAP defines Tier II wells as those gas wells located outside the 1mile radius, but within the 3-mile radius of Project Rulison; whereas Tier I wells are defined as those gas wells located within the 1-mile radius of Project Rulison. This RSAP has been adopted by the COGCC, and outlines the required sampling and analysis for all operators within a three-mile radius or Project Rulison. According to the March 2008 Revision 2 of the URS RSAP the Tier II well monitoring includes:

- Drilling Monitoring;
- Production Monitoring; and
- Baseline produced water and natural gas monitoring.

According to the URS RSAP <u>Table 2 - Tier I and II Sampling and Analysis</u> <u>Scheme for Gas Wells within a Three Mile Radius of Project Rulison</u> well production sampling provisions require that Tier II wells, such as the Furr 16-22 B and 16-22D, be sampled and analyzed as follows:

- A one-time sampling and analysis of produced water for the radiological and non-radiological analytes listed in Table 3 and Table 4 of the RSAP. The Tier II wells are to be sampled as soon as possible after frac-ing but no later than 30days after the first gas delivery from a new gas well;
- If a Tier II gas well is the closest well in a sector (i.e. no Tier I well), produced water and natural gas will be sampled and analyzed for the radiological analytes listed in Table 3 quarterly during the first year, semi-annually (twice a year) during the second and third year, and annually thereafter; and
- Further testing contingent on verified Project Rulison-related radionuclide detection in Tier I zone wells.

# 1.2 Laramie Energy II Furr 16-22B and Furr 16-22D Gas Wells

Both the Furr 16-22B and Furr 16-22D are directionally drilled wells meaning that the bottom of the wells are located several hundred feet to thousands of feet away from the surface location as shown on Figure 2 and Figure 3.

The Laramie Energy Furr 16-22B well is the closest Tier II well in Sector 11, and as such is required to be sampled quarterly during the first year. However, it was shut-in on April 14, 2009, and could not be sampled at that time. It was sampled on December 17, 2008 as part of the baseline sampling, and was sampled on June 24, 2009 and again on October 1, 2009.

The Furr 16-22D has a surface location in sector 11 and a bottom hole location in sector 10. The Furr 16-22D was sampled on April 14, 2009 in lieu of the Furr 16-22B as it is the next closest Tier II well to Project Rulison operated by Laramie Energy II. The Furr 16-22D was sampled on June 24, 2009 and again on October 1, 2009 for consistency, but may be dropped from subsequent sampling events since there are wells with bottom hole locations closer to Project Rulison within sector 10. The Furr 16-22D has been sampled to provide continuity in the data in the event that the 16-22B well does not yield sufficient produced water to allow for a sample. Noble Energy has Tier I and Tier II wells located in sector 10 that are closer to the dividing line between sector 10 - sector 9 but that are also closer to the former Project Rulison site than any of the Furr wells as shown on Figure 1.

Olsson Associates conducted the third quarter 2009 sampling event for both the Furr 16-22D and Furr 16-22B wells. This report presents the results from Furr 16-22B and Furr 16-22D gas and produced water samples collected on October 1, 2009. Copies of the Isotech Laboratories Inc. laboratory reports for the Furr 16-22B and Furr 16-22D gas samples submitted for tritium and carbon-14 (<sup>14</sup>C) analysis are included as Appendix A. The analytical results for the produced water samples from the Furr 16-22B and the Furr 16-22D, analyzed by GEL Laboratory LLC, are presented as Appendix B. Monthly produced water volumes have declined over time in both wells. Graphs showing the monthly production from data on the COGCC internet website are included as Appendix C.

### 1.3 Tier II Zone Drilling Monitoring Requirements

The drilling monitoring requirements in the RSAP consist of a review of the openor cased-hole gamma-ray logs through the Williams Fork Formation interval for evidence of elevated gamma radiation. This review is conducted to determine whether there is potential evidence of Project Rulison-related gamma radiation observed in the formation during gas well drilling. The gamma-ray logs also detect naturally occurring radionuclides such as potassium-40, uranium, and thorium isotopes. According to the URS RSAP, the logs will be reviewed for evidence of above normal gamma-ray signatures. A gamma radiation measurement greater than 500 API gamma units or any other gamma readings that appear to be anomalous are to be noted by the drilling supervisor or his designated representative and immediately reported to the Company management and the [radiation safety officer] RSO for review and guidance. Mr. Richard Henry with URS Corp. has agreed to act as RSO for Laramie Energy II.

A review of the well logs for the Furr 16-22B and Furr 16-22D wells on the COGCC website database shows that gamma-ray signatures were typically less than 200 API gamma units. Special attention was paid to the well log intervals from below 6,000 feet to the bottom of each the wells. Copies of these logs were presented and discussed in the first quarter 2009 report.

# 1.4 Data Verification and Validation Requirements

Section 9 of the RSAP outlines the data verification and validation requirements. Olsson retained Diane Short & Associates of Lakewood, Colorado to perform the independent data validation on the November and December 2008 radiochemistry and non-radiochemistry baseline and production data, and also on the radiochemistry parameters for the 2009 quarterly production data for the Furr 16-22D and Furr 16-22B wells.

The data verification and validation was provided as an addendum (July 2009) to the Laramie Energy II, L.L.C. Tier II Gas Well Baseline Monitoring and <u>Production Monitoring Report, Rulison Field, Garfield County, Colorado</u> <u>November - December 2008</u> (May 2009). The July 2009 addendum was also submitted to the COGCC, CDPHE-HMWMD Radiation Control, S.M. Stoller/DOE, Garfield County, and URS Corp. The data in this report and subsequent quarterly reports will also be verified and validated.

# 1.5 Background Radiation Studies

Tritium, a radioactive isotope of hydrogen (<sup>3</sup>H), is produced naturally in small quantities in the upper atmosphere, and produced in much larger quantities during the detonation of a nuclear device. Tritium is a weak beta emitter and does not emit gamma rays. Since tritium can potentially be entrained within natural gas, and tritium is the most abundant and most mobile nuclide in the Rulison inventory, it is the primary radionuclide of concern. Tritium levels were evaluated in groundwater and surface water in the area before and after the Project Rulison experiment and were found to be comparable to background concentrations for that time in both sets of samples.

One tritium unit (TU) is equivalent to 3.2 picocuries per liter (pCi/L). The USGS sample results ranged from less than 220 TU (not detected) to a maximum of 618 TU reported for a well sample collected in May 1969, approximately four months before Project Rulison was conducted. Background activities for tritium were higher at the time due to nuclear weapons testing, so tritium activities in the late 1960s and early 1970s ranged from 700 pCi/L to more than 1,000 pCi/L (Voegeli and Claassen, 1971).

Today natural background tritium levels in precipitation typically range from 10 TU to 20 TU (32 pCi/L to 64 pCi/L). The CDPHE basic groundwater quality standard for tritium is 20,000 pCi/L referenced as the level of activity that could potentially result in an annual dose of 4 millirems of beta radiation.

According to the USGS Open File Report 474-68 Geohydrology - Project Rulison (Voegeli, West, Cordes, 1970), intervals below 6,000 feet below ground surface (bgs) in the R-EX hole were analyzed in 1968 for the presence of gross alpha as Uranium equivalent and gross beta as  ${}^{90}$ Sr- ${}^{90}$ Y. The alpha activities ranged from < 0.4 µg/L to 9.8 µg/L, and gross beta activities ranged from 29 pCi/L to 70 pCi/L (Voegeli, 1969).

Additionally, Olsson Associates obtained a copy of the Basic Data Report No. 7 -Radiochemical Analyses of Ground and Surface Water in Colorado, 1954-1961 (Scott and Voegeli, 1961) a study conducted by the USGS in cooperation with the Colorado Water Conservation Board. Tritium activities were not analyzed in this study; however, since it was conducted eight years before Project Rulison it does provide information on background radiation throughout the state. The geometric mean for beta-gamma activity in groundwater samples collected throughout the state was 17.34 picocuries per liter (pCi/L) while the median and mode were both 14 pCi/L. The arithmetic mean of these groundwater samples was 62.2 pCi/L.

### 1.6 Rulison Path Forward

In June 2009 the U.S. Department of Energy (DOE), Office of Legacy Management issued a draft report entitled "Rulison Path Forward" which was intended to serve as a guide for discussions with the Colorado State regulators and other interested stakeholders in response to increased drilling for natural gas reserves near the underground nuclear explosion site at Rulison, Colorado. The report outlines the DOE's recommendation that gas development occur in a conservative, staged drilling approach as the gas production companies move closer toward the COGCC established half-mile radius surrounding the DOE 40acre institutional control boundary around the Rulison site. Operators wishing to drill within the COGCC half-mile radius would require a full hearing before the commission before the application for permit to drill (APD) could be approved.

Institutional controls are legally enforceable spatial boundaries that limit intrusion at a site to a safe distance to be protective of human health and the environment. The institutional controls at Rulison prohibit drilling below the 6,000 feet depth within the 40-acres known as Lot 11 (NE ¼, SW ¼ Section 25, T7S, R95W) surrounding the Project Rulison site. The depth at which the detonation occurred (8,426 feet bgs) and the low permeability of the Williams Fork Formation and overlying strata inhibit any potential migration of impacted water from the cavity. Investigations and remediation of surface contamination were conducted in the 1970s up through 1996 with the cleanup of non-radiological contamination associated with the drilling mud pits and effluent pond that were remediated in 1996, as documented in the Rulison Site Surface Report Published in July 1998. Although no feasible technology exists to remove the subsurface radioactivity contamination from in or around the cavity, the DOE has no evidence that indicates radionuclides from the Rulison site have migrated or ever will migrate beyond the 40-acre institutional control boundary.

The DOE had the Desert Research Institute conduct modeling which calculates potential transport distances from the Rulison site to a hypothetical producing well. The results of the most recent conservative modeling show that wells at the half-mile radius, even in the east-west direction of the natural fracture trend, are safe for gas production. Despite low risks, the DOE recommends a cautious approach to gas development near the Rulison site.

### 1.7 Radionuclides of Concern

According to the DOE Rulison Path Forward (June 2009), tritium is the only contaminant of concern, which is consistent with the 1973 AEC Project Manager's report. Most of the longer-lived radionuclides produced by the detonation were incorporated into the molten rock that cooled to form a melt glass at the bottom of the cavity. Krypton-85 and carbon-14 were two other longer-lived radionuclides that were produced by the detonation that could potentially be present in natural gas. However, gas production testing of the reentry well in 1970 removed almost all of the krypton-85 and carbon-14 created by the detonation, leaving tritium as the only contaminant of concern. According to the DOE Rulison Path forward, *Table 1 - Radionuclides in Re-entry Well Gas* the estimated remaining krypton-85 was < 10 curies, and the remaining carbon-14 was estimated at < 1 curie; where the curie is a unit of radioactivity measurement.

Of the 10,000 curies of tritium produced by the Rulison detonation, 2,824 curies were estimated to have been removed by production testing measurements. Following correction for decay, the estimated remaining tritium activity in and around the Rulison cavity in Lot 11 is estimated to be between 700 curies and 1,036 curies by late 2009. The DOE Rulison path forward states that even if tritium were to reach a producing gas well the risk is low in that there is no reasonable exposure scenario. Water vapor is removed from the gas stream at the well pad where it condenses out and is separated as a waste byproduct. The produced water is separated from the gas stream prior to the gas entering the distribution system. The gas in the distribution system is co-mingled with gas from other wells producing throughout the area.

For perspective, the activity of tritium used in self-luminating exit signs typically ranges from 7.5 curies to 11.5 curies and the tritium activity used in gun sights and luminous dials on wrist watches ranges from about 0.005 curies to 0.012 curies. A picocurie is one-trillionth of a curie so converting 7.5 curies to the units used in production monitoring would be 7,500,000,000,000 picocuries.

Production monitoring is conducted for tritium in natural gas and produced water, but also involves analyzing gas samples for carbon-14, and produced water samples for gross alpha activities, gross beta activities, gamma spectroscopy, cesium-137, chlorine-36, strontium-90, technetium-99, and total uranium. The laboratory units for these parameters are also expressed in picocuries per liter (pCi/L), where one picocurie is a trillionth of a curie. One picocurie is equivalent to 0.037 disintegrations per second or 2.22 disintegrations per minute.

# 2.0 Natural Gas and Produced Water Sampling

Laramie Energy II authorized sampling of the Furr 16-22D and Furr 16-22B wells, are both Tier II wells with wellheads located in sector 10. The Furr 16-22D has a surface location in sector 10 and a bottom of hole location in sector 11. Olsson performed the sampling of the natural gas and produced water by following the URS RSAP, Revision 2, March 2008. There are no Tier I wells within Sector 10; therefore, the Furr 16-22B is the closest Tier II well in this sector.

The Furr 16-22D is the next closest Tier II well to Project Rulison operated by Laramie Energy II. Noble Energy has completed Tier II wells and Tier I wells in Sector 10 that are closer to Project Rulison than any of the Laramie Energy II wells. However, these Noble Energy wells are located near the dividing line between sectors 9 and 10.

## 2.1 Quarterly Production Sampling

Well Identification: Well Surface Location:

- Furr 16-22B SE ¼, SE ¼, Section 22, T7S, R95W; and
- Furr 16-22D SE ¼, SE ¼, Section 22, T7S, R95W.

Olsson personnel sampled natural gas and produced water from the Furr 16-22B and Furr 16-22D wells on June 24, 2009 for the radiochemistry parameters listed in Table 3 of the URS RSAP. The samples consisted of natural gas collected from the Furr 16-22B and 16-22D well separators with the assistance of Laramie Energy II's pumper. Olsson Associates collected the gas sample using a two-stage regulator and obtaining the gas from the separator.

Olsson collected the produced water samples from the dump lines on the separators for the Furr 16-22B and 16-22D wells. Since there are multiple wells on these pads and production fluids are co-mingled in the onsite tank batteries, it is not possible to collect representative produced water samples for individual wells from the onsite production tanks as described in the URS RSAP sampling protocols.

### 2.2 Natural Gas Sample Analysis

The natural gas samples collected from the Furr 16-22B and Furr 16-22D gas wells on October 1, 2009 were submitted to Isotech in Champaign, Illinois for gas compositional analysis including carbon-14 (<sup>14</sup>C) and tritium (<sup>3</sup>H), a radioactive form of hydrogen. The natural gas samples were each collected in an evacuated

propane tank provided by Isotech, using a two-stage pressure regulator connected to the separator or the natural gas wellhead. Copies of the laboratory reports from Isotech are included in Appendix A.

Isotech reported the tritium (<sup>3</sup>H) results in tritium units (TU). One TU is equivalent to 3.19 picocuries per liter (pCi/L), and the results, which indicate that tritium was not detected, are shown less than the reporting limit of 10 TU are presented in Table 2. The tritium analysis measures counts above background, and if the concentration is high enough the laboratory can report a finite value with a calculated uncertainty. If the concentration is low relative to the standard deviation of the measurement then the values are reported as "less than" the laboratory reporting limit, meaning that tritium was not detected. Isotech's reporting limit for tritium ranges from about 10 TU to 15 TU.

Beginning in about 1954, atmospheric tritium levels rose in excess of 1,000 TU due to nuclear weapons testing, and have declined back to natural background levels since then as a result of the ban on nuclear testing. Current natural background levels for tritium in the atmosphere range from 5 TU to 50 TU (15.9 pCi/L to 159.5 pCi/L). The isotopic composition of hydrogen is compared relative to the Vienna Standard Mean Ocean Water (VSMOW) standard.

Isotopic composition of carbon is relative to the Vienna Peedee Belemnite (VPDB)  $\delta^{13}$  Standard and is based on the carbon isotopes in the shell of a marine fossil. The laboratory detection limit is 1 percent modern carbon (pMC). The results indicate that carbon-14 (<sup>14</sup>C) is not present in the natural gas and the natural gas has been isolated from sources of modern carbon. According to the DOE Rulison End State Vision (2005) and the Rulison Path Forward (2009) the amount of <sup>14</sup>C present in the Rulison Site source term was estimated at 2.2 curies to 2.4 curies. Less than 1 curie is estimated to remain in the Rulison cavity corrected for the <sup>14</sup>C activity that was removed during production testing in the early 1970s.

# 2.3 Produced Water Sample Analysis

Produced water samples were collected from the dump lines on the Furr 16-22B and 16-22D separator units located on the well pad. These produced water samples were submitted for analysis of radiochemistry parameters as listed in Table 3, as specified for Tier II wells in Table 2 of the URS RSAP. Produced water samples collected on October 1, 2009 were submitted to Isotech (Champaign, IL) for tritium analysis and to GEL Laboratory in Charleston, South Carolina for radiochemistry analysis (gamma spectroscopy, gas flow proportional counting for gross alpha and gross beta, chlorine-36 (<sup>36</sup>CI), strontium-90 (<sup>90</sup>Sr),

liquid scintillation analysis for Technetium-99 (<sup>99</sup>Tc), and total uranium. Copies of the laboratory reports from Isotech are included as Appendix A, and a copy of the GEL Laboratories report is included as Appendix B. The laboratory analytical results are discussed in the following section and the results are summarized in Table 1 through Table 5.

A produced water sample could not be collected from the Furr 16-22B during the April 2009 sampling event due to the well being shut-in at that time. During the June 24, 2009 sampling event, the Furr 16-22B was slow to yield produced water from the dump line on the separator; however, a sufficient volume of water was produced to collect a sample. According to production records available on the COGCC internet website, monthly produced water volumes have shown a steady decline for both wells. Copies of the production records for these wells and a graph showing the rates of decline are presented in Appendix C.

## 2.4 Performance and Monitoring Criteria

During the June 2009 sampling event, a duplicate gas and produced water sample were collected from the Furr 16-22D well and a field blank for QA/QC evaluation in keeping with the RSAP protocols. The duplicate sample (Sample ID: 22-9-16) was collected to satisfy the required one duplicate sample for every 20 samples collected. The gas sample and an aliquot of the produced water sample were submitted to Isotech Laboratory for compositional analysis of the gas, including tritium and carbon-14, and tritium analysis of the produced water sample. The remaining aliquots of the produced water sample were submitted to GEL Laboratories, Inc. for radiochemistry analyses.

Water samples for QA/QC evaluation were not collected on October 1, 2009, but will be collected during future events on the same sampling frequency as presented in the RSAP Section 9 for data verification and validation. The laboratory reports were provided to Diane Short and Associates for data verification and validation. Copies of the report prepared by Diane Short and Associates for the evaluation of the data are presented as Appendix D.

# 3.0 Laboratory Analytical Results

The following sections present the laboratory analytical results for natural gas samples and produced water samples. Radionuclide results are presented first followed by the results for inorganic and organic analyses. The laboratory analytical results for the natural gas and produced water samples show that there are no Project Rulison related radionuclides present in the natural gas or produced water collected from the Furr 16-22B and 16-22D Tier II gas wells.

### 3.1 Natural Gas Sample Results

The natural gas sample results are presented in Table 2 and copies of the Isotech laboratory gas sample reports are presented in Appendix A. The Isotech laboratory reports present the compositional analysis reported in mol percent for components in each of the gas samples. The results show that the samples are predominantly composed of methane with lesser concentrations of helium, hydrogen, oxygen, carbon dioxide, nitrogen, ethane, propane, iso-butane, N-butane, iso-pentane, and hexanes. Argon, carbon monoxide, hydrogen sulfide, and ethylene gas were not detected. The gas samples were also analyzed for the radionuclides tritium (<sup>3</sup>H) and carbon-14 (<sup>14</sup>C).

### 3.1.1 Tritium Resuts

The tritium (<sup>3</sup>H) in the two gas samples collected from the Furr 16-22B and Furr 16-22D, were each reported as < 10 tritium units (TU) which means that tritium not detected above the laboratory method detection limits in any of the samples. One TU is equal to 3.19 pCi/L so this corresponds to a detection limit of approximately 31.9 pCi/L.

### 3.1.2 Carbon-14 Results

The carbon-14 results were reported for the gas samples from the Furr 16-22B and Furr16-22D, as < 0.4, and  $0.4 \pm 0.1$ , percent modern carbon (pMC), respectively. The results were reported as less than the laboratory method detection limit (0.4 to 0.5 pMC), meaning that carbon-14 (<sup>14</sup>C) activity was not detected, which indicates that the gas sample has been isolated from sources of modern carbon. The absence of <sup>14</sup>C activity also indicates that there is no Project Rulison related radioactivity in the gas samples.

## 3.2 Produced Water Sample - Radiochemistry Results

The following sections present the laboratory analytical results for the produced water samples collected from the Furr 16-22B and 16-22D gas wells on October 1, 2009. Copies of the laboratory reports from Isotech and GEL are included as Appendix A and Appendix B, respectively.

# 3.2.1 Tritium Results

The Isotech laboratory results for tritium ( ${}^{3}$ H) in the produced water samples were reported as < 10.0 TU in the Furr 16-22B sample and in the Furr 16-22D sample, or approximately less than 31.9 pCi/L. The minimum detectable concentration (MDC) that Isotech is able to achieve for  ${}^{3}$ H using the direct count method is 10.0 TU. The tritium results in produced water are summarized in Table 3.

Natural background tritium levels in precipitation typically range from 10 TU to 20 TU (32 pCi/L to 64 pCi/L) and a reasonable upper bound for tritium background activities may be estimated at 100 TU or approximately 320 pCi/L. The CDPHE basic groundwater quality standard for tritium is 20,000 pCi/L referenced as the level of activity that could potentially result in an annual dose of 4 millirems of beta radiation.

# 3.2.2 Gross Alpha Radiation Results

The GEL Laboratories, LLC (GEL) laboratory results for gross alpha activities show that alpha radiation was detected in the produced water sample from the Furr 16-22B ( $26.0 \pm 11.5$ pCi/L), but was not detected in the produced water sample from the Furr 16-22D ("U"  $6.70 \pm 9.46$  pCi/L). The laboratory detection limit (DL) ranged from 15.9 pCi/L to 16.3 pCi/L and the laboratory reporting limit (RL) was 5.00 pCi/L, as indicated on page 6 of the GEL laboratory report.

The detected gross alpha activity is likely due to naturally occurring radionuclides associated with high total dissolved solids (TDS) concentrations present in the samples. The alpha activity is within the expected range of natural background radiation for the area and is likely due to the presence of naturally occurring uranium, thorium, and their daughter products present in the produced water from the producing formation. One part per million (ppm) uranium (<sup>238</sup>U) equals 0.33 picocuries per gram (pCi/g); and one ppm thorium (<sup>232</sup>Th) equals 0.11 pCi/g.

The results for the gross alpha activities in the produced water sample are summarized on Table 4 and copies of the laboratory report are presented in Appendix B.

## 3.2.3 Gross Beta Radiation Results

The GEL laboratory results for gross beta activities in produced water samples indicated that gross beta activities were not detected in the Furr 16-22B and Furr 16-22D samples. The laboratory results were reported as 'Not Detected' symbolized with a "U" qualifier, with beta activity results of of  $11.1 \pm 10.9 \pm 11.6$  pCi/L and 7.27 ± 11.3 pCi/L, respectively. The laboratory detection limit (DL) ranged from 18.3 pCi/L to 19.1 pCi/L and the laboratory reporting limit (RL) was 5.00 pCi/L.

The gross beta results are within the expected range of natural background radiation for the area and are likely due to the presence of naturally occurring potassium-40 ( $^{40}$ K). GEL reported that potassium-40 ( $^{40}$ K) analyzed as part of the gamma spectroscopy analysis was reported as "UI" for uncertain identification in the Furr 16-22B produced water sample (0.00 ± 47.8 pCi/L) and was detected with a reported activitity of 61.6 ± 31.7 pCi/L in the Furr 16-22D produced water sample. The laboratory detection limit (DL) was 29.6 pCi/L.

The results for the gross beta activities are summarized on Table 3 and copies of the laboratory reports are presented in Appendix B for the June 24, 2009 samples.

# 3.2.4 Strontium-90 and Technetium-99 Results

The produced water samples submitted to GEL Laboratories were analyzed for Strontium-90 (<sup>90</sup>Sr) and Technetium-99 (<sup>99</sup>Tc). The laboratory results show that Strontium-90 (<sup>90</sup>Sr) and Technetium-99 (<sup>99</sup>Tc) were not detected in either of the produced water samples. The results for the <sup>90</sup>Sr and <sup>99</sup>Tc activities are summarized on Table 3 and copies of the laboratory reports are presented in Appendix B.

# 3.2.5 Chlorine-36 results

The produced water samples were submitted to GEL for analysis of chlorine-36 (<sup>36</sup>Cl). The results show that <sup>36</sup>Cl activities were not detected above the laboratory reporting limits in either of the produced water samples. The results for the <sup>36</sup>Cl activities are summarized on Table 3 and copies of the laboratory reports are presented in Appendix B.

According to the January 2005 DOE Rulison Site End State Vision document, the estimated inventory of <sup>36</sup>Cl produced by the Rulison detonation was 2.82 curies (Ci), and according to the URS 3<sup>rd</sup> Quarter 2008 Report, <sup>36</sup>Cl is a less common radionuclide in the inventory at Project Rulison.

### 3.2.6 Gamma-Emitting Radionuclide Results

The majority of the results for the gamma-emitting radionuclides show that gamma activities were not detected above laboratory reporting limits. This is indicated with a letter 'U' in the results of the laboratory report and also in the first row of Table 4.

The GEL gamma spectroscopy results for the Furr 16-22B produced water sample show that Bismuth-214 was detected at  $19.5 \pm 8.70$  pCi/L with a detection limit of 6.38 pCi/L; and the results for the Furr 16-22D produced water sample show that Bismuth-214 was detected at  $12.7 \pm 8.27$  pCi/L with a detection limit of 6.09 pCi/L. Bismuth-214 is a daughter product of the naturally occurring Uranium-238 and Thorium-232 decay series.

The GEL laboratory results for gamma-emitting radionuclides in the Furr 16-22B produced water sample show that Actinium-228, Lead-214, Potassium-40, and Radium-228 were qualified as "UI" Gamma Spectroscopy - 'Uncertain Identification.' The GEL laboratory results for gamma-emitting radionuclides in the Furr 16-22D sample show that Lead-212, Lead-214, and Thorium-230 results were qualified as "UI." Bismuth-214 was detected in both the Furr 16-22B and 16-22D samples with activities of 19.5 ± 8.70 pCi/L and 12.7 ± 8.27 pCi/L, respectively. These are naturally occurring radionuclides that are daughter products of Uranium-238 ( $^{238}$ U) and Thorium-232 ( $^{232}$ Th) decay series. Copies of the laboratory reports for gamma spectroscopy results are included in Appendix B.

Gamma spectroscopy results for potassium-40 activity was reported as "UI" uncertain identification in the Furr 16-22B produced water sample and reportedly detected in the Furr 16-22D sample at  $61.6 \pm 31.7$  with a detection limit of 29.6 pCi/L. Potassium-40 (<sup>40</sup>K) was previously detected in seven of the fourteen produced water samples submitted in November and December 2008 including the sample from the Furr 16-22D. Potassium-40 is one of the most common radionuclides in nature and is frequently found in sedimentary rocks high in clay minerals since these minerals contain potassium in their chemical formulas.

Krypton-85 (<sup>85</sup>Kr) is included as a radionuclide in the GEL gamma spectroscopy report, and was not detected in either of the two produced water samples. Krypton-85 has not been detected as a gamma spectroscopy constituent in the samples previously submitted from the Laramie Energy II wells.

In addition to Tritium (<sup>3</sup>H) and Carbon-14 (<sup>14</sup>C), Krypton-85 (<sup>85</sup>Kr), an inert gas, is considered as a gas phase radionuclide that potentially could be entrained in the natural gas. However, the initial activity of <sup>85</sup>Kr was estimated at 1,100 curies

and the majority of <sup>85</sup>Kr was removed during the Project Rulison production tests. The amount of <sup>85</sup>Kr recovered was used to calculate the yield of the Project Rulison device and to estimate the size of the chimney and the cavity. According to the Rulison Path Forward document it is estimated that < 10 curies of <sup>85</sup>Kr may remain in the subsurface by late 2009. Krypton-85 is a weak beta particle emitting radionuclide and has a 10.76 year half-life.

GEL Laboratories does not perform Krypton isotopic analysis or Krypton-85 beta activity analysis. Analyzing for <sup>85</sup>Kr beta activity is problematic due to the large sample volumes required, long counting time, and because only a limited number of laboratories worldwide have the specialized equipment to perform the analysis.

### 3.3 Data Verification and Validation

The following presents the results of the data verification and validation analysis of the Isotech and GEL laboratory reports.

#### 3.3.1 Isotech Results

Samples of natural gas and produced water were collected from the Furr 16-22B and Furr 16-22D on October 1, 2009. Isotech Laboratories received two produced water samples and two gas LP tanks on October 2, 2009. The produced water samples were submitted for tritium analysis by the direct count method and the gas samples were submitted for compositional analysis including carbon-14 and tritium.

Olsson requested that Isotech perform the analysis consistent with what they are doing for URS per the RSAP. No QA/QC data was provided by Isotech; however, the <sup>3</sup>H in all of the gas and produced water samples were reported as less than the laboratory reporting limit (< 10 TU). According to Isotech the chemical analysis was based on standards accurate to within 2%. A duplicate error ratio (DER) cannot be calculated for the tritium in produced water since a field duplicate sample was not collected and the results were reported as less than the laboratory reporting limit.

Diane Short and Associates was retained to verify and validate the data. The tritium results were provided to Diane Short and Associates; however since lsotech only provided sample results without quality control information it was not possible for Diane Short and Associates to validate the lsotech data.

### 3.3.2 GEL Results for GFPC, LSC, and Total Uranium

Diane Short and Associates reviewed and validated the GEL laboratory data and prepared two separate reports. One report was for the gas flow proportional

counting (GFPC) for gross alpha/beta, CI-36 and Sr-90, liquid scintillation (LSC) for Tc-99, and total uranium in water. The second report was for validation of the gamma spectroscopy results.

According to Diane Short and Associates, the data are considered fully useable for project purposes with consideration of the following. Aliquots of the two produced water samples were received by GEL Laboratories on October 2, 2009 for analysis of gross alpha, gross beta, <sup>90</sup>Sr, <sup>99</sup>Tc, <sup>36</sup>Cl, and total uranium.

According to the laboratory receipt and review form, the samples were received intact and stored on ice. Chain of custody documents were included, sample containers were intact and sealed, and the samples were received within holding time. The sample identifications, date and time, and the number of containers indicated on the chain of custody matched with the sample containers, and the chain of custody was signed in relinquished /received sections. The laboratory commented that both the samples were biphasic with a thick layer of oil at the top. The laboratory decanted off the oil layer and discarded it, and only analyzed the aqueous portion of the sample.

According to Diane Short and Associates, GEL provided a QC summary as part of the analytical data package, but did not include raw data. Diane Short and Associates conducted a Level II review of the GEL data. Non-conformance reports were generated to document any procedural anomalies that may deviate from referenced standard operating procedures or contractual documents. The non-conformance report was generated due to the sample being improperly preserved upon receipt. This was due to buffering by the sample matrix, and although the sample containers contained acid prior to sample collection, it was neutralized by the produced water. The laboratory added acid upon receipt per Olsson instruction. The laboratory added preservative to bring the sample pH into the acceptance range, as permitted by 40 CFR, and according to Diane Short and Associates, this should have no impact on the results. No qualifiers are applied.

Additionally, the laboratory noted that the samples were received at 11 °C and 12 °C. Chilling samples to less than 6 °C is not required for radiological testing by 40 CFR. No qualifiers are applied.

Gross alpha and gross beta results were reported for both the Furr 16-22D and 22-9-16 sample. The observed minimum detectable concentration (MDC), or detection limit (DL) is higher than the normal MDC or reporting limit (RL). Diane Short and Associates compared these results to previous results which have

included comments that this occurs due to a non-homogeneous matrix (oily liquid). No qualification is required.

Gas flow proportional counting (CFPC) results for surrogate/tracer recoveries of potassium chloride carrier (chlorine-36), strontium carrier, and technetium-99m tracer recovery percentages were reportedly within the acceptable limits for the laboratory. GEL provided a non-conformance report for the Cl-36 data stating that the RDL is less than the minimum detectable activity (MDA) due to reduced aliquots. No qualification is applied.

GEL indicated that the matrix spike (MS)/matrix spike duplicate (MSD) did not meet recovery requirements due to the matrix being non-homogeneous and a miscellaneous liquid. The MS recovery for alpha was 45.4%, 38.4% for the MSD. The MS recovery for gross beta was 33.4%, and 40.3% for the MSD. The matrix spikes conducted for CI-36, Tc-99, and total Uranium were in control. The matrix duplicates for these analyses were in control.

Matrix duplicates were analyzed using the same samples as were used for the matrix spikes. The matrix duplicate for alpha is in control. The relative percent difference (RPD) for the gross beta is 55 percent and the derived error ratio (DER) is 2.53. The sample and the matrix duplicate have levels that are less than five times the RL, and the absolute difference of the results is less than two times the RL. Therefore the parent sample is qualified 'JD' to indicate that the precision of this analysis may be out of normal limits on this sample for the gross alpha/gross beta.

Preparation blanks for the LSC methods are supposed to be less than the calibration MDC or the sample MDC, whichever is reported. If all sample results in a batch are reported as 'detected,' then the preparation blank must be less than the activity of the lowest MDC in the batch. All of the Tc-99 results were reported as 'non-detect.'

For the GFPC methods, if a sample activity is less than five times the MDC, the activity of the preparation blank shall be equivalent to zero when the measurement uncertainty is considered or shall be less than the MDC. If the sample activity is greater than 5 times the MDC, the activity of the preparation blank shall be equivalent to zero where the measurement uncertainty is considered. This is determined from the normalized absolute difference (NAD).

The impact of contamination may be evaluated where appropriate by calculating the NAD for the method blank and subsequent evaluation criteria as defined in the Army Corps of Engineers guidance section III and elsewhere. When the NAD is found to be greater than 1.96 but less than 2.58, the results are qualified

'JMB#' where the '#' represents the isotopes blank activity. Such results are considered to be estimated and possibly undetected values due to the presence of blank contamination.

The GEL report provides results for the gross alpha/gross beta method blank but does not provide an MDC. The MDC levels are provided for samples, and no sample result is greater than five times the MDC. The method blank is reported as a 'non-detect.' Therefore, no qualifications are required for method blank levels. The sample results for Sr-90, CI-36, and Tc-99 were all reported as 'non-detects' and the method blanks were also reported as 'non-detects' so no qualifications are required. Total uranium was not detected in the method blanks, but was detected in the produced water samples. No qualifiers are required.

#### 3.3.3 GEL Results for Gamma Spectroscopy

The overall assessment of the gamma spectroscopy data reviewed by Diane Short and Associates was that the data were considered fully useable for project purposes with consideration of the following qualification or comments. The laboratory noted that sample 16-22D was received at a pH of 3. The sample containers provided by GEL were pre-acidified. However, the dissolved salts in the produced water samples have a buffering capacity which results in the pH being above 2 by the time the sample was received by the laboratory. The laboratory added acid to preserve the sample and bring the sample pH into the acceptance range. This is permissible per 40 CFR and should have no impact on the results. No qualifiers are added.

According to the GEL Sample Receipt and Review Form, the samples were received at < 6 °C and were stored with three bags of ice. Chilling to less than 6 °C is not required for radiological testing by 40 CFR. No qualifiers are added. The laboratory noted that both of the samples contained a thick layer of a light non-aqueous liquid (LNAPL). These are produced water samples collected from the dump lines of the individual well separators and as such contain a separate phase layer of natural gas condensate floating on top of the water. Olsson gave permission for the laboratory to decant the oil phase and analyze only the aqueous phase. The RSAP only requires that the aqueous phase be analyzed.

The laboratory flagged a number of results with 'UI' to indicate that they had some type of detection issue. The issues cited by the laboratory are summarized in the table of the gamma spectroscopy report provided by Diane Short and Associates. These results could potentially suffer from negative bias and are qualified as 'JQ.'

# 4.0 Summary

The results of the third quarter 2009 sampling of Laramie Energy II's two closest Tier II wells indicate that no radiation related to Project Rulison was detected. The surface locations for the Furr 16-22B and Furr 16-22D gas wells are both located in Section 22, Township 7S, Range 95 West of the Sixth Principal Meridian, but were directionally drilled . The Furr 16-22B and Furr 16-22D are Tier II wells in RSAP Sectors 10 and 11 and are located within the 3-mile radius of Project Rulison as shown on Figure 1 and Figure 2.

Isotech Laboratories indicated that the LP tanks containing the gas samples and the produced water samples submitted for tritium analysis arrived in good condition. GEL laboratories indicated that both of the produced water samples, were bi-phasic, meaning that there was a thick layer of oil floating on top of the water samples. Olsson gave the laboratory permission to remove the oil and analyze only the aqueous portion of the samples as the RSAP requires for Tier II wells.

The analytical results show that tritium (<sup>3</sup>H), reportedly the only radionuclide of concern in the Project Rulison estimated inventory, was not detected in either gas samples or in produced water samples analyzed by Isotech in Champaign, Illinois. Tritium has a 12.3 year half-life and a significant amount of the tritium estimated to have been produced by the detonation was released in 1970 during the production testing of the re-entry well. The DOE estimated amount of Project Rulison related tritium remaining in late 2009 is 700 curies.

Carbon-14 (<sup>14</sup>C) was also identified in the Project Rulison estimated inventory as a radionuclide that potentially could be present in natural gas. The Isotech analytical results for the natural gas samples collected from the Furr 16-22B and Furr 16-22D wells show that <sup>14</sup>C was not detected (< 0.5 pMC). The laboratory results show the samples have been isolated from modern carbon sources.

Gross alpha activities were reported in one of the two produced water samples. Gross alpha activities in the produced water are likely to due to high TDS that were reported in the baseline samples collected in December 2008.

Potassium-40 (<sup>40</sup>K), one of the most abundant naturally occurring radionuclides, was reportedly detected in the Furr 16-22D produced water sample and was indicated as 'UI', Uncertain identification, in the Furr 16-22B produced water sample. Potassium-40 is a beta emitting radionuclide. Gross beta activities are likely to be related to naturally occurring <sup>40</sup>K. The laboratory analytical results indicate that <sup>36</sup>Cl, <sup>90</sup>Sr, <sup>99</sup>Tc, and total Uranium results were reported as "U" meaning that they were 'not detected' in the produced water samples.

20

The results of the gamma spectroscopy analysis show that gamma emitting radionuclides were generally not detected. Bismuth-214 was detected in both produced water samples at relatively low activities, and is related to naturally occurring Uranium-238 and Thorium-232 decay series. Other naturally occurring radionuclides, such as Actinium-228, Lead-212, Lead-214, Thorium-230, and Radium-228 were reported as uncertain identification in the Furr 16-22D produced water sample. These radionuclides are daughter products of natural Uranium-238 and Thorium-232 decay. Other gamma emitting radionuclides were reportedly not detected, as shown with a 'U' qualifier preceding the result in the laboratory report.

Laboratory analytical results for gross alpha and gross beta indicate that alpha activities and beta activities were within the range of natural background and these low level activities are most likely due to naturally occurring radionuclides in the Uranium-238 and Thorium-232 decay chain, such as Bismuth-214 (<sup>214</sup>Bi), Lead-214 (<sup>214</sup>Pb), and Potassium-40 (<sup>40</sup>K).

The laboratory analytical results show that gas flow proportional counting of Chlorine-36 and Strontium-90 indicate that these radionuclides were not detected in any of the produced water samples. Laboratory results for liquid scintillation counting of Technetium-99 indicate that <sup>99</sup>Tc was not detected in the two produced water samples. Total Uranium was not detected in either of the produced water samples.

Results of the data verification and validation indicate that the data is usable for the purposes of this project with consideration of the qualifications mentioned in the laboratory report, and those of the independent data reviewer. The laboratory data was reviewed by Diane Short and Associates. The data validation report is included as Appendix D.

# 5.0 References

- Clark, I.D. and Fritz, P., Environmental Isotopes in Hydrogeology, 1997, CRC Press, LLC, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431;
- Gholam, K.A.; Lehr, J.H., PhD.; Perrochet, P., Groundwater Age, 2006, John Wiley & Sons, Inc., Hoboken, NJ;
- Scott, R.C., and Voegeli, P.T., Sr, Radiochemical Analyses of Ground and Surface Water in Colorado, 1954-1961, Colorado Water Conservation Board Basic-Data Report No. 7, pp 27, two figures;

Rulison End State Vision, 2005, U.S. Department of Energy;

- Rulison Path Forward, June 2009, U.S. Department of Energy, Office of Legacy Management;
- URS Corp. Rulison Sampling and Analysis Plan, Revision 2, March 2008 Denver, Colorado;
- Voegeli, P.T., Sr.; Claassen H.C.; Radiochemical Analyses of Water from Selected Streams, Wells, Springs, and Precipitation Collected Prior to Reentry Drilling, Project Rulison, USGS Open File Report USGS-474-83 (Rulison-6), 16 pages;
- Voegeli, P.T., Sr.; West , S.W.; Geohydrology of Project Rulison, Garfield County, Colorado with a section on Aquifer Response by Cordes, E.H., 1970, U.S.G.S. Open File Report USGS-474-68, 56 pages;
- Voegeli, P.T., Sr.; Geology and Hydrology of the Project Rulison Exploratory Hole, Garfield County, Colorado, 1969, USGS-474-16;

TABLES AND FIGURES

FURR GAS WELL INFORMATION Furr 16-22B and Furr 16-22D Tier II Wells - Third Quarter 2009 Laramie Energy II Rulison Area Gas Well Monitoring

|       |                  |           |         | Surface L | ocation |     |             |                 |                  |              |                |               |
|-------|------------------|-----------|---------|-----------|---------|-----|-------------|-----------------|------------------|--------------|----------------|---------------|
|       |                  |           |         |           |         |     | TOTAL DEPTH | COMPLETION      |                  | 1st Quarter  | 2nd Quarter    | 3rd Quarter   |
| COUNT | WELL             | PAD       | QTR/QTR | SEC       | TWP     | RNG | (FT.)       | INITIATION DATE | 4th Quarter 2008 | 2009         | 2009           | 2009          |
| 1     | Furr A11-15B     | Furr A-11 | NE SW   | 15        | 7S      | 95W | 7,643       | 9/22/08         | B (11/13/08)     | N/A          | N/A            | N/A           |
| 2     | Furr A11-15D     | Furr A-11 | NE SW   | 15        | 7S      | 95W | 7,645       | 9/29/08         | B (11/13/08)     | N/A          | N/A            | N/A           |
| 3     | Furr Hagen 6-22B | F-1       | SW NE   | 22        | 7S      | 95W | 8,225       | 10/3/08         | B (12/17/08)     | N/A          | N/A            | N/A           |
| 4     | Furr Hagen 6-22D | F-1       | SW NE   | 22        | 7S      | 95W | 8,225       | 10/3/08         | B (12/17/08)     | N/A          | N/A            | N/A           |
| 5     | Furr 7-22B       | F-1       | SW NE   | 22        | 7S      | 95W | 8,077       | 10/8/08         | B (12/17/08)     | N/A          | N/A            | N/A           |
| 6     | Furr 7-22D       | F-1       | SW NE   | 22        | 7S      | 95W | 8,110       | 10/8/08         | B (12/17/08)     | N/A          | N/A            | N/A           |
| 7     | Furr 10-22B      | F-1       | SW NE   | 22        | 7S      | 95W | 8,130       | 10/13/08        | B (12/17/08)     | N/A          | N/A            | N/A           |
| 8     | Furr 9-22B       | F-2       | SE SE   | 22        | 7S      | 95W | 8,820       | 10/24/08        | B (12/17/08)     | N/A          | N/A            | N/A           |
| 9     | Furr 9-22D       | F-2       | SE SE   | 22        | 7S      | 95W | 8,720       | 10/30/08        | B (12/17/08)     | N/A          | N/A            | N/A           |
| 10    | Furr 16-22B      | F-2       | SE SE   | 22        | 7S      | 95W | 8,520       | 10/24/08        | B (12/17/08)     | QP (NS)      | QP (6/24/09)   | QP (10/01/09) |
| 11    | Furr 16-22D      | F-2       | SE SE   | 22        | 7S      | 95W | 8,540       | 10/30/08        | B (12/17/08)     | QP (4/14/09) | QP (6/24/09) D | QP (10/01/09) |
| 12    | Furr 10-22D      | F-3       | SW SE   | 22        | 7S      | 95W | 8,606       | 11/6/08         | B (12/17/08)     | N/A          | N/A            | N/A           |
| 13    | Furr 15-22B      | F-3       | SW SE   | 22        | 7S      | 95W | 9,172       | 11/6/08         | B (12/17/08)     | N/A          | N/A            | N/A           |
| 14    | Furr 15-22D      | F-3       | SW SE   | 22        | 7S      | 95W | 8,476       | 11/6/08         | B (12/17/08)     | N/A          | N/A            | N/A           |

Note: Shaded rows indicate the wells sampled in this report on October 1, 2009. (Date)

B - Baseline Data Collection Date

QP - Quarterly Production Data Collection Date

D - Duplicate Sample Collected

N/A - Not Applicable (See explanation below)

NS - Not Sampled (The Furr 16-22B was shut-in during the 04/14/09 sampling event and could not be sampled.)

According to the URS Rulison SAP, Revision 2, March 2008, Table 2 - Tier I and Tier II Sampling and Analysis Scheme for Gas Wells within a Three-Mile Radius of Project Rulison, Tier II Zone wells require a One-Time sampling and analysis (Baseline) for the radiological and non-radiological analytes in SAP Tables 3 and 4 and natural gas for the radiological analytes listed in SAP Table 3 as soon as possible after fracing but no later than 30 days after first gas delivery form a new gas well. If a Tier II well is the closest well in a sector (i.e., no Tier I well), produced water and natural gas will be sampled and analyzed for the radiological analytes listed in Table 3 guarterly during Year 1, semiannually during Years 2 and 3, and annually thereafter.

The Furr 16-22B and Furr 16-22D are the two Tier II wells closest to Project Rulison in Sector 11, and there are no Tier I wells in this sector. A duplicate sample (D) was collected from the Furr 16-22D and was identified as '22-9-16' during the 06/24/09 sampling event.

A field blank sample was also collected during the 06/24/09 sampling event.

#### GAS SAMPLE DATA

Rulison Area Well Monitoring Furr 16-22B and Furr 16-22D Wells

Natural Gas Samples - Laramie Energy II - Rulison Field, Garfield County, Colorado

|                | Sample    |           |            |         |         |          |       |      | Isotech | Sample              | Date       | со | H₂S | He     | H <sub>2</sub> | Ar | <b>O</b> <sub>2</sub> | CO <sub>2</sub> | N <sub>2</sub> | C <sub>1</sub> | C <sub>2</sub> | $C_2H_4$ | C <sub>3</sub> | iC4   | nC₄   | iC₅    | nC₅    | C <sub>6</sub> + | <sup>14</sup> C <sub>1</sub> | Std. Dev. | Tritium | Std. Dev. | Total BTU | Specific Gravity |
|----------------|-----------|-----------|------------|---------|---------|----------|-------|------|---------|---------------------|------------|----|-----|--------|----------------|----|-----------------------|-----------------|----------------|----------------|----------------|----------|----------------|-------|-------|--------|--------|------------------|------------------------------|-----------|---------|-----------|-----------|------------------|
| Well Name/ No. | Source    | Latitude/ | Longitude  | Qtr/Qtr | Section | Township | Range | P.M. | Lab No. | Name                | Sample     | %  | %   | %      | %              | %  | %                     | %               | %              | %              | %              | %        | %              | %     | %     | %      | %      | %                | рМС                          | (±)       | TU      | (±)       | calc      | calc             |
| Furr 16-22B    | Separator | 39.41662  | -107.97507 | SE SE   | 22      | 7S       | 95W   | 6th  | 152400  | Furr 16-22B         | 12/17/2008 | ND | ND  | 0.0029 | 0.0036         | ND | ND                    | 2.97            | 0.029          | 89.26          | 5.12           | ND       | 1.50           | 0.335 | 0.322 | 0.139  | 0.0981 | 0.220            | < 0.4                        | N/A       | < 10.0  | N/A       | 1076      | 0.642            |
|                |           |           |            |         |         |          |       |      | N/A     |                     | 4/14/2009  | NS | NS  | NS     | NS             | NS | NS                    | NS              | NS             | NS             | NS             | NS       | NS             | NS    | NS    | NS     | NS     | NS               | NS                           | NS        | NS      | NS        | NS        | NS               |
|                |           |           |            |         |         |          |       |      | 165099  |                     | 6/24/2009  | ND | ND  | 0.0033 | 0.0029         | ND | 0.0324                | 3.00            | 0.17           | 89.76          | 4.86           | ND       | 1.35           | 0.278 | 0.248 | 0.0969 | 0.0640 | 0.133            | < 0.5                        | N/A       | < 10.0  | N/A       | 1061      | 0.634            |
|                |           |           |            |         |         |          |       |      | 172338  |                     | 10/1/2009  | ND | ND  | 0.0030 | 0.0026         | NA | 0.006*                | 3.58            | 0.056          | 88.86          | 5.04           | ND       | 1.47           | 0.340 | 0.292 | 0.0830 | 0.0574 | 0.211            | < 0.4                        | N/A       | < 10.0  | NA        | 1065      | 0.644            |
| Furr 16-22D    | Separator | 39.41662  | -107.97512 | SE SE   | 22      | 7S       | 95W   | 6th  | 152398  | Furr 16-22D         | 12/17/2008 | ND | ND  | 0.0029 | 0.0033         | ND | 0.0060                | 3.25            | 0.053          | 88.76          | 5.35           | ND       | 1.52           | 0.337 | 0.307 | 0.128  | 0.0895 | 0.192            | < 0.8                        | N/A       | < 10.0  | N/A       | 1073      | 0.644            |
|                |           |           |            |         |         |          |       |      | 160503  |                     | 4/14/2009  | ND | ND  | 0.0029 | 0.0042         | ND | 0.0098                | 3.39            | 0.086          | 88.87          | 5.24           | ND       | 1.45           | 0.309 | 0.278 | 0.117  | 0.0789 | 0.167            | 0.5                          | 0.1       | < 10.0  | N/A       | 1066      | 0.643            |
|                |           |           |            |         |         |          |       |      | 165100  |                     | 6/24/2009  | ND | ND  | 0.0038 | 0.0040         | ND | 0.0272                | 2.88            | 0.16           | 89.50          | 5.15           | ND       | 1.43           | 0.296 | 0.261 | 0.0094 | 0.0656 | 0.121            | < 0.4                        | N/A       | < 11.7  | N/A       | 1066      | 0.636            |
|                |           |           |            |         |         |          |       |      | 172337  |                     | 10/1/2009  | ND | ND  | 0.0028 | 0.0033         | NA | 0.008*                | 3.69            | 0.050          | 88.42          | 5.35           | ND       | 1.50           | 0.314 | 0.270 | 0.105  | 0.0716 | 0.218            | 0.4                          | 0.1       | < 10.0  | N/A       | 1067      | 0.647            |
| 22-9-16        | Separator | 39.41662  | -107.97512 | SE SE   | 22      | 7S       | 95W   | 6th  | 165101  | 22-9-16 (Duplicate) | 6/24/2009  | ND | ND  | 0.0033 | 0.0040         | ND | 0.0144                | 3.36            | 0.10           | 89.07          | 5.17           | ND       | 1.42           | 0.297 | 0.263 | 0.101  | 0.0666 | 0.133            | < 0.5                        | N/A       | < 12.8  | N/A       | 1063      | 0.640            |

Carbon-14 (14C) Detection Limit is 1.0 pMC. Isotopic composition of carbon is relative to the Vienna Peedee Belemnite (VPDB).

#### Accronyms:

pMC - Percent Modern Carbon.

- TU Tritium Units (One TU is equivalent to 3.19 pCi/L of water)
- < Not Detected (ND) (Above Laboratory Method Detection Limit)
- Std. Dev. (±) Standard Deviation
- BTU British Thermal Units (cu. Ft. dry calcuated at 60°F and 14.7 psia)
- calc calculated value
- N/A not applicable
- NA not analyzed
- ND not detected (Mol %)
- NS not sampled (Furr 16-22B shut in on 04/14/09)

 Gas Component:
 14C1 - Carbon 14

 H2S - Hydrogen Sulfide
 Tritium

Std. Dev./ (±)

.

Ar - Argon O<sub>2</sub> - Oxygen CO<sub>2</sub> - Carbon Dioxide

He - Helium

 $C_2H_4$ . Ethylene

 $C_3$  - Propane i $C_4$  - Iso-Butane n $C_4$  - N-Butane i $C_5$  - Iso-Pentane n $C_5$  - n-Pentane  $C_6$  + - Hexanes+

H<sub>2</sub> - Hydrogen

N<sub>2</sub> - Nitrogen C<sub>1</sub> - Methane

C<sub>1</sub> - Methane Furr 16-22B and Furr 16-22D (12/17/08). C<sub>2</sub> - Ethane

Chemical compositions are normalized to 100%. Mol. % is approximately equal to vol.% Chemical analysis based on standards accurate to within 2%.

\* Isotech did not analyze Argon separately, but reported combined results for Oxygen and Argon for the analysis of the 10/01/09 samples.

Standard Deviation (±) Uncertainty

Note: Shaded rows present the analytical data for the samples collected on October 1, 2009 which are discussed in this report. The table presents the data as compared to the results for samples collected previously from these wells.

Tritium (<sup>3</sup>H) Detection Limit 10.0 TU. Isotopic composition of hydrogen is relative to Vienna Standard Mean Ocean Water (VSMOW)

Table presents Second Quarter 2009 (06/24/09) laboratory analytical results for the Furr 16-22B and the Furr 16-22D wells. First quarter results for the Furr 16-22D (04/14/09) and also the baseline results obtained for the

#### TRITIUM ANALYTICAL RESULTS FOR PRODUCED WATER SAMPLES Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II, Rulison Field, Garfield County, Colorado

| Well<br>Name/Number                 | Sample<br>Source | Latitude | Longitude  | QTR/<br>QTR | Section | Township | Range | P.M. | SAMPLE ID   | LAB Number | DATE<br>SAMPLED | TIME<br>SAMPLED | Laboratory | Tritium<br>(TU) | Tritium (pCi/L) calculated |
|-------------------------------------|------------------|----------|------------|-------------|---------|----------|-------|------|-------------|------------|-----------------|-----------------|------------|-----------------|----------------------------|
| Furr 16-22B                         | Separator        | 39.41669 | -107.97507 | SE SE       | 22      | 7S       | 95W   | 6th  | Furr 16-22B |            | 12/17/2008      | 12:54           | ISO        | < 10.8          | < 34.5                     |
|                                     |                  |          |            |             |         |          |       |      |             |            | 4/14/2009       | NS              | ISO        | NS              | NS                         |
|                                     |                  |          |            |             |         |          |       |      |             |            | 6/24/2009       | 11:55           | ISO        | < 13.7          | < 43.7                     |
|                                     |                  |          |            |             |         |          |       |      |             | 172338     | 10/1/2009       | 11:30           | ISO        | < 10.0          | < 31.9                     |
| Furr 16-22D                         | Separator        | 39.41662 | -107.97512 | SE SE       | 22      | 7S       | 95W   | 6th  | Furr 16-22D |            | 12/17/2008      | 12:13           | ISO        | < 10.0          | < 31.9                     |
|                                     |                  |          |            |             |         |          |       |      |             |            | 4/14/2009       | 11:00           | ISO        | < 10.0          | < 31.9                     |
|                                     |                  |          |            |             |         |          |       |      |             |            | 6/24/2009       | 11:40           | ISO        | < 12.0          | < 38.3                     |
|                                     |                  |          |            |             |         |          |       |      |             | 172337     | 10/1/2009       | 11:40           | ISO        | < 10.0          | < 31.9                     |
| 22-9-16 (Furr 16-<br>22D Duplicate) | Separator        | 39.41662 | -107.97512 | SE SE       | 22      | 7S       | 95W   | 6th  | 22-9-16     |            | 6/24/2009       | 12:50           | ISO        | < 10.5          | < 33.5                     |
| Field Blank                         | NA               | NA       | NA         | SE SE       | 22      | 7S       | 96W   | 6th  | Blank       |            | 6/24/2009       | 12:05           | ISO        | 54 ± 3.8        | 173.22 ± 12.1              |

Note: Shaded rows present the results for samples collected on October 1, 2009 as presented in this report. The table also presents the results from previous sampling events for these gas wells.

Tritium (<sup>3</sup>H) Detection Limit 10.0 TU. Isotopic composition of hydrogen is relative to Vienna Standard Mean Ocean Water (VSMOW).

#### Abbreviations:

ISO - Isotech Laboratories, Inc. of Champaign, Illinois

TU - Tritium Units (One TU is equivalent to 3.19 pCi/L of water) Note: Isotech reported the tritium results in TU and Olsson Associates converted to equivalent picocuries per liter. pCi/L - picocuries per liter

< - Result is less than the method detection limit

NS - Not Sampled (Furr 16-22B was shut-in and the separator did not yield sufficient water volume to enable sample collection in April 14, 2009.)

Isotech Job Number 12055

#### Radiochemistry Gas Flow Proportional Counting/Liquid Scintillation Analysis/Total Uranium for Produced Water Samples Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II - Rulison Field, Garfield County, Colorado

|                                     |           |           |           |       |         |          |       |      |           |            |               |                | GFPC      | Result ±     | Detection | GFPC  | Result ±     | Detection |             | Result ±    | Detection | 1            | Result ±       | Detection |               |              | Detection |         | Result ±         | Detection |
|-------------------------------------|-----------|-----------|-----------|-------|---------|----------|-------|------|-----------|------------|---------------|----------------|-----------|--------------|-----------|-------|--------------|-----------|-------------|-------------|-----------|--------------|----------------|-----------|---------------|--------------|-----------|---------|------------------|-----------|
| WELL NAME/                          | Sample    |           |           | QTR/  |         |          |       |      |           | DATE       | TIME          |                | Gross     | Uncertainty  | Limit     | Gross | Uncertainty  | Limit     | GFPC        | Uncertainty | Limit     | GFPC         | Uncertainty    | Limit     | LSA           | Result       | Limit     | Total   | Uncertainty      | Limit     |
| Sample ID                           | Source    | Latitude/ | Longitude | QTR   | Section | Township | Range | P.M. | SAMPLE ID | SAMPLED    | SAMPLED       | Laboratory     | Alpha     | (pCi/L)      | (pCi/L)   | Beta  | (pCi/L)      | (pCi/L)   | Chlorine-36 | (pCi/L)     | (pCi/L)   | Strontium-90 | (pCi/L)        | (pCi/L)   | Technetium-99 | (pCi/L)      | (pCi/L)   | Uranium | (μg/L)           | (µg/L)    |
| Furr 16-22B                         | Separator | 39.41669  | -107.9751 | SE SE | 22      | 7S       | 95W   | 6th  | 16-22B    | 12/17/2008 | 12:54         | GEL            | U         | 5.88 ± 16.8  | 30.4      | U     | 15.9 ± 27.6  | 46.8      | U           | -98.4 ± 152 | 271       | U            | 0.817 ± 0.781  | 1.27      | U             | 8.00 ± 17.5  | 29.7      |         | 0.548 ± 0.116    | 0.267     |
|                                     |           |           |           |       |         |          |       |      |           | 4/14/2009  | NS            |                | NS        | NS           | NS        | NS    | NS           | NS        | NS          | NS          | NS        | NS           | NS             | NS        | NS            | NS           | NS        | NS      | NS               | NS        |
|                                     |           |           |           |       |         |          |       |      |           | 6/24/2009  | 11:55         | GEL            |           | 21.8 ± 13.3  | 20.2      |       | 31.9 ± 11.6  | 18.1      | U           | 125 ± 136   | 229       | U            | -0.98 ± 0.861  | 1.93      | U             | -8.79 ± 13.0 | 22.8      | U       | -0.0389 ± 0.0302 | 0.0766    |
|                                     |           |           |           |       |         |          |       |      |           | 10/1/2009  | 11:30         | GEL            |           | 26.0 ± 11.5  | 15.9      | U     | 11.1 ± 10.9  | 18.3      | U           | 37.1 ± 135  | 234       | U            | 0.103 ± 0.785  | 1.44      | U             | 4.47 ± 27.2  | 46.8      | U       | 0.0175 ± 0.0161  | 0.928     |
| Furr 16-22D                         | Separator | 39.41662  | -107.9751 | SE SE | 22      | 7S       | 95W   | 6th  | 16-22D    | 12/17/2008 | 12:13         | GEL            | U         | -40 ± 27.6   | 56.2      | U     | 0.428 ± 30.6 | 52.5      | U           | 195 ± 210   | 353       | U            | -0.727 ± 0.945 | 1.92      | U             | 9.98 ± 17.6  | 29.8      |         | 0.394 ± 0.0727   | 0.267     |
|                                     |           |           |           |       |         |          |       |      |           | 4/14/2009  | 11:00         | GEL            |           | 33.0 ± 16.3  | 21.8      |       | 79.4 ± 23.0  | 34.8      | U           | 47.7 ± 72.7 | 124       | U            | -0.567 ± 0.476 | 1.17      | U             | -7.01 ± 22.5 | 39.5      | U       | $0.00 \pm 0.00$  | 0.289     |
|                                     |           |           |           |       |         |          |       |      |           | 6/24/2009  | 11:40         | GEL            |           | 27.1 ± 12.4  | 17.4      |       | 61.7 ± 16.3  | 25.2      | U           | 70.4 ± 117  | 201       | U            | -0.586 ± 0.826 | 1.61      | U             | -9.54 ± 16.1 | 28.0      | U       | $0.00 \pm 0.00$  | 0.0766    |
|                                     |           |           |           |       |         |          |       |      |           | 10/1/2009  | 11:40         | GEL            | U         | 6.70 ± 9.46  | 16.3      | U     | 7.27 ± 11.3  | 19.1      | U           | 159 ± 107   | 173       | U            | 0.826 ± 1.13   | 1.92      | U             | 3.17 ± 27.3  | 47.0      | U       | $0.00 \pm 0.00$  | 0.928     |
| 22-9-16 (Furr 16-<br>22D Duplicate) | Separator | 39.4166   | -107.975  | SE SE | 22      | 7S       | 95W   | 6th  | 22-9-16   | 6/24/2009  | 12:50         | GEL            |           | 20.8 ± 11.4  | 17.1      |       | 35.5 ± 10.9  | 16.5      | U           | 168 ± 126   | 207       | U            | -0.318 ± 0.594 | 1.32      | U             | 3.11 ± 24.0  | 41.0      | U       | $0.00 \pm 0.00$  | 0.0766    |
| Field Blank                         | N/A       | N/A       | N/A       |       |         |          |       |      |           | 6/24/2009  | 12:05         | GEL            | U         | -1.14 ± 1.63 | 4.26      | U     | -1.12 ± 2.54 | 4.97      |             | 258 ±158    | 256       | U            | -0.498 ± 0.784 | 1.54      | U             | -10.4 ± 12.6 | 22.1      | U       | $0.00\pm0.00$    | 0.0766    |
|                                     |           |           |           |       |         |          |       |      |           |            | April 2009 Gl | EL Reporting L | .imits:   |              | 5.00      | )     |              | 5.00      |             |             | 100       | )            |                | 2.00      |               |              | 50.0      |         |                  | 1.00      |
|                                     |           |           |           |       |         |          |       |      |           |            | June 2009 G   | EL Reporting   | Limits:   |              | 5.00      | )     |              | 5.00      |             |             | 100       | )            |                | 2.00      |               |              | 50.0      |         |                  | 1.00      |
|                                     |           |           |           |       |         |          |       |      |           |            | October 2009  | GEL Reporti    | ng Limits | :            | 5.00      | )     |              | 5.00      |             |             | 100       | )            |                | 2.00      |               |              | 50.0      |         |                  | 1.00      |

Table presents 3rd Quarter 2009 (10/01/09) laboratory analytical results (shaded) for the Furr 16-22B and 16-22D wells. Previous sample results are also presented for each well, and also for a Furr 16-22D duplicate sample and field blank sample collected during the 6/24/09 sampling event. The Furr 16-22B well was shut-in and was not sampled during the April 14, 2009 sampling event.

Abbreviations:

pCi/L - picocuries per liter (activity in parts per trillion) (concentration in parts per billion) μg/L - micrograms per liter

U - Result is less than the sample specific Minimum Detectable Concentration (MDC) or Minimum Detectable Activity (MDA), Method Detection Limit (MDL), Limits of Detection (LOD), total propogated uncertainty (TPU), or laboratory reporting limit (RL). NS - Not Sampled (Furr 16-22B well was shut-in during the 4/14/09 sampling event and was not sampled)

NA - Not Analyzed

N/A - Not Applicable

GFPC - Gas Flow Proportional Counting

LSA - Liquid Scintillation Analysis

1.00

#### GAMMA SPECTROSCOPY RESULTS FOR PRODUCED WATER SAMPLES Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II - Rulison Field, Garfield County, Colorado

| WELL NAME/No.<br>Furr 16-22B          | Sample<br>Collection<br>Point<br>Separator | Latitude/<br>39.4167 | Longitude<br>-107.9751 | QTR/QTR<br>SE SE | SEC T | WP F  | NG P. | .M.<br>ôth | SAMPLE<br>ID<br>16-22B | DATE<br>SAMPLED<br>12/17/2008<br>4/14/2009        | TIME<br>SAMPLED<br>12:54<br>NS   | Gamma<br>Emitting<br>Radionuclides<br>Qualifier<br>Result<br>Uncertainty (±)<br>MDC<br>Qualifier<br>Result<br>Uncertainty (±)<br>MDC            | Ac-228<br>Result<br>(pCi/L)<br>U<br>3.91<br>15.7<br>15.6<br>NS                                                    | Am-241<br>Result<br>(pCi/L)<br>U<br>0.459<br>11.6<br>17.3<br>NS                                                    | Sb-124<br>Result<br>(pCi/L)<br>U<br>1.22<br>4.83<br>8.58<br>NS                                                      | Sb-125<br>Result<br>(pCi/L)<br>U<br>-1.04<br>5.60<br>9.02<br>NS                                                      | Ba-133<br>Result<br>(pCi/L)<br>U<br>-0.923<br>3.29<br>4.63<br>NS                                                    | Ba-140<br>Result<br>(pCi/L)<br>U<br>16.6<br>25.1<br>44.1<br>NS                                                    | Be-7<br>Result<br>(pCi/L)<br>U<br>-4.13<br>20.1<br>34.0<br>NS                                                 | Bi-212<br>Result<br>(pCi/L)<br>U<br>-3.67<br>15.9<br>25.9<br>NS                                                    | Bi-214<br>Result<br>(pCi/L)<br>U<br>4.67<br>5.23<br>8.60<br>NS                                               | Ce-139<br>Result<br>(pCi/L)<br>U<br>0.590<br>2.03<br>3.55<br>NS                                                      | Ce-141<br>Result<br>(pCi/L)<br>U<br>-0.838<br>4.96<br>8.54<br>NS                                                      | Ce-144<br>Result<br>(pCi/L)<br>U<br>-6.11<br>14.1<br>22.2<br>NS                                                   | Cs-134<br>Result<br>(pCi/L)<br>U<br>1.19<br>2.41<br>4.20<br>NS                                                      | Cs-136<br>Result<br>(pCi/L)<br>U<br>11.4<br>9.13<br>17.6<br>NS                                                       | Cs-137<br>Result<br>(pCi/L)<br>U<br>0.177<br>2.18<br>3.41<br>NS                                                       | Cr-51<br>Result<br>(pCi/L)<br>U<br>6.72<br>31.3<br>52.8<br>NS                                                       | Co-56<br>Result<br>(pCi/L)<br>U<br>-0.858<br>2.24<br>3.52<br>NS                                                                                    | Co-57<br>Result<br>(pCi/L)<br>U<br>0.0899<br>1.78<br>2.90<br>NS                                                       | Co-58<br>Result<br>(pCi/L)<br>U<br>-3.17<br>2.47<br>3.47<br>NS                                                       | Co-60<br>Result<br>(pCi/L)<br>U<br>0.181<br>2.39<br>3.54<br>NS                                                       | Eu-152<br>Result<br>(pCi/L)<br>U<br>-5.17<br>5.88<br>9.11<br>NS                                                    | Eu-154<br>Result<br>(pCi/L)<br>U<br>-0.406<br>5.55<br>9.20<br>NS                                                    | Eu-155<br>Result<br>(pCi/L)<br>U<br>-7.3<br>7.85<br>11.3<br>NS                                               | Ir-192<br>Result<br>(pCi/L)<br>U<br>-0.128<br>2.49<br>4.13<br>NS                                                      | Fe-59<br>Result<br>(pCi/L)<br>U<br>-2.27<br>4.80<br>7.62<br>NS                                                       | Kr-85<br>Result<br>(pCi/L)<br>U<br>-1760<br>638<br>928<br>NS                                                              |
|---------------------------------------|--------------------------------------------|----------------------|------------------------|------------------|-------|-------|-------|------------|------------------------|---------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                       |                                            |                      |                        |                  |       |       |       |            |                        | 10/1/2009                                         | 11:30                            | Qualifier<br>Result<br>Uncertainty (±)<br>MDC<br>Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                                  | U<br>11.6<br>14.6<br>19.8<br>U<br>0.00<br>12.1<br>17.2                                                            | 0<br>-3.81<br>16.1<br>27.2<br>U<br>7.60<br>14.4<br>23.2                                                            | 0<br>-0.143<br>4.82<br>8.14<br>U<br>1.67<br>4.83<br>8.57                                                            | 0<br>3.25<br>6.38<br>11.2<br>U<br>5.38<br>5.26<br>9.33                                                               | U<br>-7.26<br>3.46<br>4.99<br>U<br>0.881<br>2.73<br>4.36                                                            | -19.4<br>13.0<br>15.9<br>U<br>0.820<br>8.67<br>14.3                                                               | 0<br>-14.5<br>20.0<br>31.7<br>U<br>-0.107<br>17.2<br>28.4                                                     | U<br>18.6<br>19.0<br>34.2<br>U<br>7.16<br>15.6<br>27.2                                                             | 8.74<br>8.05<br>10.9<br>19.5<br>8.70<br>6.38                                                                 | U<br>-2.29<br>2.40<br>3.81<br>U<br>-1.97<br>1.95<br>3.09                                                             | U<br>1.36<br>4.54<br>7.43<br>U<br>1.36<br>3.61<br>6.10                                                                | U<br>-7.7<br>16.7<br>27.3<br>U<br>3.43<br>14.1<br>23.8                                                            | 3.36<br>2.62<br>5.04<br>U<br>0.565<br>2.50<br>4.26                                                                  | 0.283<br>3.86<br>6.58<br>U<br>-0.589<br>3.40<br>5.73                                                                 | -0.784<br>2.31<br>3.69<br>U<br>0.433<br>2.13<br>3.67                                                                  | U<br>-1.22<br>22.8<br>39.0<br>U<br>-5.4<br>18.3<br>30.6                                                             | 0.205<br>2.15<br>3.72<br>U<br>0.180<br>1.97<br>3.30                                                                                                | U<br>1.31<br>2.17<br>3.73<br>U<br>2.67<br>1.73<br>3.07                                                                | U<br>-1.14<br>2.01<br>3.22<br>U<br>-0.88<br>2.03<br>3.27                                                             | -1.26<br>2.30<br>3.47<br>U<br>1.32<br>2.24<br>3.98                                                                   | 0<br>2.57<br>6.37<br>11.2<br>U<br>-3.69<br>5.97<br>9.75                                                            | -0.359<br>5.55<br>9.15<br>U<br>0.355<br>6.25<br>10.6                                                                | 0<br>-2.93<br>9.14<br>15.2<br>U<br>0.0159<br>7.73<br>13.1                                                    | 0.868<br>2.31<br>4.05<br>U<br>0.730<br>1.94<br>3.36                                                                   | U<br>-1.35<br>4.48<br>7.24<br>U<br>1.38<br>4.12<br>7.24                                                              | 0<br>-911<br>737<br>1160<br>U<br>706<br>496<br>797                                                                        |
| Furr 16-22D                           | Separator                                  | 39.4166              | -107.9751              | SE SE            | 22    | 75 9  | 5W 6  | Sth        | 16-22D                 | 12/17/2008<br>4/14/2009<br>6/24/2009<br>10/1/2009 | 12:13<br>11:00<br>11:40<br>11:40 | Qualifier<br>Result<br>Uncertainty (±)<br>MDC<br>Qualifier<br>Result<br>Uncertainty (±)<br>MDC<br>Qualifier<br>Result<br>Uncertainty (±)<br>MDC | U<br>6.57<br>10.1<br>16.6<br>U<br>3.93<br>9.67<br>15.5<br>UI<br>0.00<br>13.4<br>18.5<br>U<br>5.78<br>10.4<br>16.5 | U<br>10.3<br>22.4<br>37.9<br>U<br>-10.6<br>10.2<br>16.5<br>U<br>4.88<br>18.6<br>32.1<br>U<br>-2.63<br>14.3<br>24.5 | U<br>0.498<br>5.76<br>9.76<br>U<br>0.632<br>4.64<br>7.82<br>U<br>1.84<br>5.43<br>9.49<br>U<br>-4.23<br>4.09<br>5.50 | U<br>-6.79<br>5.66<br>8.29<br>U<br>-1.06<br>5.56<br>9.28<br>U<br>-1.85<br>5.60<br>9.05<br>U<br>0.697<br>4.95<br>8.41 | U<br>-5.81<br>2.79<br>3.75<br>U<br>0.308<br>2.84<br>4.25<br>U<br>2.04<br>2.80<br>4.43<br>U<br>-3.35<br>2.73<br>3.56 | U<br>-30.8<br>26.3<br>36.6<br>U<br>3.77<br>10.5<br>17.9<br>U<br>2.77<br>11.1<br>18.6<br>U<br>3.20<br>7.31<br>12.5 | U<br>-26<br>24.1<br>35.6<br>U<br>13.1<br>16.5<br>29.4<br>U<br>7.48<br>17.5<br>29.9<br>U<br>9.60<br>14.8<br>26 | U<br>-3.97<br>20.4<br>29.3<br>U<br>3.89<br>18.5<br>29.1<br>U<br>23.9<br>17.0<br>32.2<br>U<br>0.631<br>14.1<br>24.2 | U<br>6.13<br>6.34<br>9.09<br>Ul<br>0.00<br>7.94<br>9.5<br>Ul<br>0.00<br>8.10<br>9.55<br>12.7<br>8.27<br>6.09 | U<br>-1.31<br>2.20<br>3.71<br>U<br>-1.36<br>1.87<br>2.97<br>U<br>0.623<br>2.02<br>3.35<br>U<br>-1.39<br>1.75<br>2.77 | U<br>-1.39<br>6.31<br>8.90<br>U<br>-0.631<br>3.96<br>6.02<br>U<br>0.679<br>3.85<br>6.38<br>U<br>0.355<br>3.13<br>5.25 | U<br>-2.9<br>16.2<br>25.9<br>U<br>17.5<br>16.0<br>24.6<br>U<br>3.99<br>14.2<br>23.8<br>U<br>-3.83<br>12.1<br>19.8 | U<br>2.66<br>2.31<br>4.37<br>U<br>-0.322<br>2.39<br>3.87<br>U<br>0.793<br>2.85<br>4.43<br>U<br>1.54<br>2.21<br>4.00 | U<br>-2.31<br>11.2<br>18.0<br>U<br>0.121<br>3.24<br>5.52<br>U<br>-2.91<br>4.31<br>6.48<br>U<br>0.946<br>3.16<br>5.44 | U<br>-1.74<br>1.90<br>2.90<br>U<br>-0.996<br>2.14<br>3.39<br>U<br>0.326<br>2.05<br>3.56<br>U<br>0.496<br>2.52<br>4.18 | U<br>-19.8<br>32.4<br>52.2<br>U<br>-12.4<br>18.0<br>29.5<br>U<br>-3.56<br>21.4<br>35.9<br>U<br>20.3<br>16.4<br>29.9 | U<br>1.70<br>2.33<br>4.23<br>U<br>1.67<br>1.88<br>3.50<br>U<br>-0.387<br>1.99<br>3.26<br>U<br>-0.387<br>1.99<br>3.26<br>U<br>-0.78<br>1.78<br>2.92 | U<br>0.0278<br>1.92<br>3.12<br>U<br>-0.601<br>1.75<br>2.87<br>U<br>1.67<br>1.81<br>3.13<br>U<br>0.448<br>1.58<br>2.69 | U<br>1.50<br>2.25<br>4.07<br>U<br>-1.09<br>2.02<br>3.11<br>U<br>-0.27<br>1.91<br>3.17<br>U<br>-0.729<br>1.83<br>2.98 | U<br>1.43<br>1.97<br>3.69<br>U<br>-0.177<br>2.26<br>3.74<br>U<br>1.11<br>2.17<br>3.92<br>U<br>-0.576<br>1.85<br>3.02 | U<br>0.715<br>5.84<br>9.84<br>U<br>-2.33<br>5.99<br>9.37<br>U<br>-2.98<br>6.66<br>10<br>U<br>-2.71<br>5.32<br>8.77 | U<br>-6.94<br>6.17<br>8.75<br>U<br>2.46<br>5.39<br>9.62<br>U<br>-2.66<br>5.60<br>8.84<br>U<br>-1.89<br>5.66<br>9.28 | U<br>0.437<br>8.57<br>14.1<br>U<br>-9.258<br>12.0<br>U<br>4.97<br>8.54<br>14.6<br>U<br>-1.78<br>6.77<br>11.3 | U<br>-1.18<br>2.44<br>3.96<br>U<br>-0.574<br>1.87<br>3.14<br>U<br>0.672<br>2.03<br>3.51<br>U<br>-2.63<br>1.69<br>2.59 | U<br>-4.79<br>7.67<br>8.56<br>U<br>0.757<br>3.70<br>6.42<br>U<br>-3.15<br>3.95<br>5.66<br>U<br>-1.02<br>3.67<br>5.86 | U<br>-2410<br>690<br>852<br>U<br>-1490<br>638<br>930<br>U<br>-942<br>660<br>600<br>990<br>990<br>U<br>-2770<br>605<br>686 |
| 22-9-16<br>(Furr 16-22D<br>Duplicate) | Separator                                  | 39.4166              | -107.9751              | SE SE            | 22    | 7S 9  | 95W 6 | õth        | 16-22D                 | 6/24/2009                                         | 12:50                            | Qualifier<br>Result<br>Uncertainty (±)<br>MDC<br>Qualifier                                                                                      | 0.00<br>17.5<br>16.0<br>U                                                                                         | U<br>-7.85<br>5.75<br>8.49<br>U                                                                                    | U<br>-0.11<br>5.97<br>10.1<br>U                                                                                     | U<br>1.08<br>6.51<br>11.2<br>U                                                                                       | U<br>1.47<br>3.42<br>5.29<br>U                                                                                      | U<br>4.08<br>13.8<br>23.6<br>U                                                                                    | U<br>-10.9<br>23.3<br>37.8<br>U                                                                               | U<br>12.5<br>21.1<br>36.9<br>U                                                                                     | U<br>9.42<br>8.32<br>12.4<br>U                                                                               | U<br>-1.9<br>2.06<br>3.26<br>U                                                                                       | U<br>0.752<br>4.24<br>6.28<br>U                                                                                       | U<br>-7.86<br>13.9<br>22.6<br>U                                                                                   | U<br>1.40<br>3.34<br>5.94<br>U                                                                                      | U<br>3.40<br>4.75<br>8.72<br>U                                                                                       | U<br>-1.36<br>2.68<br>4.19<br>U                                                                                       | U<br>22.9<br>22.7<br>41.1<br>U                                                                                      | U<br>-0.561<br>2.22<br><u>3.67</u><br>U                                                                                                            | U<br>-1.08<br>1.98<br>2.97<br>U                                                                                       | U<br>-1.94<br>2.55<br>3.99<br>U                                                                                      | U<br>0.580<br>2.65<br>4.55<br>U                                                                                      | U<br>0.102<br>7.95<br>11.8<br>U                                                                                    | U<br>-6.16<br>8.04<br>11.9<br>U                                                                                     | U<br>5.08<br>7.50<br>13.0<br>U                                                                               | U<br>-2.51<br>2.35<br>3.76<br>U                                                                                       | U<br>2.09<br>5.68<br>9.96<br>U                                                                                       | 0.00<br>604<br>1140<br>U                                                                                                  |
| Field Blank                           | N/A                                        | N/A                  | N/A                    | N/A              | N/A   | N/A I | N/A N | I/A F      | Field Blank            | 6/24/2009                                         | 12:05                            | Result<br>Uncertainty (±)<br>MDC                                                                                                                | -8.32<br>8.01<br>11.9                                                                                             | 3.60<br>12.5<br>19.1                                                                                               | 0.111<br>4.60<br>7.84                                                                                               | -2.66<br>4.95<br>8.02                                                                                                | -0.91<br>2.56<br>4.26                                                                                               | 3.20<br>10.4<br>17.7                                                                                              | -4.91<br>16.7<br>27.4                                                                                         | 5.91<br>15.1<br>25.8                                                                                               | 4.43<br>6.78<br>7.83                                                                                         | -0.423<br>1.87<br>3.07                                                                                               | -0.568<br>4.52<br>6.59                                                                                                | 12.1<br>14.9<br>24.8                                                                                              | -0.56<br>2.02<br>3.36                                                                                               | -2.09<br>3.46<br>5.38                                                                                                | 1.43<br>1.82<br>3.26                                                                                                  | -8.03<br>18.0<br>30.0                                                                                               | -1.11<br>1.87<br>2.98                                                                                                                              | 0.120<br>1.88<br>3.17                                                                                                 | -1.26<br>2.27<br>3.02                                                                                                | 0.371<br>2.34<br>3.97                                                                                                | -0.384<br>5.78<br>9.85                                                                                             | 0.803<br>5.26<br>8.95                                                                                               | 2.42<br>7.63<br>13.1                                                                                         | -1.23<br>1.88<br>3.10                                                                                                 | 3.90<br>3.71<br>7.00                                                                                                 | -1010<br>578<br>871                                                                                                       |

Table presents gamma spectroscopy analytical results for the Furr 16-22B and Furr 16-22D wells - current data shaded in gray. Samples were all analyzed by GEL Laboratories, LLC in Charleston, SC

Four Rows:

1) Qualifier The laboratory data qualifers are designated by one or two letters to provide information about the reported results. 2) Result Results are the level of activity reported for the individual produced water sample. The margin of error, or range of activity, when added to the result. The laboratory minimum detectable concentration (MDC) for the analytical method. 3) Uncertainty (±) 4) MDC If the result is less than the reporting limits the radionuclide is reported as 'not detected' (U).

The qualifiers used in the laboratory reports are listed below: U - Result is less than the sample specific Minimum Detectable Concentration (MDC) or Minimum Detectable Activity (MDA),

Method Detection Limit (MDL), Limits of Detection (LOD), total propogated uncertainty (TPU), or laboratory reporting limit (RL).

UI - Gamma Spectroscopy Uncertain Identification

NS - Not Sampled (Furr 16-22B was shut-in on April 14, 2009 and was not sampled)

NA - Not Analyzed N/A - Not Applicable

Note: Values shown in blue represent a detection or an uncertain identification. The gamma emitting radionuclides that were detected are naturally occurring potassium-40 (<sup>40</sup>K), lead-212 (<sup>212</sup>Pb), lead-214 (<sup>214</sup>Pb), and bismuth-214 (<sup>214</sup>Bi) in a few of the samples.

# GAMMA SPECTROSCOPY RESULTS FOR PRODUCED WATER SAMPLES Furr 16-22B and Furr 16-22D Tier II Wells Laramie Energy II - Rulison Field, Garfield County, Colorado

(Table Continued)

| WELL<br>NAME/No.<br>Furr 16-22B | Sample<br>Collection<br>Point<br>Separator | Latitude/ Longitude<br>39.4167 -107.97507 | QTR/QTR<br>SE SE | SEC<br>22 | TWP<br>7S | RNG<br>95W | P.M.<br>6th | SAMPLE ID<br>16-22B | DATE<br>SAMPLED<br>12/17/2008 | TIME<br>SAMPLED<br>12:54 | Gamma<br>Emitting<br>Radionuclides<br>Qualifier<br>Result<br>Uncertainty (±) | Pb-210<br>Result<br>(pCi/L)<br>U<br>31.4<br>347 | Pb-212<br>Result<br>(pCi/L)<br>U<br>-3.14<br>4.74 | Pb-214<br>Result<br>(pCi/L)<br>U<br>3.30<br>6.03 | Mn-54<br>Result<br>(pCi/L)<br>U<br>0.333<br>1.84 | Hg-203<br>Result<br>(pCi/L)<br>U<br>2.44<br>2.87 | Nd-147<br>Result<br>(pCi/L)<br>U<br>-16.7<br>58.5 | Np-239<br>Result<br>(pCi/L)<br>U<br>3.69<br>12.9 | Nb-94<br>Result<br>(pCi/L)<br>U<br>0.251<br>1.97 | Nb-95<br>Result<br>(pCi/L)<br>U<br>-1.36<br>3.27 | K-40<br>Result<br>(pCi/L)<br>U<br>27.2<br>34.0 | Pm-144<br>Result<br>(pCi/L)<br>U<br>-0.00461<br>2.04 | Pm-146<br>Result<br>(pCi/L)<br>U<br>0.616<br>2.29 | Ra-228<br>Result<br>(pCi/L)<br>U<br>3.91<br>15.7 | Ru-106<br>Result<br>(pCi/L)<br>U<br>13.6<br>17.4 | Ag-110m<br>Result<br>(pCi/L)<br>U<br>-1.81<br>1.83 | Na-22<br>Result<br>(pCi/L)<br>U<br>-0.146<br>2.00 | TI-208<br>Result<br>(pCi/L)<br>U<br>-0.272<br>2.57 | Th-230<br>Result<br>(pCi/L)<br>U<br>802<br>5220 | Th-234<br>Result<br>(pCi/L)<br>U<br>134<br>128 | Sn-113<br>Result<br>(pCi/L)<br>U<br>-0.35<br>2.97 | U-235<br>Result<br>(pCi/L)<br>U<br>-19.5<br>16.4 | U-238<br>Result<br>(pCi/L)<br>U<br>134<br>128 | Y-88<br>Result<br>(pCi/L)<br>U<br>-0.221<br>2.39 | Zn-65<br>Result<br>(pCi/L)<br>U<br>-0.378<br>4.28 | Zr-95<br>Result<br>(pCi/L)<br>U<br>1.72<br>4.19 |
|---------------------------------|--------------------------------------------|-------------------------------------------|------------------|-----------|-----------|------------|-------------|---------------------|-------------------------------|--------------------------|------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
|                                 |                                            |                                           |                  |           |           |            |             |                     | 4/14/2009                     | NS                       | MDC<br>Qualifier<br>Result<br>Uncertainty (±)<br>MDC                         | 517<br>NS                                       | 6.62<br>NS                                        | 8.61<br>NS                                       | 3.10<br>NS                                       | 5.04<br>NS                                       | 97.2<br>NS                                        | 21.3<br>NS                                       | 3.33<br>NS                                       | 5.21<br>NS                                       | 27.3<br>NS                                     | 3.42<br>NS                                           | 4.02<br>NS                                        | 15.6<br>NS                                       | 31.4<br>NS                                       | 2.75<br>NS                                         | 3.31<br>NS                                        | 3.92<br>NS                                         | 1300<br>NS                                      | 140<br>NS                                      | 4.84<br>NS                                        | 23.2<br>NS                                       | 140<br>NS                                     | 3.97<br>NS                                       | 7.16<br>NS                                        | 7.26<br>NS                                      |
|                                 |                                            |                                           |                  |           |           |            |             |                     | 6/24/2009                     | 11:55                    | Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                | U<br>-65.5<br>522<br>799                        | U<br>2.59<br>5.83<br>8.40                         | U<br>9.75<br>6.13<br>10.2                        | U<br>1.64<br>2.15<br>3.95                        | U<br>-0.51<br>2.55<br>4.35                       | U<br>4.09<br>24.1<br>41.0                         | U<br>-15.1<br>17.2<br>27.8                       | U<br>1.99<br>2.05<br>3.72                        | U<br>0.896<br>2.55<br>4.34                       | 95.1<br>26.1<br>41.7                           | U<br>-1.01<br>2.28<br>3.60                           | U<br>-0.297<br>2.95<br>4.95                       | U<br>11.6<br>14.6<br>19.8                        | U<br>2.67<br>20.1<br>33.8                        | U<br>0.102<br>2.15<br>3.58                         | U<br>-0.128<br>1.98<br>3.26                       | U<br>2.41<br>3.01<br>4.34                          | U<br>-268<br>2030<br>1890                       | U<br>-77<br>149<br>231                         | U<br>-3.23<br>2.72<br>4.19                        | U<br>21.8<br>18.7<br>28.8                        | U<br>-77<br>149<br>231                        | U<br>-2.46<br>2.80<br>4.02                       | U<br>-5.41<br>5.73<br>8.22                        | U<br>1.65<br>4.08<br>7.01                       |
|                                 |                                            |                                           |                  |           |           |            |             |                     | 10/1/2009                     | 11:30                    | Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                | U<br>-146<br>524<br>722                         | U<br>2.04<br>5.33<br>6.66                         | UI<br>0.00<br>6.03<br>9.37                       | U<br>-1.93<br>2.05<br>3.13                       | U<br>-0.682<br>2.07<br>3.49                      | U<br>4.96<br>17.6<br>29.4                         | U<br>5.50<br>13.5<br>23.2                        | U<br>0.473<br>1.71<br>2.96                       | U<br>0.997<br>2.16<br>3.75                       | UI<br>0.00<br>47.8<br>29.6                     | U<br>-0.564<br>1.83<br>3.02                          | U<br>-1.13<br>2.58<br>4.14                        | UI<br>0.00<br>12.1<br>17.2                       | U<br>8.42<br>18.2<br>32.1                        | U<br>-0.728<br>1.92<br>3.17                        | U<br>0.126<br>2.23<br>3.77                        | U<br>2.39<br>3.76<br>3.33                          | U<br>54.1<br>942<br>1520                        | U<br>138<br>178<br>178                         | U<br>-1.04<br>2.42<br>3.94                        | U<br>-3.37<br>18.5<br>25.9                       | U<br>138<br>178<br>178                        | U<br>0.699<br>2.12<br>3.75                       | U<br>-2.95<br>4.23<br>6.71                        | U<br>-0.199<br>3.42<br>5.72                     |
| Furr 16-22D                     | Separator                                  | 39.4166 -107.97512                        | SE SE            | 22        | 7S        | 95W        | 6th         | 16-22D              | 12/17/2008                    | 12:13                    | Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                | U<br>-315<br>648<br>1070                        | U<br>0.140<br>5.38<br>7.16                        | U<br>7.30<br>5.73<br>9.15                        | U<br>0.566<br>2.14<br>3.69                       | U<br>-0.0842<br>2.90<br>4.89                     | U<br>63.1<br>59.3<br>111                          | U<br>10.1<br>15.1<br>25.4                        | U<br>-2.03<br>2.06<br>3.16                       | U<br>3.15<br>3.29<br>6.06                        | 82.8<br>39.1<br>32.2                           | U<br>-1.15<br>2.59<br>3.66                           | U<br>-0.113<br>2.46<br>4.03                       | U<br>6.57<br>10.1<br>16.6                        | U<br>-6.7<br>19.6<br>32.5                        | U<br>-0.317<br>1.82<br>3.04                        | U<br>-2.18<br>2.18<br>3.16                        | U<br>-0.229<br>2.73<br>4.30                        | U<br>320<br>2430<br>2230                        | U<br>115<br>182<br>293                         | U<br>-0.121<br>3.01<br>4.98                       | U<br>10.6<br>20.6<br>23.5                        | U<br>115<br>182<br>293                        | U<br>0.554<br>2.54<br>4.38                       | U<br>-4.33<br>5.20<br>7.61                        | U<br>-0.501<br>4.21<br>7.01                     |
|                                 |                                            |                                           |                  |           |           |            |             |                     | 4/14/2009                     | 11:00                    | Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                | U<br>-190<br>240<br>357                         | U<br>0.756<br>4.68<br>7.16                        | UI<br>0.00<br>7.21<br>9.00                       | U<br>1.22<br>2.00<br>3.62                        | U<br>1.25<br>2.13<br>3.78                        | U<br>10.4<br>20.0<br>34.8                         | U<br>10.2<br>12.8<br>22.2                        | U<br>0.598<br>1.92<br>3.27                       | U<br>-1.38<br>2.84<br>3.64                       | U<br>27.8<br>47.5<br>32.3                      | U<br>0.421<br>2.04<br>3.44                           | U<br>-0.895<br>2.45<br>4.01                       | U<br>3.93<br>9.67<br>15.5                        | U<br>-21.9<br>21.7<br>31.0                       | U<br>2.41<br>1.99<br>3.65                          | U<br>0.825<br>1.91<br>3.41                        | U<br>0.916<br>2.61<br>4.26                         | U<br>910<br>5900<br>1170                        | U<br>-2.78<br>110<br>158                       | U<br>-0.26<br>2.50<br>4.22                        | U<br>1.04<br>17.0<br>23.8                        | U<br>-2.78<br>110<br>158                      | U<br>0.687<br>2.17<br>3.88                       | U<br>-6.48<br>5.04<br>7.36                        | U<br>0.509<br>3.95<br>6.59                      |
|                                 |                                            |                                           |                  |           |           |            |             |                     | 6/24/2009                     | 11:40                    | Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                | U<br>415<br>718<br>1270                         | U<br>0.247<br>5.19<br>6.93                        | 0.00<br>6.52<br>9.41                             | U<br>-0.416<br>2.05<br>3.37                      | U<br>-1.31<br>2.07<br>3.38                       | U<br>-2.3<br>21.6<br>35.0                         | U<br>1.70<br>13.8<br>23.0                        | U<br>-0.993<br>1.99<br>3.23                      | U<br>-0.866<br>2.15<br>3.48                      | U<br>33.1<br>42.0<br>39.0                      | U<br>1.40<br>1.95<br>3.52                            | U<br>-0.968<br>2.71<br>4.36                       | 0.00<br>13.4<br>18.5                             | U<br>1.56<br>16.6<br>28.7                        | U<br>-0.974<br>1.92<br>3.11                        | U<br>-1.45<br>2.05<br>3.12                        | U<br>3.03<br>4.48<br>4.78                          | U<br>504<br>3400<br>1970                        | U<br>-69.2<br>173<br>267                       | U<br>0.553<br>2.72<br>4.61                        | U<br>-2.75<br>19.0<br>25.9                       | U<br>-69.2<br>173<br>267                      | -0.959<br>2.20<br>3.31                           | U<br>-3.13<br>4.53<br>6.72                        | U<br>-4.78<br>4.59<br>6.11                      |
|                                 |                                            |                                           |                  |           |           |            |             |                     | 10/1/2009                     | 11.40                    | Result<br>Uncertainty (±)<br>MDC                                             | 171<br>531<br>942                               | 0.00<br>4.66<br>7.07                              | 0.00<br>7.03<br>9.57                             | -0.429<br>1.65<br>2.72                           | 0.815<br>2.18<br>3.42                            | -4.86<br>14.8<br>23.7                             | 7.85<br>12.6<br>21.9                             | -0.797<br>1.57<br>2.56                           | 1.53<br>1.86<br>3.41                             | 61.6<br>31.7<br>29.6                           | -0.54<br>1.72<br>2.87                                | -1.86<br>2.34<br>3.64                             | 5.78<br>10.4<br>16.5                             | -7.82<br>15.0<br>23.0                            | -2.73<br>1.88<br>2.84                              | -0.756<br>2.03<br>3.33                            | 1.69<br>2.97<br>3.84                               | 0.00<br>12500<br>1510                           | -42.3<br>154<br>209                            | -1.02<br>2.12<br>3.44                             | 0.285<br>12.7<br>21.1                            | -42.3<br>154<br>209                           | -0.0891<br>1.87<br>3.07                          | 0.989<br>4.14<br>6.18                             | 0.475<br>3.13<br>5.41                           |
| 22-9-16                         | Separator                                  | 39.4166 -107.97512                        | SE SE            | 22        | 7S        | 95W        | 6th         | 16-22D              | 6/24/2009                     | 12:50                    | Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                | U<br>-0.942<br>57.6<br>94.2                     | U<br>5.17<br>6.75<br>9.10                         | UI<br>0.00<br>7.63<br>11.2                       | U<br>0.182<br>2.48<br>4.27                       | U<br>-1.71<br>2.81<br>4.33                       | U<br>-19.8<br>27.3<br>42.5                        | U<br>-0.0838<br>13.4<br>22.6                     | U<br>0.0467<br>2.41<br>3.99                      | U<br>3.94<br>2.78<br>5.25                        | 62.6<br>44.7<br>34.4                           | U<br>-0.737<br>2.47<br>3.96                          | U<br>-1.41<br>3.07<br>4.98                        | UI<br>0.00<br>17.5<br>16.0                       | U<br>1.13<br>20.4<br>34.1                        | U<br>0.131<br>2.45<br>4.09                         | U<br>-2.2<br>2.86<br>4.24                         | U<br>1.37<br>4.60<br>3.75                          | U<br>-828<br>5300<br>837                        | U<br>-17.7<br>57.2<br>96.1                     | U<br>-1.27<br>2.96<br>4.87                        | U<br>-21.5<br>19.1<br>24.0                       | U<br>-17.7<br>57.2<br>96.1                    | U<br>0.0911<br>3.03<br>5.16                      | U<br>-5.15<br>6.71<br>9.02                        | U<br>5.90<br>4.85<br>8.95                       |
| Field Blank                     | N/A                                        | N/A N/A                                   | N/A              | N/A       | N/A       | N/A        | N/A         | Field Blank         | 6/24/2009                     | 12:05                    | Qualifier<br>Result<br>Uncertainty (±)<br>MDC                                | U<br>-309<br>329<br>492                         | U<br>0.613<br>4.61<br>7.21                        | U<br>-0.377<br>4.57<br>7.46                      | U<br>-0.0957<br>1.81<br>3.07                     | U<br>-1.74<br>2.71<br>3.68                       | U<br>-23.8<br>20.1<br>29.5                        | U<br>6.22<br>14.5<br>24.9                        | U<br>-0.303<br>1.73<br>2.80                      | U<br>2.83<br>2.26<br>4.13                        | UI<br>0.00<br>27.1<br>29.0                     | U<br>-0.444<br>1.98<br>3.20                          | U<br>-0.0827<br>2.37<br>3.99                      | U<br>-8.32<br>8.01<br>11.9                       | U<br>1.73<br>16.1<br>27.0                        | U<br>-0.887<br>1.74<br>2.73                        | U<br>0.212<br>1.87<br>3.16                        | U<br>1.56<br>3.47<br>4.00                          | UI<br>0.00<br>10600<br>1350                     | U<br>15.5<br>128<br>152                        | U<br>-0.823<br>2.37<br>3.92                       | U<br>-0.877<br>18.5<br>26.0                      | U<br>15.5<br>128<br>152                       | U<br>-0.723<br>2.14<br>3.41                      | U<br>-0.977<br>3.71<br>6.02                       | U<br>3.86<br>3.51<br>6.38                       |

Samples were all analyzed by GEL Laboratories, LLC in Charleston, SC

 Four Rows:

 1) Qualifier
 The laboratory data qualifers are designated by one or two letters to provide information about the reported results.

 2) Result
 Results are the level of activity reported for the individual produced water sample.

 3) Uncertainty (The margin of error, or range of activity, when added to the result.

 4) MDC
 The laboratory minimum detectable concentration (MDC) for the analytical method. If the result is less than the reporting limits the radionuclide is reported as 'not detected' (U).

The qualifiers used in the laboratory reports are listed below: U - Result is less than the sample specific Minimum Detectable Concentration (MDC) or Minimum Detectable Activity (MDA), Method Detection Limit (MDL), Limits of Detection (LOD), total propogated uncertainty (TPU), or laboratory reporting limit (RL). UI - Gamma Spectroscopy Uncertain Identification NS - Not Sampled (Furr 16-22B was shut-in on April 14, 2009 and was not sampled) NA - Not Analyzed N/A - Not Applicable

Note: Values shown in blue represent a detection. The gamma emitting radionuclides that were detected are naturally occurring potassium-40 4<sup>04</sup>K), lead-212 (<sup>212</sup>Pb), lead-214 (<sup>214</sup>Pb), and bismuth-214 (<sup>214</sup>Bi) in a few of the samples.



#### Furr 16-22B & Furr 16-22D Quarterly Sampling - Garfield County Colorado



DATE:



APPENDIX A ISOTECH LABORATORIES INC. SAMPLE RESULTS



# ANALYSIS REPORT

| Lab #:                        | 172337         |                | Job          | o #: 12055 |         |
|-------------------------------|----------------|----------------|--------------|------------|---------|
| Sample Name/Number:           | 16-22 D        |                |              |            |         |
| Company:                      | Cordilleran, D | Div. of Olsson | Assoc.       |            |         |
| Date Sampled:                 | 10/01/2009     |                |              |            |         |
| Container:                    | LP Tank and    | 1L Plastic Bo  | ttle         |            |         |
| Field/Site Name:              | Laramie II - R | ulison Area V  | Vell Mtrg    |            |         |
| Location:                     | Furr Hagen     |                | -            |            |         |
| Formation/Depth:              | Ū.             |                |              |            |         |
| Sampling Point:               |                |                |              |            |         |
| Date Received:                | 10/02/2009     | Г              | ate Reported | · 11/11/2  | 2009    |
|                               | 10/02/2000     |                |              |            | -000    |
| Component                     | Chemical       | Delta C-13     | Delta D      | C-14 conc. | Tritium |
|                               | mol. %         | per mil        | per mil      | рМС        | TU      |
| Carbon Monoxide               | nd             |                |              |            |         |
| Hydrogen Sulfide              | nd             |                |              |            |         |
| Helium                        | 0.0028         |                |              |            |         |
| Hydrogen                      | 0.0033         |                |              |            |         |
| Argon                         | na             |                |              |            |         |
| Oxygen + Argon                | 0.008          |                |              |            |         |
| Nitrogen                      | 0.050          |                |              |            |         |
| Carbon Dioxide                | 3.69           |                |              |            |         |
| Methane                       | 88.42          |                |              | 0.4 ± 0.1  | < 10.0  |
| Ethane                        | 5.35           |                |              |            |         |
| Ethylene                      | nd             |                |              |            |         |
| Propane                       | 1.50           |                |              |            |         |
| Iso-butane                    | 0.314          |                |              |            |         |
| N-butane                      | 0.270          |                |              |            |         |
| Iso-pentane                   | 0.105          |                |              |            |         |
| N-pentane                     | 0.0716         |                |              |            |         |
| Hexanes +                     | 0.218          |                |              |            |         |
| Total BTU/cu.ft. dry @ 60de   | g F & 14.7psia | a, calculated: | 1067         |            |         |
| Specific gravity, calculated: | 0.647          |                |              |            |         |

nd = not detected. na = not analyzed. Isotopic composition of carbon is relative to VPDB. Isotopic composition of hydrogen is relative to VSMOW. Calculations for BTU and specific gravity per ASTM D3588. Chemical compositions are normalized to 100%. Mol. % is approximately equal to vol. % Chemical analysis based on standards accurate to within 2%


## ANALYSIS REPORT

| Lab #:                        | 172338         |                | Jo            | b # | : 12055   |         |
|-------------------------------|----------------|----------------|---------------|-----|-----------|---------|
| Sample Name/Number:           | 16-22 B        |                |               |     |           |         |
| Company:                      | Cordilleran, D | viv. of Olsson | Assoc.        |     |           |         |
| Date Sampled:                 | 10/01/2009     |                |               |     |           |         |
| Container:                    | LP Tank and    | 1L Plastic Bo  | ottle         |     |           |         |
| Field/Site Name:              | Laramie II - R | ulison Area V  | Vell Mtrg     |     |           |         |
| Location:                     | Furr Hagen     |                | -             |     |           |         |
| Formation/Depth:              | -              |                |               |     |           |         |
| Sampling Point:               |                |                |               |     |           |         |
| Date Received:                | 10/02/2009     | Γ              | Date Reported | d:  | 11/11/2   | 009     |
|                               |                |                |               |     |           |         |
| Component                     | Chemical       | Delta C-13     | Delta D       | (   | C-14 conc | Tritium |
| Component                     | mol %          | per mil        | per mil       |     | nMC       | TU      |
| Carbon Monoxide               | nd             |                |               | -   |           |         |
| Hydrogen Sulfide              | nd             |                |               |     |           |         |
| Helium                        | 0.0030         |                |               |     |           |         |
| Hydrogen                      | 0.0026         |                |               |     |           |         |
| Argon                         | na             |                |               |     |           |         |
| Oxygen + Argon                | 0.006          |                |               |     |           |         |
| Nitrogen                      | 0.056          |                |               |     |           |         |
| Carbon Dioxide                | 3.58           |                |               |     |           |         |
| Methane                       | 88.86          |                |               | <   | 0.4       | < 10.0  |
| Ethane                        | 5.04           |                |               |     |           |         |
| Ethylene                      | nd             |                |               |     |           |         |
| Propane                       | 1.47           |                |               |     |           |         |
| Iso-butane                    | 0.340          |                |               |     |           |         |
| N-butane                      | 0.292          |                |               |     |           |         |
| Iso-pentane                   | 0.0830         |                |               |     |           |         |
| N-pentane                     | 0.0574         |                |               |     |           |         |
| Hexanes +                     | 0.211          |                |               |     |           |         |
| Total BTU/cu.ft. drv @ 60de   | g F & 14.7psia | . calculated   | 1065          |     |           |         |
| Specific gravity, calculated: | 0.644          | ,              |               |     |           |         |

nd = not detected. na = not analyzed. Isotopic composition of carbon is relative to VPDB. Isotopic composition of hydrogen is relative to VSMOW. Calculations for BTU and specific gravity per ASTM D3588. Chemical compositions are normalized to 100%. Mol. % is approximately equal to vol. % Chemical analysis based on standards accurate to within 2%



ANALYSIS REPORT

# Water Analysis

| Lab Number:              | 172337     |               |             | Job Number: | 12055      |
|--------------------------|------------|---------------|-------------|-------------|------------|
| Submitter Sample Name:   | 16-22 D    |               |             |             |            |
| Submitter Sample ID:     |            |               |             |             |            |
| Submitter Job #:         |            |               |             |             |            |
| Company:                 | Cordillera | an, Div. of ( | Olsson As   | SOC.        |            |
| Field or Site:           | Laramie I  | II - Rulison  | Area We     | ll Mtrg     |            |
| Location:                | Furr Hag   | en            |             |             |            |
| Depth/Formation:         |            |               |             |             |            |
| Container Type:          | LP Tank    | and 1L Pla    | stic Bottle | 9           |            |
| Sample Collected:        | 10/01/200  | 09            | Results     | Reported:   | 11/11/2009 |
| Delta D of water         |            | na            |             |             |            |
| Delta O-18 of water      |            | na            |             |             |            |
| Tritium content of water |            | < 10.0 T      | U           |             |            |
| Delta C-13 of DIC        |            | na            |             |             |            |
| Carbon-14 content of DIC |            | na            |             |             |            |
| Delta N-15 of nitrate    |            | na            |             |             |            |
| Delta O-18 of nitrate    |            | na            |             |             |            |
| Delta S-34 of sulfate    |            | na            |             |             |            |
| Delta O-18 of sulfate    |            | na            |             |             |            |
|                          |            |               |             |             |            |

Remarks:



ANALYSIS REPORT

# Water Analysis

| Lab Number:              | 172338     |               |             | Job Number: | 12055      |
|--------------------------|------------|---------------|-------------|-------------|------------|
| Submitter Sample Name:   | 16-22 B    |               |             |             |            |
| Submitter Sample ID:     |            |               |             |             |            |
| Submitter Job #:         |            |               |             |             |            |
| Company:                 | Cordillera | an, Div. of ( | Olsson As   | SOC.        |            |
| Field or Site:           | Laramie I  | II - Rulison  | Area We     | I Mtrg      |            |
| Location:                | Furr Hag   | en            |             |             |            |
| Depth/Formation:         |            |               |             |             |            |
| Container Type:          | LP Tank    | and 1L Pla    | stic Bottle |             |            |
| Sample Collected:        | 10/01/200  | 09            | Results     | Reported:   | 11/11/2009 |
| Delta D of water         |            | na            |             |             |            |
| Delta O-18 of water      |            | na            |             |             |            |
| Tritium content of water |            | < 10.0 T      | U           |             |            |
| Delta C-13 of DIC        |            | na            |             |             |            |
| Carbon-14 content of DIC |            | na            |             |             |            |
| Delta N-15 of nitrate    |            | na            |             |             |            |
| Delta O-18 of nitrate    |            | na            |             |             |            |
| Delta S-34 of sulfate    |            | na            |             |             |            |
| Delta O-18 of sulfate    |            | na            |             |             |            |
|                          |            |               |             |             |            |

Remarks:

APPENDIX B GEL LABORATORIES LLC SAMPLE RESULTS



a member of The GEL Group INC



P 843.556.8171 F 843.766.1178

www.gel.com

October 19, 2009

Mr. James Hix Olsson Associates 4690 Table Mountain Drive Suite 200 Golden, Colorado 80403

Re: Olsson Associates - Rulison Work Order: 238218

Dear Mr. Hix:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 02, 2009. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4297.

Sincerely,

Amarla Thoses

Amanda Rasco Project Manager

Purchase Order: Signed Quote Enclosures

Page 1 of 22

problem solved

| Page:   of  <br>Proiect #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CFI                                                         | Chain                               |                             | Instar                        | a di a                   | 4 V P              |                      |                      |                               | 490          |             | JEL Laboratori                   | es, LLC             |                                 |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|-----------------------------|-------------------------------|--------------------------|--------------------|----------------------|----------------------|-------------------------------|--------------|-------------|----------------------------------|---------------------|---------------------------------|-------|
| GEL Quote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                     | 5                           | 101cm                         | Ly all                   |                    | מוא ני               |                      | nhavi                         |              | <u></u>     | U+U Savage RC                    | 29407               |                                 |       |
| COC Number <sup>(1)</sup> :<br>PCNumber:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEL Work Order                                              | Number:                             |                             |                               |                          |                    | 23                   | 8218                 | 20                            | :            |             | hone: (843) 55<br>ax: (843) 766- | 6-8171<br>1178      |                                 |       |
| COMPATES - JA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MES HIX                                                     | Phone                               | °#:<br>303.                 | 237.20                        | 72<br>2                  |                    | Sar                  | nple An:             | alysis Re                     | quested      | (5) (Fill i | the number of                    | of contain          | ers for each test)              |       |
| Project/Site Name: LARAMIE I - RULISOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N AREA WELL MO                                              | L TORING                            | 303.                        | 237.24                        | 59                       | Should t           | iners<br>iners       |                      |                               |              |             |                                  |                     | < Preservative Typ              | e (6) |
| Address: 4690 TADIE MOUNTAIN DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . Ste 200 (cor                                              | DEN, CO                             | 80403                       |                               | •                        | sample<br>consider | sinos i              | 06- <i>4</i>         |                               |              |             |                                  |                     |                                 |       |
| Collected by: T. DOBRANKS ICY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Send Results To: J                                          | AMES HI                             | x                           |                               |                          |                    | ber of               | C/P                  | 9                             |              |             |                                  |                     | Comments<br>Note: extra samp    | e is  |
| Sample ID<br>* For composites - indicate start and stop date/ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *Date Col                                                   | lected *Ti<br>(Milli<br>(hhr        | ne<br>cted QC<br>ary)       | Code Field                    | (1) Sample<br>Matrix (1) | avitosoibs.        | unu leto.<br>        | мад, 8Д.<br>ЮТ, 1927 | 212                           |              |             |                                  |                     | required for sam<br>specific QC | ple   |
| 16-228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/1/6                                                      | 94 113                              |                             | 2                             | 3                        | ж<br>И             | ר<br>ר<br>ר          | ×<br>7×              |                               |              |             |                                  |                     |                                 |       |
| 16-22D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/1/01                                                      | 9 114                               | 2                           | 7                             | 3                        |                    | 3                    | ×                    |                               |              |             |                                  |                     |                                 |       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                           |                                     |                             |                               |                          |                    |                      |                      |                               |              |             |                                  |                     |                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                     |                             |                               |                          |                    |                      |                      |                               |              |             |                                  |                     |                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                     |                             |                               |                          |                    |                      |                      |                               |              |             |                                  |                     |                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                     |                             | $\left  \right\rangle$        |                          | $\uparrow$         |                      |                      |                               |              |             |                                  |                     |                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | $\mathbb{P}$                        | $\mathbb{D}$                | $\mathbb{N}$                  |                          | K                  | $\parallel$          |                      |                               |              |             |                                  |                     |                                 | T     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<br>                                                       |                                     |                             |                               |                          |                    |                      |                      | -                             | /            |             |                                  |                     |                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                     |                             |                               |                          |                    |                      |                      |                               |              |             |                                  |                     |                                 | ۰.    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |                                     |                             |                               |                          |                    |                      |                      |                               |              |             |                                  |                     |                                 |       |
| TAT Requested: Normal: 🕊 Rush: Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ecify: (Subject to                                          | Surcharge) Fa                       | ıx Results                  | ۲×                            |                          | No                 | Ū.                   | rcle Deliv           | erable: C                     | ofA /        | QC Sumr     | iary / Level                     | l / Level           | 12 / Level 3 / Lev              | el 4  |
| Remarks: Are there any known hazards ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | plicable to these san                                       | nples? If so                        | please                      | list the h                    | azards                   |                    |                      |                      |                               |              |             | <u>Sam</u><br>Eas                | ple Collec<br>stern | tion Time Zone<br>Pacific       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                     |                             |                               |                          |                    |                      |                      |                               |              |             | ALC.                             | ntral               | Other                           |       |
| Chair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n of Custody Signati                                        | ıres                                |                             |                               |                          |                    |                      |                      |                               | Sample       | Shipping    | and Delivery                     | y Details           |                                 |       |
| Relinquished By (Signed) Date Of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Regeived                                                    | l by (signed)                       | Date                        | Time (                        | 0                        | <u>_</u>           | EL PM:               |                      |                               |              |             |                                  |                     |                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600 11D                                                     |                                     | 0000                        | <u>109(a</u>                  | 100                      | Ŭ<br>V             | thod of SI           | nipment:             |                               |              |             | ate Shipped:                     |                     |                                 |       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                           | <u>۱</u>                            |                             |                               |                          | Ai                 | bill #:              |                      |                               |              |             |                                  |                     |                                 |       |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                           |                                     |                             |                               |                          | Ai                 | bill#:               |                      |                               |              |             |                                  |                     |                                 |       |
| <ol> <li>Chain of Custody Number = Client Determined</li> <li>QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l Duplicate, EB = Equipment                                 | Blank, MS = M <sub>8</sub>          | ttrix Spike S               | ample, MSD                    | = Matrix Spil            | te Duplicate       | Sample, G            | = Grab, C =          | <ul> <li>Composite</li> </ul> |              | -           |                                  | For                 | Lab Receiving Use On            | ly .  |
| <ol> <li>Field Filtered: For liquid matrices, indicate with a - Y - for ye</li> <li>Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s the sample was field filterec<br>=Surface Water, WW=Waste | l or - N - for sam<br>Water, W=Wate | le was not i<br>r, SO=Soil, | ield filtered.<br>SD=Sediment | t, SL=Sludge.            | SS=Solid V         | ∕aste, <b>0</b> =0   | il, F=Filter,        | P=Wipe, U:                    | =Urine, F=F  | ecal. N=Nas | -                                |                     | Current Seal Intact?            |       |
| <ol> <li>Sample Analysis Requested: Analytical method requested (i.e.</li> <li>Demonstrative Trans. HA = Euclerchicals, Acid NI = Nitric Acid</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 8260B, 6010B/7470A) and<br>EU = Sodium Hudrovida S        | number of contai                    | ters provide                | d for each (i.e               | . 8260B - 3,             | 6010B/7470         | A - 1).<br>Thisentes |                      |                               | ,            |             |                                  |                     | Cooler Temp:                    |       |
| HITLE THE STORE AND A LONG AND AND A LONG AND AND A LONG AND A LONG AND A LONG AND | = LABORATORY                                                | NAU AIMINO - 4                      | VEL                         | LOW = F                       | A - Revails, 1           |                    | NIA                  | e, il no pro         | ENT (ENT                      | 00e0 - Icave | tield Diath |                                  |                     |                                 | 7     |

GEL Laboratories LLC

,

# SAMPLE RECEIPT & REVIEW FORM

| Clie | nt: (DRD                                                                |               |              |               | SDG/ARCOC/Work Order: 238218                                                                                                |
|------|-------------------------------------------------------------------------|---------------|--------------|---------------|-----------------------------------------------------------------------------------------------------------------------------|
| Rec  | eived By: H. Taylor                                                     |               |              |               | Date Received: 0200709                                                                                                      |
| Sus  | pected Hazard Information                                               | Yes           | No           | *If (<br>Radi | Counts $> x2$ area background on samples not marked "radioactive", contact the ation Safety Group of further investigation. |
| CO   | C/Samples marked as radioactive?                                        |               | V,           | Max           | imum Counts Observed*: (OCPM                                                                                                |
| Clas | sified Radioactive II or III by RSO?                                    |               | V.           |               | 1                                                                                                                           |
| CO   | C/Samples marked containing PCBs?                                       |               | V,           |               |                                                                                                                             |
| Ship | ped as a DOT Hazardous?                                                 |               | $\downarrow$ | Haza          | ard Class Shipped: UN#:                                                                                                     |
| Sam  | ples identified as Foreign Soil?                                        |               | V            |               |                                                                                                                             |
|      | Sample Receipt Criteria                                                 | Yes           | NA           | No            | Comments/Qualifiers (Required for Non-Conforming Items)                                                                     |
| 1    | Shipping containers received intact and sealed?                         | $\checkmark$  |              |               | Circle Applicable:<br>seals broken damaged container leaking container other (describe)                                     |
| 2    | Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$ ? | $\overline{}$ |              |               | Preservation Method:<br>ice bags blue ice dry ice none other (describe)                                                     |
| 3    | Chain of custody documents included with shipment?                      | $\leq$        |              |               |                                                                                                                             |
| 4    | Sample containers intact and sealed?                                    | $\checkmark$  |              |               | Circle Applicable:<br>seals broken damaged container leaking container other (describe)                                     |
| 5    | Samples requiring chemical preservation at proper pH?                   |               |              |               | Sample ID's, containers affected and observed pH:<br>If Preservation added, Lot#:                                           |
| 6    | VOA vials free of headspace (defined as < 6mm bubble)?                  |               | $\checkmark$ |               | Sample ID's and containers affected:                                                                                        |
| 7    | Are Encore containers present?                                          |               |              | $\checkmark$  | (If yes, immediately deliver to Volatiles laboratory)                                                                       |
| 8    | Samples received within holding time?                                   |               |              |               | Id's and tests affected:                                                                                                    |
| 9    | Sample ID's on COC match ID's on bottles?                               | $\checkmark$  |              |               | Sample ID's and containers affected:                                                                                        |
| 10   | Date & time on COC match date & time on bottles?                        | $\checkmark$  |              |               | Sample ID's affected:                                                                                                       |
| 11   | Number of containers received match number indicated on COC?            | $\checkmark$  |              |               | Sample ID's affected:                                                                                                       |
| 12   | COC form is properly signed in relinquished/received sections?          | $\checkmark$  |              |               |                                                                                                                             |
| Com  | ments:<br>9660                                                          | ĊЧ            | f51          | 3             | 545 - 3°                                                                                                                    |

A

Date 10/2/09

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### Certificate of Analysis Report for

#### CORD001 Olsson Associates

#### Client SDG: 238218 GEL Work Order: 238218

#### The Qualifiers in this report are defined as follows:

- A quality control analyte recovery is outside of specified acceptance criteria \*
- \*\* Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the detection limit.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Amanda Rasco.

Amon la Thoses Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# **Certificate of Analysis**

| Company<br>Address : | : Olsson Associa<br>4690 Table Mo<br>Suite 200                                      | ates<br>ountain Drive | ;                                                                  |       |      |                |                |                      |            |       |        |
|----------------------|-------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------|-------|------|----------------|----------------|----------------------|------------|-------|--------|
| Contosti             | Golden, Colora                                                                      | ado 80403             |                                                                    |       |      |                | R              | eport Date: Oct      | ober 19, 2 | 009   |        |
| Contact:             | Mr. James Hix                                                                       |                       |                                                                    |       |      |                |                |                      |            |       |        |
| Project:             | Olsson Associ                                                                       | ates – Ruliso         | n                                                                  |       |      |                |                |                      |            |       |        |
|                      | Client Sampl<br>Sample ID:<br>Matrix:<br>Collect Date<br>Receive Date<br>Collector: | le ID:<br>:<br>::     | 16–22B<br>238218001<br>Water<br>01–OCT–09 1<br>02–OCT–09<br>Client | 11:30 |      | Proje<br>Clier | ect:<br>nt ID: | CORD00100<br>CORD001 |            |       |        |
| Parameter            | Qualifier                                                                           | Result                | Uncertainty                                                        | DL    | RL   | Units          | DF             | AnalystDate          | Time H     | Batch | Method |
| Rad Gamma Spec Ana   | alysis                                                                              |                       |                                                                    |       |      |                |                |                      |            |       |        |
| Gammaspec, Gamma, I  | Liquid "As Received                                                                 | d''                   |                                                                    |       |      |                |                |                      |            |       |        |
| Actinium-228         | UI                                                                                  | 0.00                  | +/-12.1                                                            | 17.2  |      | pCi/L          |                | KXG3 10/06/09        | 2249 909   | 9163  | 1      |
| Americium-241        | U                                                                                   | 7.60                  | +/-14.4                                                            | 23.2  |      | pCi/L          |                |                      |            |       |        |
| Antimony-124         | U                                                                                   | 1.67                  | +/-4.83                                                            | 8.57  |      | pCi/L          |                |                      |            |       |        |
| Antimony-125         | U                                                                                   | 5.38                  | +/-5.26                                                            | 9.33  |      | pCi/L          |                |                      |            |       |        |
| Barium-133           | U                                                                                   | 0.881                 | +/-2.73                                                            | 4.36  |      | pCi/L          |                |                      |            |       |        |
| Barium-140           | U                                                                                   | 0.820                 | +/-8.67                                                            | 14.3  |      | pCi/L          |                |                      |            |       |        |
| Beryllium-7          | U                                                                                   | -0.107                | +/-17.2                                                            | 28.4  |      | pCi/L          |                |                      |            |       |        |
| Bismuth-212          | U                                                                                   | 7.16                  | +/-15.6                                                            | 27.2  |      | pCi/L          |                |                      |            |       |        |
| Bismuth-214          |                                                                                     | 19.5                  | +/-8.70                                                            | 6.38  |      | pCi/L          |                |                      |            |       |        |
| Cerium-139           | U                                                                                   | -1.97                 | +/-1.95                                                            | 3.09  |      | pCi/L          |                |                      |            |       |        |
| Cerium-141           | U                                                                                   | 1.36                  | +/-3.61                                                            | 6.10  |      | pCi/L          |                |                      |            |       |        |
| Cerium-144           | U                                                                                   | 3.43                  | +/-14.1                                                            | 23.8  |      | pCi/L          |                |                      |            |       |        |
| Cesium-134           | U                                                                                   | 0.565                 | +/-2.50                                                            | 4.26  |      | pCi/L          |                |                      |            |       |        |
| Cesium-136           | U                                                                                   | -0.589                | +/-3.40                                                            | 5.73  |      | pCi/L          |                |                      |            |       |        |
| Cesium-137           | U                                                                                   | 0.433                 | +/-2.13                                                            | 3.67  | 5.00 | pCi/L          |                |                      |            |       |        |
| Chromium-51          | U                                                                                   | -5.4                  | +/-18.3                                                            | 30.6  |      | pCi/L          |                |                      |            |       |        |
| Cobalt-56            | U                                                                                   | 0.180                 | +/-1.97                                                            | 3.30  |      | pCi/L          |                |                      |            |       |        |
| Cobalt-57            | U                                                                                   | 2.67                  | +/-1.73                                                            | 3.07  |      | pCi/L          |                |                      |            |       |        |
| Cobalt-58            | U                                                                                   | -0.88                 | +/-2.03                                                            | 3.27  |      | pCi/L          |                |                      |            |       |        |
| Cobalt-60            | U                                                                                   | 1.32                  | +/-2.24                                                            | 3.98  |      | pCi/L          |                |                      |            |       |        |
| Europium-152         | U                                                                                   | -3.69                 | +/-5.97                                                            | 9.75  |      | pCi/L          |                |                      |            |       |        |
| Europium-154         | U                                                                                   | 0.355                 | +/-6.25                                                            | 10.6  |      | pCi/L          |                |                      |            |       |        |
| Europium-155         | U                                                                                   | 0.0159                | +/-7.73                                                            | 13.1  |      | pCi/L          |                |                      |            |       |        |
| Iridium-192          | U                                                                                   | 0.730                 | +/-1.94                                                            | 3.36  |      | pCi/L          |                |                      |            |       |        |
| Iron-59              | U                                                                                   | 1.38                  | +/-4.12                                                            | 7.24  |      | pCi/L          |                |                      |            |       |        |
| Krypton-85           | U                                                                                   | 706                   | +/-496                                                             | 797   |      | pCi/L          |                |                      |            |       |        |
| Lead-210             | U                                                                                   | -146                  | +/-524                                                             | 722   |      | pCi/L          |                |                      |            |       |        |
| Lead-212             | U                                                                                   | 2.04                  | +/-5.33                                                            | 6.66  |      | pCi/L          |                |                      |            |       |        |
| Lead-214             | UI                                                                                  | 0.00                  | +/-6.03                                                            | 9.37  |      | pCi/L          |                |                      |            |       |        |
| Manganese-54         | U                                                                                   | -1.93                 | +/-2.05                                                            | 3.13  |      | pCi/L          |                |                      |            |       |        |
| Mercury-203          | U                                                                                   | -0.682                | +/-2.07                                                            | 3.49  |      | pCi/L          |                |                      |            |       |        |
| Neodymium-147        | U                                                                                   | 4.96                  | +/-17.6                                                            | 29.4  |      | pCi/L          |                |                      |            |       |        |
| Neptunium-239        | U                                                                                   | 5.50                  | +/-13.5                                                            | 23.2  |      | pCi/L          |                |                      |            |       |        |
| Niobium–94           | U                                                                                   | 0.473                 | +/-1.71                                                            | 2.96  |      | pCi/L          |                |                      |            |       |        |
| Niobium–95           | U                                                                                   | 0.997                 | +/-2.16                                                            | 3.75  |      | pCi/L          |                |                      |            |       |        |
| Potassium-40         | UI                                                                                  | 0.00                  | +/-47.8                                                            | 29.6  |      | pCi/L          |                |                      |            |       |        |
| Promethium-144       | U                                                                                   | -0.564                | +/-1.83                                                            | 3.02  |      | pCi/L          |                |                      |            |       |        |
| Promethium-146       | U                                                                                   | -1.13                 | +/-2.58                                                            | 4.14  |      | pCi/L          |                |                      |            |       |        |

Page 5 of 22

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: October 19, 2009

## **Certificate of Analysis**

| Project:  | Olsson Associates – Rulison |
|-----------|-----------------------------|
| Contact:  | Mr. James Hix               |
|           | Golden, Colorado 80403      |
|           | Suite 200                   |
| Address : | 4690 Table Mountain Drive   |
| Company : | Olsson Associates           |

~ 1

Client Sample ID: 16-22B Project: CORD00100 Sample ID: Client ID: CORD001 238218001 Parameter Qualifier Result Uncertainty DL RL Units DF AnalystDate Time Batch Method **Rad Gamma Spec Analysis** Gammaspec, Gamma, Liquid "As Received" Radium-228 UI 0.00 +/-12.1 17.2 pCi/L Ruthenium-106 U 8.42 +/-18.2 32.1 pCi/L Silver-110m U +/-1.92 3.17 pCi/L -0.728Sodium-22 U 0.126 +/-2.23 3.77 pCi/L Thallium-208 U 2.39 +/-3.76 3.33 pCi/L Thorium-230 +/-9421520 U 54.1 pCi/L Thorium-234 U 138 +/-178 178 pCi/L Tin-113 U -1.04+/-2.42 3.94 pCi/L Uranium-235 -3.37 +/-18.5 25.9 pCi/L U Uranium-238 U 138 +/-178 178 pCi/L Yttrium-88 U 0.699 +/-2.12 3.75 pCi/L Zinc-65 U -2.95 +/-4.23 6.71 pCi/L Zirconium-95 U -0.199+/-3.42 5.72 pCi/L **Rad Gas Flow Proportional Counting** GFPC, Chlorine-36 liquid "As Received" Chlorine-36 37.1 +/-135 234 100 U pCi/L DXM 10/10/09 2318 906787 2 2 GFPC, Gross A/B, liquid "As Received" 15.9 5.00 Alpha 26.0 +/-11.5 pCi/L DXF3 10/14/09 1240 909085 3 Beta 11.1 +/-10.918.3 5.00 pCi/L U GFPC, Sr90, liquid "As Received" Strontium-90 U 0.103 +/-0.785 1.44 2.00 pCi/L JXR1 10/15/09 2235 909097 4 **Rad Liquid Scintillation Analysis** Liquid Scint Tc99, Liquid "As Received" Technetium-99 4.47 +/-27.2 46.8 50.0 AXW 10/13/09 1116 909218 5 U pCi/L 2 **Rad Total Uranium** KPA, Total U, Liquid "As Received" Total Uranium +/-0.01610.928 1.00 BXF1 10/07/09 1310 909268 U 0.0175 ug/L 6

| The following A | nalytical Methods were performed    |                  |  |
|-----------------|-------------------------------------|------------------|--|
| Method          | Description                         | Analyst Comments |  |
| 1               | EPA 901.1                           |                  |  |
| 2               | GL-RAD-A-033                        |                  |  |
| 3               | EPA 900.0                           |                  |  |
| 4               | EPA 905.0 Modified                  |                  |  |
| 5               | DOE EML HASL-300, Tc-02-RC Modified |                  |  |
| 6               | ASTM D 5174                         |                  |  |
| Pag             | e 6 of 22                           |                  |  |

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# **Certificate of Analysis**

| Company :<br>Address :<br>Contact: | Olsson Associate<br>4690 Table Mour<br>Suite 200<br>Golden, Colorad<br>Mr. James Hix | ntain Drive<br>0 80403 |                     |      |        |                | R            | eport Date: Oct      | tober 19, | 2009         |
|------------------------------------|--------------------------------------------------------------------------------------|------------------------|---------------------|------|--------|----------------|--------------|----------------------|-----------|--------------|
| Project:                           | Olsson Associat                                                                      | es – Ruliso            | n                   |      |        |                |              |                      |           |              |
|                                    | Client Sample<br>Sample ID:                                                          | ID:                    | 16–22B<br>238218001 |      |        | Proje<br>Clien | ct:<br>t ID: | CORD00100<br>CORD001 |           |              |
| Parameter                          | Qualifier                                                                            | Result                 | Uncertainty         | DL   | RL     | Units          | DF           | AnalystDate          | Time      | Batch Method |
| Surrogate/Tracer recover           | ry Test                                                                              |                        |                     |      | Result | Nomi           | nal F        | Recovery%            | Accepta   | able Limits  |
| Potassium Chloride Carrie          | r GFPC, Ch                                                                           | lorine–36 l            | iquid "As Recei     | ved" |        |                |              | 98.1                 | (259      | %-125%)      |
| Strontium Carrier                  | GFPC, Sr                                                                             | 0, liquid ".           | As Received"        |      |        |                |              | 57.1                 | (259      | %-125%)      |
| Technetium–99m Tracer              | Liquid Sci                                                                           | nt Tc99, Li            | iquid "As Receiv    | /ed" |        |                |              | 78.6                 | (159      | %–125%)      |

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# **Certificate of Analysis**

| Coi<br>Ade<br>Coi        | mpany :<br>dress :<br>ntact: | Olsson Associa<br>4690 Table Mo<br>Suite 200<br>Golden, Colora<br>Mr. James Hix       | tes<br>untain Drive<br>do 80403 | •                                                                  |                           |      |                | R              | eport Date: Oct      | ober 19, | 2009  |        |
|--------------------------|------------------------------|---------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|---------------------------|------|----------------|----------------|----------------------|----------|-------|--------|
| Pro                      | oject:                       | Olsson Associa                                                                        | ates – Rulis                    | on                                                                 |                           |      |                |                |                      |          |       |        |
|                          |                              | Client Sample<br>Sample ID:<br>Matrix:<br>Collect Date:<br>Receive Date<br>Collector: | e ID:<br>:                      | 16–22D<br>238218002<br>Water<br>01–OCT–09 1<br>02–OCT–09<br>Client | 1:40                      |      | Proi<br>Clie   | ect:<br>nt ID: | CORD00100<br>CORD001 |          |       |        |
| Parameter                |                              | Qualifier                                                                             | Result                          | Uncertainty                                                        | DL                        | RL   | Units          | DF             | AnalystDate          | Time     | Batch | Method |
| Rad Gamma Sp             | ec Analy                     | sis                                                                                   |                                 |                                                                    |                           |      |                |                |                      |          |       |        |
| Gammaspec, Gar           | mma, Liqi                    | uid "As Receivea                                                                      | l''                             |                                                                    |                           |      |                |                |                      |          |       |        |
| Actinium-228             |                              | U                                                                                     | 5.78                            | +/-10.4                                                            | 16.5                      |      | pCi/L          |                | KXG3 10/06/09        | 2250 9   | 09163 | 1      |
| Americium-241            |                              | U                                                                                     | -2.63                           | +/-14.3                                                            | 24.5                      |      | pCi/L          |                |                      |          |       |        |
| Antimony-124             |                              | U                                                                                     | -4.23                           | +/-4.09                                                            | 5.50                      |      | pCi/L          |                |                      |          |       |        |
| Antimony-125             |                              | U                                                                                     | 0.697                           | +/-4.95                                                            | 8.41                      |      | pCi/L          |                |                      |          |       |        |
| Barium-133               |                              | U                                                                                     | -3.35                           | +/-2.73                                                            | 3.56                      |      | pCi/L          |                |                      |          |       |        |
| Barium-140               |                              | U                                                                                     | 3.20                            | +/-7.31                                                            | 12.5                      |      | pCi/L          |                |                      |          |       |        |
| Beryllium-7              |                              | U                                                                                     | 9.60                            | +/-14.8                                                            | 26.0                      |      | pCi/L          |                |                      |          |       |        |
| Bismuth-212              |                              | U                                                                                     | 0.631                           | +/-14.1                                                            | 24.2                      |      | pCi/L          |                |                      |          |       |        |
| Bismuth-214              |                              |                                                                                       | 12.7                            | +/-8.27                                                            | 6.09                      |      | pCi/L          |                |                      |          |       |        |
| Cerium-139               |                              | U                                                                                     | -1.39                           | +/-1.75                                                            | 2.77                      |      | pCi/L          |                |                      |          |       |        |
| Cerium-141               |                              | U                                                                                     | 0.355                           | +/-3.13                                                            | 5.25                      |      | pCi/L          |                |                      |          |       |        |
| Cerium-144               |                              | U                                                                                     | -3.83                           | +/-12.1                                                            | 19.8                      |      | pCi/L          |                |                      |          |       |        |
| Cesium-134               |                              | U                                                                                     | 1.54                            | +/-2.21                                                            | 4.00                      |      | pCi/L          |                |                      |          |       |        |
| Cesium-136               |                              | U                                                                                     | 0.946                           | +/-3.16                                                            | 5.44                      |      | pCi/L          |                |                      |          |       |        |
| Cesium-137               |                              | U                                                                                     | 0.496                           | +/-2.52                                                            | 4.18                      | 5.00 | pCi/L          |                |                      |          |       |        |
| Chromium-51              |                              | U                                                                                     | 20.3                            | +/-16.4                                                            | 29.9                      |      | pCi/L          |                |                      |          |       |        |
| Cobalt-56                |                              | U                                                                                     | -0.475                          | +/-1.78                                                            | 2.92                      |      | pCi/L          |                |                      |          |       |        |
| Cobalt–57                |                              | U                                                                                     | 0.448                           | +/-1.58                                                            | 2.69                      |      | pCi/L          |                |                      |          |       |        |
| Cobalt–58                |                              | U                                                                                     | -0.729                          | +/-1.83                                                            | 2.98                      |      | pCi/L          |                |                      |          |       |        |
| Cobalt–60                |                              | U                                                                                     | -0.576                          | +/-1.85                                                            | 3.02                      |      | pCi/L          |                |                      |          |       |        |
| Europium–152             |                              | U                                                                                     | -2.71                           | +/-5.32                                                            | 8.77                      |      | pC1/L          |                |                      |          |       |        |
| Europium–154             |                              | U                                                                                     | -1.89                           | +/-5.66                                                            | 9.28                      |      | pCi/L          |                |                      |          |       |        |
| Europium–155             |                              | U                                                                                     | -1.78                           | +/-6.//                                                            | 11.3                      |      | pCi/L          |                |                      |          |       |        |
| $1r_1d_1um - 192$        |                              | U                                                                                     | -2.63                           | +/-1.69                                                            | 2.59                      |      | pCi/L          |                |                      |          |       |        |
| Iron-59                  |                              | U                                                                                     | -1.02                           | +/-3.6/                                                            | 5.86                      |      | pCi/L          |                |                      |          |       |        |
| Krypton-85               |                              | U                                                                                     | -2770                           | +/-605                                                             | 080                       |      | pC1/L          |                |                      |          |       |        |
| Lead 212                 |                              | U                                                                                     | 1/1                             | +/-351                                                             | 942                       |      | pCI/L          |                |                      |          |       |        |
| Lead 214                 |                              | UI                                                                                    | 0.00                            | +/-4.00                                                            | 7.07                      |      | pCI/L          |                |                      |          |       |        |
| Leau-214<br>Manganasa 54 |                              | UI                                                                                    | 0.00                            | +/-1.05                                                            | 9.57                      |      | pCI/L          |                |                      |          |       |        |
| Marganese-34             |                              | U                                                                                     | -0.429                          | +/-1.03                                                            | 2.12                      |      | pCI/L          |                |                      |          |       |        |
| Neodymium_147            | 7                            |                                                                                       | _1 86                           | $\pm 1/-2.10$                                                      | ). <del>1</del> ∠<br>23.7 |      | pCi/L          |                |                      |          |       |        |
| Neptunium 220            | 1                            |                                                                                       | -4.00                           | +/=1+.0<br>+/_12.6                                                 | 23.7<br>21.0              |      | pCi/L          |                |                      |          |       |        |
| Niohium_04               |                              |                                                                                       | -0 707                          | +/-12.0                                                            | 21.9<br>256               |      | pCi/L          |                |                      |          |       |        |
| Niobium_05               |                              |                                                                                       | -0.797                          | $\pm / = 1.37$<br>$\pm / = 1.86$                                   | 2.50                      |      | pCi/L          |                |                      |          |       |        |
| Potassium_40             |                              | U                                                                                     | 61.6                            | +/-31 7                                                            | 29.6                      |      | pCi/L<br>pCi/I |                |                      |          |       |        |
| Promethium_144           | 1                            | T                                                                                     | -0 54                           | +/-1 72                                                            | 2.87                      |      | pCi/L          |                |                      |          |       |        |
| Promethium-146           | 5                            | U                                                                                     | -1.86                           | +/-2.34                                                            | 3.64                      |      | pCi/L          |                |                      |          |       |        |

Page 8 of 22

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Report Date: October 19, 2009

## **Certificate of Analysis**

| Project:  | Olsson Associates – Rulison |
|-----------|-----------------------------|
| Contact:  | Mr. James Hix               |
|           | Golden, Colorado 80403      |
|           | Suite 200                   |
| Address : | 4690 Table Mountain Drive   |
| Company : | Olsson Associates           |

~ 1

Client Sample ID: 16-22D Project: CORD00100 Client ID: CORD001 Sample ID: 238218002 Parameter Qualifier Result Uncertainty DL RL Units DF AnalystDate Time Batch Method **Rad Gamma Spec Analysis** Gammaspec, Gamma, Liquid "As Received" Radium-228 U 5.78 +/-10.4 16.5 pCi/L Ruthenium-106 U -7.82+/-15.023.0 pCi/L Silver-110m U 2.84 pCi/L -2.73+/-1.88 Sodium-22 U +/-2.03 3.33 pCi/L -0.756Thallium-208 U 1.69 +/-2.973.84 pCi/L Thorium-230 +/-12500 1510 UI 0.00 pCi/L Thorium-234 U -42.3 +/-154 209 pCi/L Tin-113 U -1.02+/-2.12 3.44 pCi/L Uranium-235 0.285 +/-12.7 21.1 pCi/L U Uranium-238 U -42.3 +/-154 209 pCi/L Yttrium-88 U -0.0891 +/-1.87 3.07 pCi/L Zinc-65 U 0.989 +/-4.14 6.18 pCi/L Zirconium-95 U 0.475 +/-3.13 5.41 pCi/L **Rad Gas Flow Proportional Counting** GFPC, Chlorine-36 liquid "As Received" 159 +/-107 100 Chlorine-36 U 173 pCi/L DXM 10/12/09 0839 906787 2 2 GFPC, Gross A/B, liquid "As Received" +/-9.46 5.00 Alpha U 6.70 16.3 pCi/L DXF3 10/14/09 1240 909085 3 Beta U 7.27 +/-11.3 19.1 5.00 pCi/L GFPC, Sr90, liquid "As Received" Strontium-90 U 0.826 +/-1.13 1.92 2.00 pCi/L JXR1 10/15/09 2235 909097 4 **Rad Liquid Scintillation Analysis** Liquid Scint Tc99, Liquid "As Received" Technetium-99 3.17 +/-27.3 47.0 50.0 AXW 10/13/09 1148 909218 5 U pCi/L 2 **Rad Total Uranium** KPA, Total U, Liquid "As Received" Total Uranium +/-0.000.928 1.00 BXF1 10/07/09 1313 909268 U 0.00 ug/L 6

| The following A | nalytical Methods were performed    |                  |  |
|-----------------|-------------------------------------|------------------|--|
| Method          | Description                         | Analyst Comments |  |
| 1               | EPA 901.1                           |                  |  |
| 2               | GL-RAD-A-033                        |                  |  |
| 3               | EPA 900.0                           |                  |  |
| 4               | EPA 905.0 Modified                  |                  |  |
| 5               | DOE EML HASL-300, Tc-02-RC Modified |                  |  |
| 6               | ASTM D 5174                         |                  |  |
| Pag             | e 9 of 22                           |                  |  |

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# **Certificate of Analysis**

| Company :<br>Address :<br>Contact: | Olsson Associate<br>4690 Table Mour<br>Suite 200<br>Golden, Colorado<br>Mr. James Hix | s<br>ntain Drive<br>5 80403 |                     |      |        |                  | R            | eport Date: Oct      | tober 19, | 2009         |
|------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|---------------------|------|--------|------------------|--------------|----------------------|-----------|--------------|
| Project:                           | Olsson Associate                                                                      | es – Ruliso                 | n                   |      |        |                  |              |                      |           |              |
|                                    | Client Sample<br>Sample ID:                                                           | ID:                         | 16–22D<br>238218002 |      |        | Projec<br>Client | ct:<br>t ID: | CORD00100<br>CORD001 |           |              |
| Parameter                          | Qualifier                                                                             | Result                      | Uncertainty         | DL   | RL     | Units            | DF           | AnalystDate          | Time      | Batch Method |
| Surrogate/Tracer recover           | ry Test                                                                               |                             |                     |      | Result | Nomin            | nal F        | Recovery%            | Accepta   | ble Limits   |
| Potassium Chloride Carrier         | r GFPC, Ch                                                                            | lorine–36 l                 | iquid "As Recei     | ved" |        |                  |              | 103                  | (25%      | %-125%)      |
| Strontium Carrier                  | GFPC, Sr9                                                                             | 0, liquid ".                | As Received"        |      |        |                  |              | 57.1                 | (259      | %-125%)      |
| Technetium–99m Tracer              | Liquid Sci                                                                            | nt Tc99, Li                 | iquid "As Receiv    | ved" |        |                  |              | 78.2                 | (15%      | %-125%)      |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

|                        | <b>Olsson Associates</b>                                              |       | <u> </u>        |      |                 | -     | Report Date: October 19, 2009<br>Page 1 of 10 |      |               |                |  |
|------------------------|-----------------------------------------------------------------------|-------|-----------------|------|-----------------|-------|-----------------------------------------------|------|---------------|----------------|--|
| Contact:               | 4690 Table Mountain<br>Suite 200<br>Golden, Colorado<br>Mr. James Hix | Drive |                 |      |                 |       |                                               |      |               |                |  |
| Workorder:             | 238218                                                                |       |                 |      |                 |       |                                               |      |               |                |  |
| Parmname               |                                                                       | NOM   | Sample          | Qual | QC              | Units | RPD%                                          | REC% | Range Anlst   | Date Time      |  |
| Rad Gamma Spe<br>Batch | <b>c</b><br>909163                                                    |       | •               | -    |                 |       |                                               |      |               |                |  |
| QC12019396             | 66 238218001 DUP                                                      |       |                 |      |                 |       |                                               |      |               |                |  |
| Actinium-228           |                                                                       | UI    | 0.00<br>+/-12.1 | UI   | 0.00<br>+/-17.0 | pCi/L | 30.7                                          |      | N/A KXG3      | 10/07/09 05:39 |  |
| Americium-241          |                                                                       | U     | 7.60            | U    | 2.04            | pCi/L | 116                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-14.4         |      | +/-17.5         |       |                                               |      |               |                |  |
| Antimony-124           |                                                                       | U     | 1.67            | U    | -4.26           | pCi/L | 459                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-4.83         |      | +/-5.49         |       |                                               |      |               |                |  |
| Antimony-125           |                                                                       | U     | 5.38            | U    | 2.32            | pCi/L | 79.4                                          |      | N/A           |                |  |
|                        |                                                                       |       | +/-5.26         |      | +/-6.93         | ~ ~   |                                               |      |               |                |  |
| Barium-133             |                                                                       | U     | 0.881           | U    | 2.75            | pCi/L | 103                                           |      | N/A           |                |  |
| D: 140                 |                                                                       |       | +/-2.73         |      | +/-3.26         | 0.1   | 46.0                                          |      | NT/ A         |                |  |
| Barium-140             |                                                                       | U     | 0.820           | U    | 1.32            | pC1/L | 46.8                                          |      | N/A           |                |  |
| Domilium 7             |                                                                       | TT    | +/-8.0/         | τī   | +/-10.2         | тC:// | 206                                           |      | NT/A          |                |  |
| Berymum-7              |                                                                       | U     | -0.107          | U    | /./4            | pci/L | 200                                           |      | IN/A          |                |  |
| Bismuth 212            |                                                                       | II    | 7 16            | II   | +/-21.0<br>11.2 | nCi/I | 44.4                                          |      | NI/A          |                |  |
| Disinuti-212           |                                                                       | 0     | ,.10<br>⊥/_15.6 | 0    | ±/_18.0         | pent  |                                               |      | IN/A          |                |  |
| Bismuth-214            |                                                                       |       | 19.5            |      | 16.8            | nCi/I | 15.2                                          |      | 0% - 100%)    |                |  |
| Disiliuti-214          |                                                                       |       | +/-8 70         |      | +/-10.7         | pent  | 13.2                                          |      | (070 - 10070) |                |  |
| Cerium-139             |                                                                       | U     | -1 97           | U    | 1 58            | nCi/L | 1810                                          |      | N/A           |                |  |
|                        |                                                                       | U     | +/-1.95         | U    | +/-2.27         | Pent  | 1010                                          |      | 1.071         |                |  |
| Cerium-141             |                                                                       | U     | 1.36            | U    | -4.01           | pCi/L | 406                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-3.61         |      | +/-4.71         | 1     |                                               |      |               |                |  |
| Cerium-144             |                                                                       | U     | 3.43            | U    | 17.4            | pCi/L | 134                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-14.1         |      | +/-16.8         |       |                                               |      |               |                |  |
| Cesium-134             |                                                                       | U     | 0.565           | U    | 1.18            | pCi/L | 70.5                                          |      | N/A           |                |  |
|                        |                                                                       |       | +/-2.50         |      | +/-2.53         |       |                                               |      |               |                |  |
| Cesium-136             |                                                                       | U     | -0.589          | U    | -0.125          | pCi/L | 130                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-3.40         |      | +/-4.05         |       |                                               |      |               |                |  |
| Cesium-137             |                                                                       | U     | 0.433           | U    | -1.67           | pCi/L | 340                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-2.13         |      | +/-2.31         |       |                                               |      |               |                |  |
| Chromium-51            |                                                                       | U     | -5.4            | U    | 28.5            | pCi/L | 293                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-18.3         |      | +/-22.2         |       |                                               |      |               |                |  |
| Cobalt-56              |                                                                       | U     | 0.180           | U    | -0.487          | pCi/L | 434                                           |      | N/A           |                |  |
|                        |                                                                       |       | +/-1.97         |      | +/-2.08         |       |                                               |      |               |                |  |
| Cobalt-57              |                                                                       | U     | 2.67            | U    | 2.57            | pCi/L | 3.74                                          |      | N/A           |                |  |
| ~                      |                                                                       |       | +/-1.73         |      | +/-2.09         | ~ ~ ~ |                                               |      |               |                |  |
| Cobalt-58              |                                                                       | U     | -0.88           | U    | -0.953          | pCi/L | 7.92                                          |      | N/A           |                |  |
| ~                      |                                                                       |       | +/-2.03         |      | +/-2.14         | ~ ~ ~ |                                               |      |               |                |  |
| Cobalt-60              |                                                                       | U     | 1.32            | U    | -0.447          | pCi/L | 405                                           |      | N/A           |                |  |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

| Workorder: 238218       |     |         |      |         |                     |      | Page 2 of 10 |             |                |  |
|-------------------------|-----|---------|------|---------|---------------------|------|--------------|-------------|----------------|--|
| Parmname                | NOM | Sample  | Qual | QC      | Units               | RPD% | REC%         | Range Anlst | Date Time      |  |
| Rad Gamma Spec          |     |         |      |         |                     |      |              |             |                |  |
| Batch 909163            |     |         |      |         |                     |      |              |             |                |  |
|                         |     |         |      |         |                     |      |              |             |                |  |
|                         |     | +/-2.24 |      | +/-2.28 |                     |      |              |             |                |  |
| Europium-152            | U   | -3.69   | U    | 2.90    | pCi/L               | 1680 |              | N/A KXG3    | 10/07/09 05:39 |  |
|                         |     | +/-5.97 |      | +/-7.05 |                     |      |              |             |                |  |
| Europium-154            | U   | 0.355   | U    | 0.0246  | pCi/L               | 174  |              | N/A         |                |  |
|                         |     | +/-6.25 |      | +/-6.93 |                     |      |              |             |                |  |
| Europium-155            | U   | 0.0159  | U    | 9.54    | pCi/L               | 199  |              | N/A         |                |  |
|                         |     | +/-7.73 |      | +/-9.58 |                     |      |              |             |                |  |
| Iridium-192             | U   | 0.730   | U    | -1.5    | pCi/L               | 578  |              | N/A         |                |  |
|                         |     | +/-1.94 |      | +/-2.34 |                     |      |              |             |                |  |
| Iron-59                 | U   | 1.38    | U    | 1.51    | pCi/L               | 8.74 |              | N/A         |                |  |
|                         |     | +/-4.12 |      | +/-4.20 |                     |      |              |             |                |  |
| Krypton-85              | U   | 706     | U    | -1650   | pCi/L               | 500  |              | N/A         |                |  |
|                         |     | +/-496  |      | +/-735  |                     |      |              |             |                |  |
| Lead-210                | U   | -146    | U    | -634    | pCi/L               | 125  |              | N/A         |                |  |
|                         |     | +/-524  |      | +/-480  |                     |      |              |             |                |  |
| Lead-212                | U   | 2.04    | U    | 0.103   | pCi/L               | 181  |              | N/A         |                |  |
|                         |     | +/-5.33 |      | +/-5.41 |                     |      |              |             |                |  |
| Lead-214                | UI  | 0.00    |      | 14.2    | pCi/L               | 40.0 |              | (0% - 100%) |                |  |
|                         |     | +/-6.03 |      | +/-8.69 |                     |      |              |             |                |  |
| Manganese-54            | U   | -1.93   | U    | -0.727  | pCi/L               | 90.5 |              | N/A         |                |  |
|                         |     | +/-2.05 |      | +/-2.23 |                     |      |              |             |                |  |
| Mercury-203             | U   | -0.682  | U    | -1.79   | pCi/L               | 89.7 |              | N/A         |                |  |
|                         |     | +/-2.07 |      | +/-2.63 |                     |      |              |             |                |  |
| Neodymium-147           | U   | 4.96    | U    | -21     | pCi/L               | 324  |              | N/A         |                |  |
|                         |     | +/-17.6 |      | +/-20.1 |                     |      |              |             |                |  |
| Neptunium-239           | U   | 5.50    | U    | 6.96    | pCi/L               | 23.5 |              | N/A         |                |  |
|                         |     | +/-13.5 |      | +/-17.1 |                     |      |              |             |                |  |
| Niobium-94              | U   | 0.473   | U    | -0.751  | pCi/L               | 883  |              | N/A         |                |  |
|                         |     | +/-1.71 |      | +/-2.02 | <i>a</i> : <i>n</i> |      |              |             |                |  |
| Niobium-95              | U   | 0.997   | U    | -3.23   | pCi/L               | 378  |              | N/A         |                |  |
|                         |     | +/-2.16 |      | +/-2.89 | <i>a</i> : <i>n</i> |      |              |             |                |  |
| Potassium-40            | UI  | 0.00    |      | 57.1    | pCi/L               | 41.3 |              | (0% - 100%) |                |  |
|                         |     | +/-47.8 |      | +/-42.5 | ~ ~                 |      |              |             |                |  |
| Promethium-144          | U   | -0.564  | U    | -0.176  | pCi/L               | 105  |              | N/A         |                |  |
|                         |     | +/-1.83 |      | +/-2.00 | ~ ~                 |      |              |             |                |  |
| Promethium-146          | U   | -1.13   | U    | 0.945   | pCi/L               | 2200 |              | N/A         |                |  |
|                         |     | +/-2.58 |      | +/-3.18 | ~ ~                 |      |              |             |                |  |
| Radium-228              | UI  | 0.00    | UI   | 0.00    | pCi/L               | 30.7 |              | N/A         |                |  |
|                         |     | +/-12.1 |      | +/-17.0 | ~ ~                 |      |              |             |                |  |
| Ruthenium-106           | U   | 8.42    | U    | -20.4   | pCi/L               | 482  |              | N/A         |                |  |
| <b>2</b> 11 <b>4</b> 40 |     | +/-18.2 |      | +/-18.7 | ~ -                 |      |              |             |                |  |
| Silver-110m             | U   | -0.728  | U    | 1.90    | pCi/L               | 448  |              | N/A         |                |  |
| ~                       |     | +/-1.92 |      | +/-2.07 |                     |      |              |             |                |  |
| Sodium-22               | U   | 0.126   | U    | 0.0399  | pCi/L               | 104  |              | N/A         |                |  |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

| Workorder: 238218 |      |         |      |         |                     | Page 3 of 10 | 10   |             |                |
|-------------------|------|---------|------|---------|---------------------|--------------|------|-------------|----------------|
| Parmname          | NOM  | Sample  | Qual | QC      | Units               | RPD%         | REC% | Range Anlst | Date Time      |
| Rad Gamma Spec    |      |         |      |         |                     |              |      |             |                |
| Batch 909163      |      |         |      |         |                     |              |      |             |                |
|                   |      | 1 2 22  |      | 112 47  |                     |              |      |             |                |
| Thallium-208      | II   | +/-2.25 | II   | -1 75   | nCi/I               | 1290         |      | N/A KXG3    | 10/07/09 05:39 |
| Thantum-200       | U    | +/-3.76 | U    | +/-2.84 | pent                | 1290         |      | 10/1 12/05  | 10/07/09 05:59 |
| Thorium-230       | U    | 54.1    | U    | 784     | pCi/L               | 174          |      | N/A         |                |
|                   |      | +/-942  |      | +/-5130 | -                   |              |      |             |                |
| Thorium-234       | U    | 138     | U    | 6.52    | pCi/L               | 182          |      | N/A         |                |
|                   |      | +/-178  |      | +/-176  |                     |              |      |             |                |
| Tin-113           | U    | -1.04   | U    | -2.37   | pCi/L               | 78.1         |      | N/A         |                |
|                   |      | +/-2.42 |      | +/-2.94 |                     |              |      |             |                |
| Uranium-235       | U    | -3.37   | U    | -19.5   | pCi/L               | 141          |      | N/A         |                |
|                   |      | +/-18.5 | * *  | +/-19.8 | 0.4                 | 102          |      | 27/4        |                |
| Uranium-238       | U    | 138     | U    | 6.52    | pC1/L               | 182          |      | N/A         |                |
| Vttrium 88        | II   | +/-1/8  | II   | +/-1/0  | ъCiЛ                | 75.2         |      | NI/A        |                |
| 1 tu1u11-88       | 0    | ±/_2 12 | U    | ±/_3 23 | pci/L               | 15.5         |      | IN/A        |                |
| Zinc-65           | U    | -2.95   | U    | -6.1    | pCi/L               | 69.6         |      | N/A         |                |
|                   | Ũ    | +/-4.23 | U    | +/-5.51 | Pend                | 07.0         |      | 1.071       |                |
| Zirconium-95      | U    | -0.199  | U    | 3.33    | pCi/L               | 225          |      | N/A         |                |
|                   |      | +/-3.42 |      | +/-3.97 | -                   |              |      |             |                |
| QC1201939668 LCS  |      |         |      |         |                     |              |      |             |                |
| Actinium-228      |      |         | U    | -14     | pCi/L               |              |      |             | 10/07/09 08:17 |
|                   | 1010 |         |      | +/-37.4 | <i>C</i> : <i>T</i> |              |      | (750 1050)  |                |
| Americium-241     | 1240 |         |      | 1440    | pC1/L               |              | 116  | (75%-125%)  |                |
| Antimony 124      |      |         | II   | +/-210  | ъCi/I               |              |      |             |                |
| Anumony-124       |      |         | U    | +/-8.05 | pei/L               |              |      |             |                |
| Antimony-125      |      |         | U    | -7.31   | pCi/L               |              |      |             |                |
|                   |      |         | C    | +/-24.3 | Pend                |              |      |             |                |
| Barium-133        |      |         | U    | 3.90    | pCi/L               |              |      |             |                |
|                   |      |         |      | +/-10.2 |                     |              |      |             |                |
| Barium-140        |      |         | U    | 17.8    | pCi/L               |              |      |             |                |
|                   |      |         |      | +/-28.0 |                     |              |      |             |                |
| Beryllium-7       |      |         | U    | 69.7    | pCi/L               |              |      |             |                |
|                   |      |         |      | +/-61.2 |                     |              |      |             |                |
| Bismuth-212       |      |         | U    | -25.8   | pCi/L               |              |      |             |                |
| D: 4.014          |      |         |      | +/-60.4 | 0.1                 |              |      |             |                |
| Bismuth-214       |      |         | U    | -0./14  | pCi/L               |              |      |             |                |
| Cerium 130        |      |         | I    | +/-15.6 | nCi/I               |              |      |             |                |
| Certuin-139       |      |         | U    | +/-6 29 | pen L               |              |      |             |                |
| Cerium-141        |      |         | U    | 4.72    | pCi/L               |              |      |             |                |
|                   |      |         | -    | +/-10.6 | r 2                 |              |      |             |                |
| Cerium-144        |      |         | U    | -7.31   | pCi/L               |              |      |             |                |
|                   |      |         |      | +/-48.9 |                     |              |      |             |                |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

| Workorder: 238218 |      |             |         |       |      | Page 4 of 10 |            |       |                |  |
|-------------------|------|-------------|---------|-------|------|--------------|------------|-------|----------------|--|
| Parmname          | NOM  | Sample Qual | QC      | Units | RPD% | REC%         | Range      | Anlst | Date Time      |  |
| Rad Gamma Spec    |      |             |         |       |      |              |            |       |                |  |
| Batch 909163      |      |             |         |       |      |              |            |       |                |  |
| Cesium-134        |      | U           | -1.31   | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-10.3 |       |      |              |            |       |                |  |
| Cesium-136        |      | U           | -6.23   | pCi/L |      |              |            | KXG3  | 10/07/09 08:17 |  |
| ~                 | 10.1 |             | +/-13.4 | ~~~~  |      |              |            |       |                |  |
| Cesium-137        | 436  |             | 448     | pC1/L |      | 103          | (75%-125%) | )     |                |  |
|                   |      | **          | +/-39.4 | 0.4   |      |              |            |       |                |  |
| Chromium-51       |      | U           | 13.5    | pCi/L |      |              |            |       |                |  |
|                   |      | TT          | +/-58./ | 0.4   |      |              |            |       |                |  |
| Cobalt-56         |      | U           | -1.10   | pC1/L |      |              |            |       |                |  |
| 0.1.1.57          |      |             | +/-9.46 | 0.4   |      |              |            |       |                |  |
| Cobalt-57         |      |             | 28.7    | pC1/L |      |              |            |       |                |  |
|                   |      | **          | +/-9.85 | 0.4   |      |              |            |       |                |  |
| Cobalt-58         |      | U           | 1.03    | pC1/L |      |              |            |       |                |  |
|                   |      |             | +/-7.92 | ~ ~   |      |              |            |       |                |  |
| Cobalt-60         | 520  |             | 559     | pCi/L |      | 107          | (75%-125%) | )     |                |  |
|                   |      |             | +/-56.9 | ~ ~   |      |              |            |       |                |  |
| Europium-152      |      | U           | 5.82    | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-21.9 |       |      |              |            |       |                |  |
| Europium-154      |      | U           | 4.83    | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-16.6 |       |      |              |            |       |                |  |
| Europium-155      |      | U           | 2.00    | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-26.9 |       |      |              |            |       |                |  |
| Iridium-192       |      | U           | -1.68   | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-7.20 |       |      |              |            |       |                |  |
| Iron-59           |      | U           | 4.69    | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-18.8 |       |      |              |            |       |                |  |
| Krypton-85        |      | U           | -3630   | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-1850 |       |      |              |            |       |                |  |
| Lead-210          |      | U           | 421     | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-2510 |       |      |              |            |       |                |  |
| Lead-212          |      | U           | -12.3   | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-13.9 |       |      |              |            |       |                |  |
| Lead-214          |      | U           | -5.36   | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-17.2 |       |      |              |            |       |                |  |
| Manganese-54      |      | U           | -5.9    | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-7.67 |       |      |              |            |       |                |  |
| Mercury-203       |      | U           | 2.35    | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-7.32 |       |      |              |            |       |                |  |
| Neodymium-147     |      | U           | 23.6    | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-50.8 |       |      |              |            |       |                |  |
| Neptunium-239     |      | U           | -9.42   | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-56.1 |       |      |              |            |       |                |  |
| Niobium-94        |      | U           | -2.57   | pCi/L |      |              |            |       |                |  |
|                   |      |             | +/-7.24 |       |      |              |            |       |                |  |
| Niobium-95        |      | U           | -0.452  | pCi/L |      |              |            |       |                |  |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

| Workorder: 238218              |     |             |         |                     |      | Page 5 of 10 |       |       |                |  |  |
|--------------------------------|-----|-------------|---------|---------------------|------|--------------|-------|-------|----------------|--|--|
| Parmname                       | NOM | Sample Qual | QC      | Units               | RPD% | REC%         | Range | Anlst | Date Time      |  |  |
| Rad Gamma Spec<br>Batch 909163 |     |             |         |                     |      |              |       |       |                |  |  |
| Potossium 40                   |     | IJ          | +/-8.48 | рСі/І               |      |              |       | VVC2  | 10/07/00 09.17 |  |  |
| r otassium-40                  |     | 0           | +/-60.1 | pent                |      |              |       | KAUJ  | 10/07/09 08.17 |  |  |
| Promethium-144                 |     | U           | 0.892   | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-7.21 |                     |      |              |       |       |                |  |  |
| Promethium-146                 |     | U           | 5.08    | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-11.6 | <i>C</i> : <i>T</i> |      |              |       |       |                |  |  |
| Radium-228                     |     | U           | -14     | pCı/L               |      |              |       |       |                |  |  |
| Puthanium 106                  |     | ĨĬ          | +/-37.4 | рСіЛ                |      |              |       |       |                |  |  |
| Ruthemum-100                   |     | 0           | -50.0   | pci/L               |      |              |       |       |                |  |  |
| Silver-110m                    |     |             | 30.5    | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-11.0 | Pend                |      |              |       |       |                |  |  |
| Sodium-22                      |     | U           | 1.17    | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-6.03 | 1                   |      |              |       |       |                |  |  |
| Thallium-208                   |     | U           | -0.696  | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-8.11 |                     |      |              |       |       |                |  |  |
| Thorium-230                    |     | U           | -324    | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-4320 |                     |      |              |       |       |                |  |  |
| Thorium-234                    |     | U           | -220    | pCi/L               |      |              |       |       |                |  |  |
| <b>T</b> ' 112                 |     | **          | +/-475  | 0.4                 |      |              |       |       |                |  |  |
| 11n-113                        |     | U           | -0.28/  | pCi/L               |      |              |       |       |                |  |  |
| Uranium 235                    |     | ĨĬ          | +/-9.00 | рСіЛ                |      |              |       |       |                |  |  |
| Graniun-255                    |     | 0           | +4.2    | pen L               |      |              |       |       |                |  |  |
| Uranium-238                    |     | U           | -220    | pCi/L               |      |              |       |       |                |  |  |
|                                |     | -           | +/-475  | r ===               |      |              |       |       |                |  |  |
| Yttrium-88                     |     | U           | -1.44   | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-4.39 | •                   |      |              |       |       |                |  |  |
| Zinc-65                        |     | U           | -0.129  | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-21.7 |                     |      |              |       |       |                |  |  |
| Zirconium-95                   |     | U           | 2.84    | pCi/L               |      |              |       |       |                |  |  |
| 001201020665                   |     |             | +/-13.7 |                     |      |              |       |       |                |  |  |
| Actinium-228                   |     | ĨĬ          | -1.18   | nCi/I               |      |              |       |       | 10/06/09 22:59 |  |  |
| redinant 220                   |     | 6           | +/-8.57 | pent                |      |              |       |       | 10/00/07 22.37 |  |  |
| Americium-241                  |     | U           | -7.73   | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-7.60 | 1                   |      |              |       |       |                |  |  |
| Antimony-124                   |     | U           | 3.48    | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-3.73 |                     |      |              |       |       |                |  |  |
| Antimony-125                   |     | U           | -0.327  | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-4.54 |                     |      |              |       |       |                |  |  |
| Barium-133                     |     | U           | -1.23   | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-2.17 |                     |      |              |       |       |                |  |  |

GEL LABORATORIES LLC 2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

|                       |              |     | _      |      | •                          | -     |      |              |       |       |                |  |  |  |  |
|-----------------------|--------------|-----|--------|------|----------------------------|-------|------|--------------|-------|-------|----------------|--|--|--|--|
| Workorder: 238218     |              |     |        |      |                            |       |      | Page 6 of 10 |       |       |                |  |  |  |  |
| Parmname              |              | NOM | Sample | Qual | QC                         | Units | RPD% | REC%         | Range | Anlst | Date Time      |  |  |  |  |
| Rad Gamma Sp<br>Batch | ec<br>909163 |     |        |      |                            |       |      |              |       |       |                |  |  |  |  |
| Barium-140            |              |     |        | U    | -1.73<br>+/-5.95           | pCi/L |      |              |       |       |                |  |  |  |  |
| Beryllium-7           |              |     |        | U    | 9.54<br>+/-12.6            | pCi/L |      |              |       | KXG3  | 10/06/09 22:59 |  |  |  |  |
| Bismuth-212           |              |     |        | U    | 9.18<br>+/-12.3            | pCi/L |      |              |       |       |                |  |  |  |  |
| Bismuth-214           |              |     |        | U    | -1.52<br>+/-4 79           | pCi/L |      |              |       |       |                |  |  |  |  |
| Cerium-139            |              |     |        | U    | 0.795                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Cerium-141            |              |     |        | U    | 2.24                       | pCi/L |      |              |       |       |                |  |  |  |  |
| Cerium-144            |              |     |        | U    | 7.92                       | pCi/L |      |              |       |       |                |  |  |  |  |
| Cesium-134            |              |     |        | U    | -0.0895                    | pCi/L |      |              |       |       |                |  |  |  |  |
| Cesium-136            |              |     |        | U    | 0.175                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Cesium-137            |              |     |        | U    | +/-2.12<br>1.59<br>+/ 1.60 | pCi/L |      |              |       |       |                |  |  |  |  |
| Chromium-51           |              |     |        | U    | -1.22                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Cobalt-56             |              |     |        | U    | 0.308                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Cobalt-57             |              |     |        | U    | -0.511                     | pCi/L |      |              |       |       |                |  |  |  |  |
| Cobalt-58             |              |     |        | U    | 1.38                       | pCi/L |      |              |       |       |                |  |  |  |  |
| Cobalt-60             |              |     |        | U    | 0.341                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Europium-152          |              |     |        | U    | -0.722                     | pCi/L |      |              |       |       |                |  |  |  |  |
| Europium-154          |              |     |        | U    | 0.797                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Europium-155          |              |     |        | U    | -3.73                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Iridium-192           |              |     |        | U    | 0.812                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Iron-59               |              |     |        | U    | -1.29                      | pCi/L |      |              |       |       |                |  |  |  |  |
| Krypton-85            |              |     |        | UI   | 0.00                       | pCi/L |      |              |       |       |                |  |  |  |  |
| Lead-210              |              |     |        | U    | -387                       | pCi/L |      |              |       |       |                |  |  |  |  |
| Lead-212              |              |     |        | U    | +/-219<br>0.989            | pCi/L |      |              |       |       |                |  |  |  |  |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

| Workorder: 238218              |     |             |                   |                     |      | Page 7 of 10 |       |       |                |  |  |
|--------------------------------|-----|-------------|-------------------|---------------------|------|--------------|-------|-------|----------------|--|--|
| Parmname                       | NOM | Sample Qual | QC                | Units               | RPD% | REC%         | Range | Anlst | Date Time      |  |  |
| Rad Gamma Spec<br>Batch 909163 |     |             |                   |                     |      |              |       |       |                |  |  |
|                                |     |             | +/-5.24           | <b>C</b> . <i>I</i> |      |              |       |       | 10/06/00 22 50 |  |  |
| Lead-214                       |     | U           | -1.92<br>+/-4.18  | pC1/L               |      |              |       | KXG3  | 10/06/09 22:59 |  |  |
| Manganese-54                   |     | U           | -0.864            | pCi/L               |      |              |       |       |                |  |  |
| C                              |     |             | +/-1.60           | -                   |      |              |       |       |                |  |  |
| Mercury-203                    |     | U           | 1.25              | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-1.59           |                     |      |              |       |       |                |  |  |
| Neodymium-147                  |     | U           | 5.36              | pCi/L               |      |              |       |       |                |  |  |
| N. /                           |     | T.          | +/-10.9           | 0.4                 |      |              |       |       |                |  |  |
| Neptunium-239                  |     | U           | -2.13             | pCi/L               |      |              |       |       |                |  |  |
| Nichium 94                     |     | I           | +/-9.30           | nCi/I               |      |              |       |       |                |  |  |
| Niobium-94                     |     | 0           | +/-2.05           | pent                |      |              |       |       |                |  |  |
| Niobium-95                     |     | U           | 1, 2.03           | pCi/L               |      |              |       |       |                |  |  |
|                                |     | -           | +/-1.41           | r                   |      |              |       |       |                |  |  |
| Potassium-40                   |     | U           | 23.4              | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-18.1           |                     |      |              |       |       |                |  |  |
| Promethium-144                 |     | U           | -0.50             | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-1.80           |                     |      |              |       |       |                |  |  |
| Promethium-146                 |     | U           | -0.664            | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-2.15           |                     |      |              |       |       |                |  |  |
| Radium-228                     |     | U           | -1.18             | pCi/L               |      |              |       |       |                |  |  |
| D.1. 100                       |     | T           | +/-8.57           | 0.4                 |      |              |       |       |                |  |  |
| Ruthenium-106                  |     | U           | -3.14             | pC1/L               |      |              |       |       |                |  |  |
| Silver 110m                    |     | IJ          | +/-14.9           | nCi/I               |      |              |       |       |                |  |  |
| Silver-110in                   |     | 0           | -0.033<br>+/_1 57 | pei/L               |      |              |       |       |                |  |  |
| Sodium-22                      |     | U           | 0 345             | nCi/L               |      |              |       |       |                |  |  |
| bourum 22                      |     | C           | +/-1.67           | PCI/L               |      |              |       |       |                |  |  |
| Thallium-208                   |     | U           | -0.524            | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-2.28           | -                   |      |              |       |       |                |  |  |
| Thorium-230                    |     | U           | -176              | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-1240           |                     |      |              |       |       |                |  |  |
| Thorium-234                    |     | U           | -18.6             | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-74.6           |                     |      |              |       |       |                |  |  |
| Tin-113                        |     | U           | -1.12             | pCi/L               |      |              |       |       |                |  |  |
|                                |     |             | +/-2.06           | 0.4                 |      |              |       |       |                |  |  |
| Uranium-235                    |     | U           | -12.1             | pC1/L               |      |              |       |       |                |  |  |
| Uranium 238                    |     | IJ          | +/-12.8           | nCi/I               |      |              |       |       |                |  |  |
| Granum-230                     |     | U           | -10.0<br>+/-74.6  | PC1/L               |      |              |       |       |                |  |  |
| Yttrium-88                     |     | U           | -0.829            | pCi/L               |      |              |       |       |                |  |  |
|                                |     | 5           | +/-1.76           | r                   |      |              |       |       |                |  |  |
| Zinc-65                        |     | U           | 1.25              | pCi/L               |      |              |       |       |                |  |  |

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

| Workorder:                  | 238218    |     |       |   |                   |      |                            |       |      |      | Page 8 of 10 |                |
|-----------------------------|-----------|-----|-------|---|-------------------|------|----------------------------|-------|------|------|--------------|----------------|
| Parmname                    |           |     | NOM   |   | Sample            | Qual | QC                         | Units | RPD% | REC% | Range Anlst  | Date Time      |
| Rad Gamma SpecBatch90       | 9163      |     |       |   |                   |      |                            |       |      |      |              |                |
| Zirconium-95                |           |     |       |   |                   | U    | +/-3.46<br>3.01<br>+/-2.73 | pCi/L |      |      | KXG3         | 10/06/09 22:59 |
| Rad Gas Flow<br>Batch 90    | 6787      |     |       |   |                   |      | 17-2.75                    |       |      |      |              |                |
| QC1201933927<br>Chlorine-36 | 237682002 | DUP |       | U | 7.67              | U    | 45.8                       | pCi/L | 0.00 |      | N/A DXM2     | 10/13/09 06:42 |
| QC1201933929<br>Chlorine-36 | LCS       |     | 47900 |   | +7-102            |      | 53900                      | pCi/L |      | 113  | (75%-125%)   | 10/10/09 16:31 |
| QC1201933926<br>Chlorine-36 | MB        |     |       |   |                   | U    | +/-2360<br>-19.1           | pCi/L |      |      |              | 10/12/09 08:39 |
| QC1201940114<br>Chlorine-36 | 237682002 | MS  | 47900 | U | 7.67              |      | +/-108                     | pCi/L |      | 119  | (75%-125%)   | 10/10/09 16:30 |
| Batch 90                    | 9085      |     |       |   | +/-102            |      | +/-2370                    |       |      |      |              |                |
| OC1201939395                | 238170003 | DUP |       |   |                   |      |                            |       |      |      |              |                |
| Alpha                       |           |     |       | U | 0.0162<br>+/-1.56 | U    | 2.45<br>+/-2.27            | pCi/L | 0.00 |      | N/A DXF3     | 10/14/09 09:40 |
| Beta                        |           |     |       | U | 1.49<br>+/-2.12   | U    | 0.654<br>+/-2.65           | pCi/L | 0.00 |      | N/A          |                |
| Alpha QC1201939398          | LCS       |     | 77.9  |   |                   |      | 78.9<br>+/-8.41            | pCi/L |      | 101  | (75%-125%)   | 10/14/09 09:24 |
| Beta                        |           |     | 259   |   |                   |      | 255<br>+/-10.3             | pCi/L |      | 98.5 | (75%-125%)   |                |
| QC1201939394<br>Alpha       | MB        |     |       |   |                   | U    | 1.95<br>+/-1.92            | pCi/L |      |      |              | 10/14/09 09:39 |
| Beta                        |           |     |       |   |                   | U    | 0.423<br>+/-1.51           | pCi/L |      |      |              |                |
| QC1201939396<br>Alpha       | 238170003 | MS  | 234   | U | 0.0162<br>+/-1.56 |      | 233<br>+/-24.8             | pCi/L |      | 99.5 | (75%-125%)   | 10/14/09 09:40 |
| Beta                        |           |     | 776   | U | 1.49<br>+/-2.12   |      | 757<br>+/-30.8             | pCi/L |      | 97.5 | (75%-125%)   |                |
| QC1201939397<br>Alpha       | 238170003 | MSD | 234   | U | 0.0162            |      | 236<br>+/-26.0             | pCi/L | 1.60 | 101  | (0%-20%)     | 10/14/09 09:24 |
| Beta                        |           |     | 776   | U | 1.49              |      | 836                        | pCi/L | 9.99 | 108  | (0%-20%)     |                |
| Batch 90                    | 9097      |     |       |   | +/-2.12           |      | +/-32.0                    |       |      |      |              |                |

QC1201939430 238218001 DUP

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

| Workorder:                        | 238218        |     |      |   |                   |      | •/                 | •     |      |      | Page 9 of 10     |                |
|-----------------------------------|---------------|-----|------|---|-------------------|------|--------------------|-------|------|------|------------------|----------------|
| Parmname                          |               |     | NOM  |   | Sample            | Qual | QC                 | Units | RPD% | REC% | Range Anlst      | Date Time      |
| Rad Gas FlowBatch909              | 9097          |     |      |   |                   |      |                    |       |      |      |                  |                |
| Strontium-90                      |               |     |      | U | 0.103<br>+/-0.785 | U    | 0.114<br>+/-0.409  | pCi/L | 0.00 |      | N/A JXR1         | 10/15/09 22:35 |
| QC1201939432<br>Strontium-90      | LCS           |     | 64.7 |   |                   |      | 68.9<br>+/-3.64    | pCi/L |      | 107  | (75%-125%)       | 10/16/09 12:24 |
| QC1201939429<br>Strontium-90      | MB            |     |      |   |                   | U    | 0.195              | pCi/L |      |      |                  | 10/16/09 12:23 |
| QC1201939431<br>Strontium-90      | 238218001     | MS  | 129  | U | 0.103             |      | 149<br>+/-6 54     | pCi/L |      | 115  | (75%-125%)       | 10/16/09 12:23 |
| Rad Liquid Scintilla<br>Batch 909 | ation<br>9218 |     |      |   | 17-0.785          |      | 17-0.34            |       |      |      |                  |                |
| QC1201939851<br>Technetium-99     | 238121008     | DUP |      |   | 107<br>+/-24.3    |      | 101<br>+/-24.8     | pCi/L | 5.47 |      | (0% - 100%) AXW2 | 10/13/09 12:51 |
| QC1201939853<br>Technetium-99     | LCS           |     | 1810 |   |                   |      | 1730<br>+/-73.2    | pCi/L |      | 95.6 | (75%-125%)       | 10/13/09 13:52 |
| QC1201939850<br>Technetium-99     | MB            |     |      |   |                   | U    | 6.28<br>+/-21.7    | pCi/L |      |      |                  | 10/13/09 12:20 |
| QC1201939852<br>Technetium-99     | 238121008     | MS  | 1810 |   | 107<br>+/-24.3    |      | 1840<br>+/-56.0    | pCi/L |      | 95.3 | (75%-125%)       | 10/13/09 13:23 |
| Rad Total U<br>Batch 909          | 9268          |     |      |   |                   |      |                    |       |      |      |                  |                |
| QC1201939996<br>Total Uranium     | 238260001     | DUP |      |   | 208<br>+/-17.4    |      | 213<br>+/-17.8     | ug/L  | 2.45 |      | (0% - 20%) BXF1  | 10/07/09 13:27 |
| QC1201939998<br>Total Uranium     | LCS           |     | 50.0 |   |                   |      | 46.6<br>+/-4.12    | ug/L  |      | 93.3 | (75%-125%)       | 10/07/09 13:35 |
| QC1201939999<br>Total Uranium     | LCS           |     | 5.00 |   |                   |      | 5.19<br>+/-0.277   | ug/L  |      | 104  | (75%-125%)       | 10/07/09 13:36 |
| QC1201939995<br>Total Uranium     | MB            |     |      |   |                   | U    | 0.295<br>+/-0.0224 | ug/L  |      |      |                  | 10/07/09 13:22 |
| QC1201939997<br>Total Uranium     | 238260001     | MS  | 50.0 |   | 208<br>+/-17.4    |      | 266<br>+/-22.3     | ug/L  |      | 115  | (75%-125%)       | 10/07/09 13:31 |

#### Notes:

The Qualifiers in this report are defined as follows:

\*\* Analyte is a surrogate compound

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC** Summary

| Workor | der:   | 238218                  |                          |               |           |                |             |             |                 | Page 1    | 0 of 10 |      |      |
|--------|--------|-------------------------|--------------------------|---------------|-----------|----------------|-------------|-------------|-----------------|-----------|---------|------|------|
| Parmna | me     |                         | NOM                      | Sample        | Oual      | 00             | Units       | RPD%        | REC%            | Range     | Anlst   | Date | Time |
| <      | Result | t is less than value re | eported                  | Sumpre        | - Xum     |                | 01110       |             | <u> </u>        |           |         |      |      |
| >      | Result | t is greater than value | e reported               |               |           |                |             |             |                 |           |         |      |      |
| А      | The T  | IC is a suspected ald   | lol-condensation prod    | uct           |           |                |             |             |                 |           |         |      |      |
| В      | For G  | eneral Chemistry and    | d Organic analysis the   | target analy  | te was de | etected in the | associated  | i blank.    |                 |           |         |      |      |
| BD     | Result | ts are either below th  | ne MDC or tracer reco    | very is low   |           |                |             |             |                 |           |         |      |      |
| С      | Analy  | te has been confirme    | ed by GC/MS analysis     |               |           |                |             |             |                 |           |         |      |      |
| D      | Result | ts are reported from    | a diluted aliquot of the | e sample      |           |                |             |             |                 |           |         |      |      |
| F      | Estim  | ated Value              |                          |               |           |                |             |             |                 |           |         |      |      |
| Н      | Analy  | tical holding time w    | as exceeded              |               |           |                |             |             |                 |           |         |      |      |
| J      | Value  | is estimated            |                          |               |           |                |             |             |                 |           |         |      |      |
| М      | M if a | bove MDC and less       | than LLD                 |               |           |                |             |             |                 |           |         |      |      |
| М      | Matrix | x Related Failure       |                          |               |           |                |             |             |                 |           |         |      |      |
| N/A    | RPD o  | or %Recovery limits     | do not apply.            |               |           |                |             |             |                 |           |         |      |      |
| ND     | Analy  | te concentration is n   | ot detected above the    | detection lin | nit       |                |             |             |                 |           |         |      |      |
| NJ     | Consu  | llt Case Narrative, D   | ata Summary package      | e, or Project | Manager   | concerning th  | nis qualifi | er          |                 |           |         |      |      |
| R      | Sampl  | le results are rejected | ł                        |               |           |                |             |             |                 |           |         |      |      |
| U      | Analy  | te was analyzed for,    | but not detected abov    | e the MDL,    | MDA, or   | LOD.           |             |             |                 |           |         |      |      |
| UI     | Gamn   | na SpectroscopyUr       | ncertain identification  |               |           |                |             |             |                 |           |         |      |      |
| Х      | Consu  | llt Case Narrative, D   | ata Summary package      | e, or Project | Manager   | concerning th  | nis qualifi | er          |                 |           |         |      |      |
| Y      | QC Sa  | amples were not spik    | ked with this compoun    | d             |           |                |             |             |                 |           |         |      |      |
| ^      | RPD o  | of sample and duplic    | ate evaluated using +/   | -RL. Conce    | ntrations | are <5X the    | RL. Qual    | ifier Not A | pplicable for I | Radiochem | istry.  |      |      |
|        |        |                         |                          |               |           |                |             |             |                 |           |         |      |      |

h Preparation or preservation holding time was exceeded

\*\*\* 1 1

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

\* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

|                                                                                                                                                                                               | COMPANY – WIDE NONC                                                                                                                                                                    | CONFORMANCE REPO                    | DRT                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|
| <b>Mo.Day Yr.</b><br>14–OCT–09                                                                                                                                                                | <b>Division:</b><br>Radiochemistry                                                                                                                                                     | Quality Criteria:<br>Specifications | Type:<br>Process           |
| Instrument Type:<br>GFPC                                                                                                                                                                      | Test / Method:<br>GL-RAD-A-033                                                                                                                                                         | Matrix Type:<br>Liquid              | Client Code:<br>CORD, URSC |
| <b>Batch ID:</b><br>906787                                                                                                                                                                    | Sample Numbers:<br>See Below                                                                                                                                                           |                                     |                            |
| Potentially affected work order(s)(<br>Application Issues:<br>RDL less than MDA                                                                                                               | SDG):237682,238006,238010,238064,                                                                                                                                                      | 238218                              |                            |
| Specification and Requirements<br>Nonconformance Description:                                                                                                                                 |                                                                                                                                                                                        | NRG Disposition:                    |                            |
| 1. Samples 237682002, 237682004<br>238010004, 238010005, 23801000<br>and 238218002 did not meet the re<br>sample aliquot. Sample aliquots we<br>samples. Appropriate sample aliquo<br>minutes | I, 238006002, 238010002,<br>7, 238064002,238064004, 238218001<br>quired detection limit due to reduced<br>re reduced due to the matrix of the<br>ots were analyzed and counted for 500 | 1. Reporting results.               |                            |
| Originator's Name:                                                                                                                                                                            |                                                                                                                                                                                        | Data Validator/Group Le             | ader:                      |
| Spencer Collins 14–OCT–09                                                                                                                                                                     |                                                                                                                                                                                        | Nat Long                            | 4-OCT-09                   |

| State                     | Certification     |
|---------------------------|-------------------|
| Arizona                   | AZ0668            |
| Arkansas                  | 88-0651           |
| CLIA                      | 42D0904046        |
| California – NELAP        | 01151CA           |
| Colorado                  | GEL               |
| Connecticut               | PH-0169           |
| Dept. of Navy             | NFESC 413         |
| EPA Region 5              | WG-15J            |
| Florida – NELAP           | E87156            |
| Georgia                   | E87156 (FL/NELAP) |
| Georgia DW                | 967               |
| Hawaii                    | N/A               |
| ISO 17025                 | 2567.01           |
| Idaho                     | SC00012           |
| Illinois – NELAP          | 200029            |
| Indiana                   | C-SC-01           |
| Kansas – NELAP            | E-10332           |
| Kentucky                  | 90129             |
| Louisiana – NELAP         | 03046             |
| Maryland                  | 270               |
| Massachusetts             | M-SC012           |
| Nevada                    | SC00012           |
| New Jersey – NELAP        | SC002             |
| New Mexico                | FL NELAP E87156   |
| New York – NELAP          | 11501             |
| North Carolina            | 233               |
| North Carolina DW         | 45709             |
| Oklahoma                  | 9904              |
| Pennsylvania – NELAP      | 68-00485          |
| South Carolina            | 10120001/10120002 |
| Tennessee                 | TN 02934          |
| Texas – NELAP             | Т104704235-07В-ТХ |
| U.S. Dept. of Agriculture | S-52597           |
| Utah – NELAP              | GEL               |
| Vermont                   | VT87156           |
| Virginia                  | 00151             |
| Washington                | C1641             |
| <b>č</b>                  | ,,                |

List of current GEL Certifications as of 19 October 2009

APPENDIX C

Furr 16-22B and Furr 16-22D WELL PRODUCTION DATA

| PRODUCTION DATA REPORT 🔍 GIS |                        |             |                 |  |  |  |  |  |  |  |  |  |
|------------------------------|------------------------|-------------|-----------------|--|--|--|--|--|--|--|--|--|
| API #:                       | 05-045-12741           | Location:   | SESE 227S 95W 6 |  |  |  |  |  |  |  |  |  |
| Field:                       | WILDCAT                | Field Code: | 99999           |  |  |  |  |  |  |  |  |  |
| Facility Name:               | FURR                   | Facility #: | 16-22 B         |  |  |  |  |  |  |  |  |  |
| Operator Name:               | LARAMIE ENERGY II, LLC | Operator #: | 10232           |  |  |  |  |  |  |  |  |  |

PRODUCTION YEAR: All

|      |       |                             | OIL       |                |              |                  |              | Water            | Water<br>(psig) |                |              |               |               |      |      |
|------|-------|-----------------------------|-----------|----------------|--------------|------------------|--------------|------------------|-----------------|----------------|--------------|---------------|---------------|------|------|
|      |       |                             |           |                |              |                  | BOM          | Produced         | Sold            | Adj.           | EOM          | Gravity       | Prod          | Tbg. | Csg. |
| Year | Month | Formation                   | Sidetrack | Well<br>Status | Days<br>Prod | Product          |              | GAS              |                 |                |              | Water         | Gas<br>(psig) |      |      |
|      |       |                             |           | otatuo         | riou         |                  | Prod         | Prod Flared Used |                 | Shrinkage Sold |              | BTU           | Disp. Code    | Tbg. | Csg. |
|      |       |                             |           |                |              |                  |              |                  |                 |                |              |               |               |      |      |
| 2007 | Jul   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | Jan   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | May   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | Jun   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | Jul   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | Aug   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | Sep   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | Oct   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo             |              | Oil -><br>Gas -> |              |                  |                 |                |              |               |               |      |      |
| 2008 | Nov   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 28           | Oil -><br>Gas -> | 24,271       | 9                |                 | 398            | 9<br>23,873  | 1,077         | 1,134<br>M    |      |      |
| 2008 | Dec   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 28           | Oil -><br>Gas -> | 9<br>30,197  | 86               | 49              | 1,062          | 46<br>29,135 | 54.6<br>1,077 | 2,541<br>M    |      |      |
| 2009 | Jan   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 31           | Oil -><br>Gas -> | 46<br>25,263 | 80               | 81              | 847            | 45<br>24,416 | 54.5<br>1,072 | 1,523<br>M    |      |      |
| 2009 | Feb   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 23           | Oil -><br>Gas -> | 45<br>17,410 | 36               | 46              | 337            | 35<br>17,073 | 54.5<br>1,074 | 854<br>M      |      |      |
| 2009 | Mar   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 31           | Oil -><br>Gas -> | 35<br>19,040 | 60               | 44              | 870            | 51<br>18,170 | 56.6<br>1,075 | 955<br>M      |      |      |
| 2009 | Apr   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 29           | Oil -><br>Gas -> | 51<br>15,316 | 44               | 43              | 215            | 52<br>15,101 | 54.9<br>1,093 | 606<br>M      |      |      |
| 2009 | Мау   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 31           | Oil -><br>Gas -> | 52<br>15,023 | 28               | 41              | 340            | 39<br>14,683 | 53.6<br>1,092 | 584<br>M      |      |      |
| 2009 | Jun   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 30           | Oil -><br>Gas -> | 39<br>14,339 | 39               | 44              |                | 34<br>14,339 | 54.0<br>1,071 | 461<br>M      |      |      |
| 2009 | Jul   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 31           | Oil -><br>Gas -> | 34<br>13,518 | 73               | 44              | 211            | 63<br>13,307 | 53.2<br>1,067 | 461<br>M      |      |      |
| 2009 | Aug   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 30           | Oil -><br>Gas -> | 63<br>12,700 | 2                |                 | 296            | 65<br>12,404 | 1,066         | 406<br>M      |      |      |
| 2009 | Sep   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 29           | Oil -><br>Gas -> | 65<br>11,389 | 34               | 43              | 143            | 56<br>11,246 | 54.7<br>1,069 | 436<br>M      |      |      |
| 2009 | Oct   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR             | 31           | Oil -><br>Gas -> | 56<br>11,833 | 58               | 84              | 396            | 30<br>11,437 | 54.4<br>1,068 | 405<br>M      |      |      |

#### **COGIS - Monthly Well Production**

| PRODUCTION DATA REPORT 🗣 GIS |                        |             |                 |  |  |  |  |  |  |  |  |  |
|------------------------------|------------------------|-------------|-----------------|--|--|--|--|--|--|--|--|--|
| API #:                       | 05-045-12611           | Location:   | SESE 227S 95W 6 |  |  |  |  |  |  |  |  |  |
| Field:                       | WILDCAT                | Field Code: | 99999           |  |  |  |  |  |  |  |  |  |
| Facility Name:               | FURR                   | Facility #: | 16-22 D         |  |  |  |  |  |  |  |  |  |
| Operator Name:               | LARAMIE ENERGY II, LLC | Operator #: | 10232           |  |  |  |  |  |  |  |  |  |

PRODUCTION YEAR: All

|      |       |                             | OIL       |        |      |                  | Water        | Water<br>(psig) |      |           |              |               |            |           |      |
|------|-------|-----------------------------|-----------|--------|------|------------------|--------------|-----------------|------|-----------|--------------|---------------|------------|-----------|------|
|      |       |                             |           |        |      |                  | BOM          | Produced        | Sold | Adj. EOM  |              | Gravity       | Prod       | Tbg. Csg. |      |
| Year | Month | Formation                   | Sidetrack | Well   | Days | Product          |              | -               | G    | GAS       |              | Water         | Gas        |           |      |
|      |       |                             |           | Status | FIU  |                  | Prod         | Flared          | Used | Shrinkage | Sold         | BTU           | Disp. Code | Tbg.      | Csg. |
|      |       |                             |           |        |      |                  |              |                 |      |           |              |               |            |           |      |
| 2007 | Jul   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | Jan   | WILLIAMS<br>FORK -          | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | May   | WILLIAMS<br>FORK -          | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | Jun   | WILLIAMS<br>FORK -          | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | Jul   | WILLIAMS<br>FORK -          | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | Aug   | WILLIAMS<br>FORK -          | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | Sep   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | Oct   | WILLIAMS<br>FORK -<br>CAMEO | 00        | wo     |      | Oil -><br>Gas -> |              |                 |      |           |              |               |            |           |      |
| 2008 | Nov   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 28   | Oil -><br>Gas -> | 34,070       | 13              |      | 559       | 13<br>33,511 | 1,077         | 1,592<br>M |           |      |
| 2008 | Dec   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 28   | Oil -><br>Gas -> | 13<br>32,020 | 88              | 52   | 1,126     | 49<br>30,894 | 55.6<br>1,077 | 2,694<br>M |           |      |
| 2009 | Jan   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 31   | Oil -><br>Gas -> | 49<br>29,132 | 97              | 94   | 976       | 52<br>28,156 | 54.5<br>1,072 | 1,757<br>M |           |      |
| 2009 | Feb   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 24   | Oil -><br>Gas -> | 52<br>23,124 | 57              | 62   | 448       | 47<br>22,676 | 54.5<br>1,074 | 1,134<br>M |           |      |
| 2009 | Mar   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 31   | Oil -><br>Gas -> | 47<br>26,621 | 85              | 61   | 1,217     | 71<br>25,404 | 56.6<br>1,075 | 1,335<br>M |           |      |
| 2009 | Apr   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 30   | Oil -><br>Gas -> | 71<br>22,233 | 67              | 63   | 312       | 75<br>21,921 | 54.9<br>1,093 | 879<br>M   |           |      |
| 2009 | May   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 31   | Oil -><br>Gas -> | 75<br>20,276 | 33              | 55   | 459       | 53<br>19,817 | 53.6<br>1,092 | 789<br>M   |           |      |
| 2009 | Jun   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 30   | Oil -><br>Gas -> | 53<br>17,675 | 44              | 55   |           | 42<br>17,675 | 54.0<br>1,071 | 568<br>M   |           |      |
| 2009 | Jul   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 31   | Oil -><br>Gas -> | 42<br>17,149 | 93              | 55   | 267       | 80<br>16,882 | 53.2<br>1,067 | 569<br>M   |           |      |
| 2009 | Aug   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 30   | Oil -><br>Gas -> | 80<br>15,560 |                 |      | 363       | 80<br>15,197 | 1,066         | 497<br>M   |           |      |
| 2009 | Sep   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 29   | Oil -><br>Gas -> | 80<br>14,141 | 42              | 53   | 177       | 69<br>13,964 | 54.7<br>1,069 | 542<br>M   |           |      |
| 2009 | Oct   | WILLIAMS<br>FORK -<br>CAMEO | 00        | PR     | 31   | Oil -><br>Gas -> | 69<br>14,159 | 68              | 101  | 474       | 36<br>13,685 | 54.4<br>1,068 | 485<br>M   |           |      |







APPENDIX D

DATA VERIFICATION AND VALIDATION REPORT

#### **RADIOCHEMISTRY DATA QUALITY REVIEW REPORT** Gas Flow Proportional Counting (GFPC) and Liquid Scintillation (LSC), Uranium in Water by Pulsed-Laser Phosphorimetry (ASTM-D-5174)

SDG: 238218 (GEL)

#### PROJECT: <u>Garfield County CO, Rulison Project 3<sup>rd</sup> Quarter Sampling for Olsson Assoc. Golden</u> <u>CO</u>

LABORATORY: GEL Laboratories, LLC, Charleston, South Carolina

SAMPLE MATRIX: Water

SAMPLING DATE (Mo/Yr): October, 2009

NO.SAMPLES: 2

#### ANALYSES REQUESTED: <u>GEL: GFPC for Cl-36, gross alpha/beta, and Sr-90; LSC for Tc-99,</u> <u>Total U by PLP.</u>

SAMPLE NUMBERS: <u>16-22B</u>, <u>16-22D</u>

DATA REVIEWER: John Huntington

QA REVIEWER: Diane Short & Associates, Inc. \_\_\_\_\_ INITIALS/DATE:

Telephone Logs included Yes\_\_\_\_No \_\_X\_\_\_

Contractual Violations Yes\_\_\_\_ No \_\_X\_\_\_

The project Quality Assurance Project Plan (QAPP), the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, 2004, the laboratory Standard Operating Procedure (SOP), and the EPA Radiochemistry Methods (current updates) have been referenced by the reviewer to perform this data validation review. The review includes evaluation of calibration, holding times and QC for all samples and a 10% review of the calculation algorithms. General comments regarding the data/ analytical quality are part of the review when raw data are submitted. The EPA qualifiers have been expanded to include a descriptor code and value to define QC violations and their values, per the approval of the project Manager.

OLRL3QtrGPCSc0110

#### I. DELIVERABLES

1. All deliverables were present as specified in the Statement of Work (SOW) or in the project contract.

Yes X\_ No\_\_\_

The following is noted:

The GEL Laboratories data package did not include raw data. Only summary QC results were provided. Gross alpha/beta was determined using EPA 900.0, Cl-36 by GL-RAD-A-033, Sr-90 by EPA 905.0, Tc-99 by DOE EML HASL-300, Tc-02-RC Modified, and total uranium by ASTM D-5174.

For the GEL data, a Level II review is conducted.

Please note: In addition to these data, tritium and C-14 results from Isotech laboratories were reported in Lab reports 172337. Only sample results were present with no QC. Therefore, it was not possible to validate the Isotech data.

#### **II. ANALYTICAL REPORT FORMS**

1. The Analytical Report or Data Sheets are present and complete for all requested analyses. Yes \_X\_\_\_ No\_\_\_\_

2. Holding TimesA. The contract holding times were met for all analyses.Yes X\_ No\_\_\_\_

B. Samples were properly preserved, or applicable preservative was used. Yes \_X\_\_\_ No\_\_\_\_

3. Chains of Custody (COC)
A. Chains of Custody (COC) were reviewed and all fields were complete, signatures were present and cross outs were clean and initialed.
Yes \_\_X\_\_No \_\_\_\_

#### **III. CALIBRATION AND STANDARDIZATION**

1. Daily counting efficiency (Base Efficiency) for all methods was achieved. Yes \_\_\_\_\_ No\_\_\_\_ NA\_\_X\_\_ The GEL Laboratories data package did not include the raw data.

2. The calibration data include a plot of the counting efficiency obtained versus the various weights of salts spiked with a known DPM of the standard; The "best fit" curve or a computer fit equation with the estimated standard deviation meet the method calibration criteria. At least one complete self-absorption curve exists for one detector per array and the efficiency for the standard curve of  $\geq$  3 standards agree within 95% confidence level.

Yes \_\_\_\_\_ No\_\_\_\_ NA \_\_X\_\_

GEL data: This documentation is not part of the data package.

OLRL3QtrGPCSc0110

3. Reliability of the daily QC check standards are within a 2 to 3 sigma control limit of the mean count of long term counting

Yes <u>No</u> NA X

GEL data: Calibration documentation is not part of the data package.

4. The most recent background count duration is at least as long as the sample duration and this background total is within 99% confidence level or 2 to 3 sigma of the average of the last ten background checks on that detector.

Yes <u>No</u> NA X Durations are not part of the data package.

5. The attenuation was with the (beta x r2) limits as appropriate to the method. Yes \_\_\_\_\_ No \_\_\_\_ NA\_X\_ Not part of the data package.

6. There is documentation to verify that the standards are NIST traceable or the equivalent. Yes \_\_\_\_\_ No\_\_\_\_ NA\_\_X\_\_\_ GEL data: This documentation is not part of the data package.

7. Quench factors were reported and noted as acceptable.

Yes No NA X\_

GEL: Quench factors are not reported as part of the data package.

#### IV. DETECTION AND REPORTING LIMITS

1. Minimal detection concentrations (MDC) with efficiencies were established for all analytes every six months or whenever a significant background or instrument response is expected (e.g., detector change).

Yes <u>X</u> No NA

Cl-36, GEL: for the Cl-36 analysis the laboratory provides a nonconformance report stating that the RDL is less than MDA due to reduced aliquots. No qualification is applied.

2. The laboratory reported the results with uncertainties that included all uncertainties associated with the preparation and analytical procedures.

Yes X\_ No\_\_\_\_

Samples where uncertainties are greater than the result or the result has been reported as estimated "J" may have unrealistically low MDC values. The uncertainties are multiplied by 1.65. If the result is greater than the reported MDC, the isotope has been qualified UJQ for an unrealistically low MDC. If the value calculated is less than the reported MDA, the activity result is qualified JQ estimated below the MDC.

No such instances are observed and no qualifiers are applied.
### V. MATRIX SPIKE

1. Matrix spike (MS) was analyzed for every analysis performed and for every 20 samples or for every matrix whichever is more frequent.

Yes \_X\_\_ No \_\_\_

Sr-90 – GEL: A matrix spike was conducted on sample 16-22B.

Although not all methods were spiked in this sample set, counting prior sets the recommended frequency of matrix spikes has been met.

2. The MS percent recoveries were within the limits defined in the contract or a guidance limit of 75-125%.

Yes X\_No \_\_\_\_

3. The samples used for qualification are client samples. Yes \_\_X\_No\_\_\_

## VI. MATRIX DUPLICATE

1. The matrix duplicate relative percent difference of the percent recoveries were within the limits defined in the contract or the CLP 20% for water and 35% for soil, or  $\pm$  RL for results < 5 x RL ( $\pm$  2x RL for soils).

Yes \_X\_\_\_ No \_\_\_\_ NA\_\_\_\_

Matrix duplicates were analyzed using the same samples as were used for the matrix spikes. Sr-90 – GEL: The matrix duplicate is in control.

B. Or met the Duplicate Error Ratio (DER) criteria calculations which account for the 2 sigma efficiency values. DER limit is 1. Yes \_\_\_\_ No \_\_\_\_ NA \_\_X\_\_

## VII. LABORATORY CONTROL SAMPLE

1. Laboratory Control Sample (LCS) was analyzed for every analysis performed and for every 20 samples or for every matrix, whichever is more frequent Yes X\_ No\_\_\_\_

3. The LCSD %R for each analyte (background corrected) met the established control limits or the method limits of 75-125%. Yes \_\_\_\_ No \_\_\_\_ NA\_X\_\_

LCSDs are not reported.

4. The duplicate relative percent difference of the percent recoveries were within the limits. Yes \_\_\_\_\_ No \_\_\_\_\_ NA\_X\_

OLRL3QtrGPCSc0110

### VIII. BLANKS

1. Low-level activities of isotopes were reported for laboratory preparation blanks and met the MDC or background CPM criteria

Yes X\_\_ No\_\_\_\_

For LSC methods, the MDC of the prep blank shall be less than the calibration MDC or the sample MDC whichever is reported. If all sample results in a batch are reported as detected, then the prep blank MDC must be less than the activity of the lowest MDC in the batch.

For the GFPC methods, if a sample activity is  $< 5 \times MDC$ , the activity of the prep blank shall be equivalent to zero when the measurement uncertainty is considered or shall be less than the MDC. If the sample activity is  $> 5 \times MDC$ , the activity of the prep blank shall be equivalent to zero when the measurement uncertainty is considered. This is determined from the Normalized Absolute Difference (NAD).

The impact of the blank contamination may be evaluated where appropriate by calculating the Normalized Absolute Difference (NAD) for the Method Blank and subsequent evaluation criteria as defined in the Army Corp. guidance section III and elsewhere. When the NAD is found to be greater than 1.96 but less than 2.58, the sample results are qualified JMB# where # represents the isotopes blank activity. Such results are considered to be estimated and possibly undetected values due to the presence of blank contamination.

GEL, gross alpha/beta: The GEL report provides results for the method blank but does not provide an MDC. MCD levels are provided for samples, and no sample result is >5x MDC. The method blank is reported as a non-detect. Therefore no qualifications are required for method blank levels.

GEL, Sr-90: Sample results are all non-detects and the method blank is reported as a non-detect. No qualifications are required.

GEL, Cl-36: Sample results are all non-detects and the method blank is reported as a non-detect. No qualifications are required.

GEL, Tc-99: Sample results are all non-detects and the method blank is reported as a non-detect. No qualifications are required.

GEL, Total U: Uranium is not detected in these samples. The results for the method blank are reported as a non-detect. No qualifiers are required. Samples do show detected levels of total uranium.

2. The cross talk summary was acceptable and indicated no interferences

Yes No NA X\_

This information is not available in the GEL data packages.

## IX. CHEMICAL YIELD SUMMARY

Chemical Yield (Tracer) Summary was analyzed to monitor the accuracy of percent samples recoveries and the percent recoveries were within the control limits.

Yes \_\_X\_\_ No \_\_\_\_ NA \_\_\_\_

GEL: Chemical yield recoveries are reported for Cl-36, Sr-90, and Tc-99. The recoveries reported

OLRL3QtrGPCSc0110

are within limits.

# X. FIELD QC

A. If Field duplicates or Performance Check Compounds were identified, they met the RPD or % recovery criteria for the project. Guidelines of 35% RPD for water were used unless the reported results are < 5 x Reporting Limit (RL) in which case 2 x RL difference is acceptable. Yes \_\_\_\_ No\_\_\_\_ NA \_\_X\_\_

There are no field duplicates in this set.

B. For low level data, the following DER calculations can be applied.

The Normalized Absolute Difference for isotopes with activities  $\leq 5X$  the MDC is considered for data validation rather than the Relative Percent Difference (RPD). If the NAD calculated is 1.96 < x > 3.29 the results for all samples have been qualified JD# where # represents the NAD calculated. If the NAD calculated were greater than 3.29 the results would be rejected. If the results are less than 1.96 no qualification has been made. Where results are greater than 5X the MDC the RPD is considered for data validation.

Yes\_\_\_No\_\_\_NA\_\_X\_

## XI. CALCULATIONS

The calculation algorithm has been checked for 10% of the submitted data packages and accuracy of the reported results is verified.

Yes \_\_\_\_\_ No \_\_\_\_\_ NA\_\_X\_\_

Data for calculation checks are not provided in the GEL data package.

## XII. OVERALL ASSESSMENT OF THE CASE

The data are considered fully useable for project purposes with consideration of the follow qualification or comments.

**Deliverables** 

The following is noted:

The GEL Laboratories data package did not include raw data. Only summary QC results were provided. Gross alpha/beta was determined using EPA 900.0, Cl-36 by GL-RAD-A-033, Sr-90 by EPA 905.0, Tc-99 by DOE EML HASL-300, Tc-02-RC Modified, and total uranium by ASTM D-5174.

For the GEL data, a Level II review is conducted.

Please note: In addition to these data, tritium and C-14 results from Isotech laboratories were reported. Only sample results were present with no QC. Therefore, it was not possible to validate the Isotech data.

### Detection and Reporting Limits:

Cl-36, GEL: for the Cl-36 analysis the laboratory provides a nonconformance report stating that the RDL is less than MDA due to reduced aliquots. No qualification is applied.

OLRL3QtrGPCSc0110

#### Matrix Spikes

Sr-90 – GEL: A matrix spike was conducted on sample 16-22B.

Although not all methods were spiked in this sample set, counting prior sets the recommended frequency of matrix spikes has been met. The MS is in control.

### Matrix Duplicate

Matrix duplicates were analyzed using the same samples as were used for the matrix spikes. Sr-90 – GEL: The matrix duplicate is in control.

### RADIOCHEMISTRY QUALITY REVIEW REPORT GAMMA SPECTROMETRY

SDG: 238218 (GEL)

### PROJECT: <u>Garfield County CO, Rulison Project</u>, 3<sup>rd</sup> Quarter Sampling for Olsson Assoc. <u>Golden CO</u>

LABORATORY: GEL Laboratories, LLC, Charleston, South Carolina

SAMPLE MATRIX: Water

SAMPLING DATE (Mo/Yr): October, 2009

NO.SAMPLES: <u>2 water</u>

ANALYSES REQUESTED: Ac-228, Ag-110m, Am-241, Ba-133, Ba-140, Be-7, Bi-212, Bi-214, Ce-139, Ce-141, Ce-144, Co-56, Co-57, Co-58, Co-60, Cr-51, Cs-134, Cs-136, Cs-137, Eu-152, Eu-154, Eu-155, Fe-59, Fe-59, Hg-203, K-40, Kr-85, Mn-54, Na-22, Nb-94, Nb-95, Nd-117, Np-239, Pb-210, Pb-212, Pb-214, Pm-144, Pm-146, Ra-228, Ru-106, Sb-124, Sb-125, Sn-113, Th-230, Th-234, Tl-208, U-235, U-238, Y-88, Zn-65, Zr-95

#### SAMPLE NUMBERS: <u>16-22B</u>, <u>16-22D</u>

DATA REVIEWER: John Huntington

QA REVIEWER Diane Short & Associates, Inc. Initials/ Date

Telephone Logs included Yes\_\_\_\_ No \_X\_\_\_

Contractual Violations Yes\_\_\_\_No \_\_X\_\_

The project Quality Assurance Project Plan (QAPP), the EPA Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses, (SOP), the EPA method 901.1 and the Paragon Standard Operating Procedure SOPS noted in the report have been used by the reviewer to perform this data validation review. Only a limited number of the Data Validation QC items apply to radiochemical analyses. The remaining QC items have been taken from the Paragon Method QC. The EPA qualifiers have been expanded to include a descriptor code and value to define QC violations and their values, per the approval of EPA. All chains of custody, calibrations, QC Forms have been validated and qualifiers added from the QC data on the Forms and an overview of the raw data.

### I. DELIVERABLES

A. All deliverables were present as specified in the Statement of Work (SOW) or in the project contract.
Yes \_\_\_\_X\_ No\_\_\_\_
The following is noted:
The GEL Laboratories data package did not include raw data. Only summary QC results were provided. The method used is EPA 901.1

For the GEL data, a Level II review is conducted.

B. The Analytical Report or Data Sheets are present and complete for all requested analyses.

Yes X\_\_\_ No\_\_\_\_

#### **II. INSTRUMENTATION**

A. The detector range is appropriate for the samples being analyzed. Yes \_\_\_\_ No\_\_\_ NA \_X\_ Not part of this review level.

B. The system resolution is within the 1332 KeV range for Co-60. Yes \_\_\_\_ No\_\_\_ NA \_X\_ Not part of this review level.

C. The resolution is within the 3 KeV range for Co-60. Yes <u>No</u> NA X\_ Not part of this review level.

#### III. STANDARDS

A. Standards were NIST traceable or equivalent. Yes \_\_\_\_ No\_\_\_ NA \_X\_ Not part of this review level.

B. Standards for efficiency checks are counted at least once a month for each detector. Yes \_\_\_\_ No\_\_\_ NA \_X\_ Not part of this review level.

C. The check source standard has not shifted more than 2 channels from the centroid position.

Yes <u>No</u> NA X\_ Not part of this review level.

D. Samples are counted for a duration long enough to achieve the RDL. Yes \_\_\_\_ No\_\_\_ NA\_X\_ Not part of this review level.

E. Background counts for the same duration as the sample runs are submitted and acceptable. Yes \_\_\_\_ No\_\_\_ NA\_X\_ Not part of this review level.

F. Each standard is measured for peak resolution as full-width at half-maximum height

(FWHM) and absolute counting efficiency and all center column readings (bounds test) "Pass".

Yes <u>No</u> NA X\_ Not part of this review level.

G. The MDA was checked for 10% of the samples and is  $\leq$  RDL. Yes  $X_N_{O}$ 

### IV. BLANKS

A. The method blank was analyzed at the required frequency. Yes  $X_{NO}$  No\_\_\_\_\_ And the results were within the required control limits. When average blanks or instrument background is subtracted to determine net counts, the net blank must be < 2 sigma uncertainty.

Yes X No NA GEL: All results are reported as ND. No blank corrections are required.

Krypton-85 was reported by the laboratory as "UI" in the method blank due to low abundance. This analyte may suffer from a negative bias. It was not detected in associated samples, and was not flagged in this manner in samples. No qualifiers have been added.

B. Field Blanks are identified and results are below the detection limit or < 2 x IDL. Yes \_\_\_\_\_ No \_\_\_\_\_ NA\_X\_

#### V. SPIKE SAMPLE RECOVERY

A. A matrix (pre-digestion) spike sample was analyzed for each digestion group and/ or matrix or as required in the SOW.

Yes <u>No X</u>

GEL: No MS was prepared. The laboratory has not commented about the reason.

The spiking of the large sample size (~500g) required for these analyses usually prohibits the spiking of radioactive compounds. The acceptable QC sample for accuracy for this analysis is the Laboratory Control Sample (LCS).

And the Matrix spike percent recoveries were within the required control limits of 75 - 125%

Yes <u>No</u> NA X

### VI. DUPLICATES

A. Matrix (pre-digestion) duplicate samples were analyzed at the required frequency. Yes X\_ No \_\_\_\_

B. And met the Duplicate Error Ratio (DER) criteria calculations which account for the 2 sigma efficiency values. DER limit is 1.0 (the DOE limit is 1.42)

Yes \_\_\_\_ No \_\_X\_\_

Some analytes did not meet the DER limit, as shown below. These are all non-detected results in both the sample and the duplicate, and no qualifiers are added. Detected targets (Bi-214 and K-40) have acceptable DER levels. K-40 was detected in the duplicate, not in

the parent.

| Paren<br>t | Parameter   | Conc   | RL       | Counting<br>error | Units | Flag | DER  | MDC  |  |
|------------|-------------|--------|----------|-------------------|-------|------|------|------|--|
| 16-<br>22B | Ag-110m     | 1.90   | 3.82     | 2.07              | pCi/L | U    | 1.83 | 3.82 |  |
|            | Ce-139      | 1.58   | 4.02     | 2.27              | pCi/L | U    | 2.32 | 4.02 |  |
|            | Ce-141      | -4.01  | 6.87     | 4.71              | pCi/L | U    | 1.78 | 6.87 |  |
|            | Ce-144      | 17.4   | 28.2     | 16.8              | pCi/L | U    | 1.25 | 28.2 |  |
|            | Co-60       | -0.447 | 3.76     | 2.28              | pCi/L | U    | 1.08 | 3.76 |  |
|            | Cr-51       | 28.5   | 39.9     | 22.2              | pCi/L | U    | 2.31 | 39.9 |  |
|            | Cs-137      | -1.67  | 3.66     | 2.31              | pCi/L | U    | 1.31 | 3.66 |  |
|            | Eu-152      | 2.90   | 11.3     | 7.05              | pCi/L | U    | 1.40 | 11.3 |  |
|            | Eu-155      | 9.54   | 16.3     | 9.58              | pCi/L | U    | 1.52 | 16.3 |  |
|            | Iridium-192 | -1.5   | 3.75     | 2.34              | pCi/L | U    | 1.44 | 3.75 |  |
|            | Kr-85       | -1650  | 103<br>0 | 735               | pCi/L | U    | 5.20 | 1030 |  |
|            | Nb-95       | -3.23  | 4.27     | 2.89              | pCi/L | U    | 2.30 | 4.27 |  |
|            | Nd-117      | -21    | 31.3     | 20.1              | pCi/L | U    | 1.91 | 31.3 |  |
|            | Pb-210      | -634   | 649      | 480               | pCi/L | U    | 1.35 | 649  |  |
|            | Ru-106      | -20.4  | 28.3     | 18.7              | pCi/L | U    | 2.16 | 28.3 |  |
|            | Sb-124      | -4.26  | 7.89     | 5.49              | pCi/L | U    | 1.59 | 7.89 |  |
|            | Th-234      | 6.52   | 239      | 176               | pCi/L | U    | 1.02 | 239  |  |
|            | TI-208      | -1.75  | 4.40     | 2.84              | pCi/L | U    | 1.72 | 4.40 |  |
|            | U-235       | -19.5  | 28.6     | 19.8              | pCi/L | U    | 1.17 | 28.6 |  |
|            | U-238       | 6.52   | 239      | 176               | pCi/L | U    | 1.02 | 239  |  |
|            | Zr-95       | 3.33   | 7.24     | 3.97              | pCi/L | U    | 1.32 | 7.24 |  |

C. If suspected "hot particles" were found, were samples re-analyzed.

Yes\_\_\_\_No \_\_X\_\_

No hot particles found, sample results low or BDL.

## VII. LABORATORY CONTROL SAMPLE

A. An LCS was analyzed at the required frequency. Yes  $X_N$  No\_\_\_\_

The laboratory used a subset of the nuclide target list in the LCS. Am-241, Co-60, and Cs-137 were spiked.

B. The LCS was within a control limit of 80-120% for water and 70 - 130% for soil. Yes \_X\_\_\_ No\_\_\_\_

C. The LCS uncertainty calculation verifies that the observed value of the LCS is within 3 sigma control limits of the expected LCS value and the relative percent error does not exceed 5 %.

Yes X\_\_\_No\_\_\_\_

## VIII. DETECTION LIMITS

A. Detection limits met the method limits. Yes X\_ No\_\_\_\_ The instrument detection limit was within an isotope-specific limit for the calibration standards and QC samples.

The test for detection of a radionuclide includes two distinct steps, first to evaluate if it is > MDC, then to determine if the sample result is > the TPU. All results in this case are less than the MDC. In cases where the sample result is < the TPU, the result is not considered to be different from zero. If it is above the TPU the result could be high enough to represent detection below the MDC.

Negative results that have absolute values above the TPU could potentially indicate a low bias due to shifting background.

The laboratory has flagged a number of results with "UI" to indicate that they suffer from some type of detection issue. The issues cited by the laboratory are summarized in the table below. These results could potentially suffer from negative bias and are qualified as JQ.

| Sample<br>ID | SDG<br>ID  | Paramete<br>r | Flag | Comments                   | Qualifier |
|--------------|------------|---------------|------|----------------------------|-----------|
| 16-22B       | 23821<br>8 | Ac-228        | UI   | low abundance.             | JQ        |
| 16-22B       | 23821<br>8 | K-40          | UI   | high counting uncertainty. | JQ        |
| 16-22B       | 23821<br>8 | Pb-214        | UI   | low abundance.             | JQ        |
| 16-22B       | 23821<br>8 | Ra-228        | UI   | low abundance.             | JQ        |
| 16-22D       | 23821<br>8 | Pb-212        | UI   | No comment                 | JQ        |
| 16-22D       | 23821<br>8 | Pb-214        | UI   | No comment                 | JQ        |
| 16-22D       | 23821<br>8 | Th-230        | UI   | No comment                 | JQ        |

B. The energy of the identified peaks are within 2 KeV of the library energy of the radionuclide.

Yes\_\_\_\_No\_\_\_NA\_\_\_X\_

No raw data were provided for the GEL samples and results were all non-detect.

C. Decay-corrected results have been reports appropriately for the short half-life results Yes\_\_\_\_ No\_\_\_ NA\_X\_

This could not be determined from the data provided from GEL. Past reports have indicated the reporting from GEL of decay corrected results with the following comment: "Decay correction is necessary for short half-life isotopes which are not in equilibrium with the parent isotope, thus the measured radionuclide has decayed to a lower level prior to analysis and would require correction back to collection. However, for virtually all isotopes of interest, the isotopes are in equilibrium and the decay is matched by its production from the parent isotope decay. Thus, decay correction would result in a high biased activity." In all reported results in past reported provided to the reviewer, the decay correction did not impact the use of the data, nor the accuracy of the reported result. This would be particularly true of the GEL results which are low level and considered to be 'J' estimated values.

D. Tentatively Identified Radionuclides (TIR) TIRs were reported and correctly identified from the library search. Yes\_\_\_\_ No\_\_\_\_ N\_X\_ No TIRs are reported.

#### IX. PREPARATION AND ANALYSIS LOGS

A. All samples were prepared or analyzed within the required holding times referencing the SOW (time of sample receipt to preparation/distillation).

Yes X\_\_\_No\_\_\_\_

B. All samples were analyzed within the EPA Method recommended holding times (time of sample collection to date of analysis).

Yes X\_No\_

No 40 CFR limits exist for radchem, so method limits were referenced. All samples were analyzed within 90 days of collection.

#### X. CHAINS OF CUSTODY

A. All chains of custody were complete with initials, dates, times and any changes are crossed out with one line and initialed.

Yes X\_ No \_\_\_\_

B. Samples arrived intact, at the proper pH (< 2) and temperature. Yes  $X_ No_$ 

### XI. FIELD QC

Field QC samples were identified and have met a guidance limit of CLP 30% for water and 50% for soil, or  $\pm$  2 x RL (water) or 3.5 x RL (soil) for results < 5 x RL. Or for radiochemistry, the results relative to the 2 sigma counting error (uncertainty) may be used. The difference between the 2 results is compared against the uncertainty for each sample result. DER of > 1 is to be discussed. No qualifiers are applied.

Yes \_\_\_\_ No\_\_\_ NA \_X\_

No field duplicates were identified.

#### XII. OVERALL ASSESSMENT OF THE CASE

The data are considered fully useable for project purposes with consideration of the follow qualification or comments.

**Deliverables**:

The following is noted:

The GEL Laboratories data package did not include raw data. Only summary QC results were provided. The method used is EPA 901.1

For the GEL data, a Level II review is conducted.

**Detection Limits** 

The laboratory has flagged a number of results with "UI" to indicate that they suffer from some type of detection issue. The issues cited by the laboratory are summarized in the table within the body of this report. These results could potentially suffer from negative bias and are qualified as JQ.

| Samp_ID          | SDG ID Lab_ID                 | Samp_Date                           | 1:20 AM WC               | dium_type Meth | od_Type I | Method_ID                           | RunNo S      | amp_Fraction Is  | S_FIELD_QC | Field_QC_I | ID LAB_NAM | E SAMP_F     | ROUND Ext_Date ExtractMetho | d ANAL_DATE                              | Parameter                 | CAS_NO                    | Conc RL                  | IDL Countig_erro Units D     | ilutio: QAQC_EPAQ | al IS_DETECT TP | U DER I     | MDC Matrix Stdl           | Dev Comments                                                                                   | DVAL                |
|------------------|-------------------------------|-------------------------------------|--------------------------|----------------|-----------|-------------------------------------|--------------|------------------|------------|------------|------------|--------------|-----------------------------|------------------------------------------|---------------------------|---------------------------|--------------------------|------------------------------|-------------------|-----------------|-------------|---------------------------|------------------------------------------------------------------------------------------------|---------------------|
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM [    | DOE EML HASL-300, Tc-02-RC Modified | 1 T          | otal N           | NO         | SA         | GEL        | 1009         |                             | 10/07/2009 01:10 P<br>10/13/2009 11:16 A | M Tc-99                   | 14133-76-7                | 4.47 46.8                | 27.2 pCi/L 1                 | U                 | N 0.0           | 2 4         | 46.8 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 900.0                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/14/2009 12:40 P                       | M GROSS ALPHA             | 12587-46-1                | 26 15.9                  | 11.5 pCi/L 1                 |                   | Y 12.           | 5 '         | 15.9 Water                |                                                                                                |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 900.0                           | 1 To         | otal N           | No         | SA         | GEL        | 1009         |                             | 10/14/2009 12:40 P                       | M GROSS BETA              | 12587-47-2                | 11.1 18.3                | 10.9 pCi/L 1                 | U                 | N 11.           | 1 .         | 18.3 Water                | Result not detected above the detection limit                                                  | 10                  |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Ag-110m                 | 378784-24-8               | -0.728 3.17              | 1.92 pCi/L 1                 | U                 | N               | :           | 3.17 Water                | Result not detected above the detection limit                                                  | 34                  |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Am-241                  | 14596-10-2                | 7.6 23.2                 | 14.4 pCi/L 1                 | U                 | N               | 2           | 23.2 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Ba-133                  | 13981-41-4                | 0.881 4.36               | 2.73 pCi/L 1                 | U                 | N               | 4           | 4.36 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Be-7                    | 13966-02-4                | -0.107 28.4              | 17.2 pCi/L 1                 | U                 | N               | 2           | 28.4 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Bi-212                  | 14913-49-6                | 7.16 27.2                | 15.6 pCi/L 1                 | U                 | N               | 2           | 27.2 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 Io         | otal N           | No         | SA<br>SA   | GEL        | 1009         |                             | 10/06/2009 10:49 P<br>10/06/2009 10:49 P | M BI-214<br>M Ce-139      | 14/33-03-0                | 19.5 6.38                | 8.7 pCi/L 1                  |                   | Y<br>N          |             | 5.38 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Ce-141                  | 13967-74-3                | 1.36 6.10                | 3.61 pCi/L 1                 | Ŭ                 | N               | é           | 6.10 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Ce-144                  | 14762-78-8                | 3.43 23.8                | 14.1 pCi/L 1                 | U                 | N               | 2           | 23.8 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG<br>1:30 AM WG | i RADO         | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 I          | otal N           | NO<br>No   | SA<br>SA   | GEL        | 1009         |                             | 10/06/2009 10:49 P<br>10/06/2009 10:49 P | M Co-56<br>M Co-57        | 13981-50-5                | 2.67 3.07                | 1.97 pCI/L 1<br>1.73 pCi/L 1 | U                 | N               |             | 3.30 Water<br>3.07 Water  | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Co-58                   | 13981-38-9                | -0.88 3.27               | 2.03 pCi/L 1                 | U                 | N               | :           | 3.27 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 To         | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Co-60                   | 10198-40-0                | 1.32 3.98                | 2.24 pCi/L 1                 | U                 | N               |             | 3.98 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | i RADO         | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Cs-134                  | 13967-70-9                | 0.565 4.26               | 2.5 pCi/L 1                  | U                 | N               |             | 4.26 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Cs-136                  | 14234-29-8                | -0.589 5.73              | 3.4 pCi/L 1                  | U                 | N               | ŧ           | 5.73 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 To         | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Cs-137<br>M Eu-152      | 10045-97-3                | 0.433 3.67               | 2.13 pCi/L 1                 | U                 | N               | 3           | 3.67 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Eu-152                  | 15585-10-1                | 0.355 10.6               | 6.25 pCi/L 1                 | Ŭ                 | N               |             | 10.6 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Eu-155                  | 14391-16-3                | 0.0159 13.1              | 7.73 pCi/L 1                 | U                 | N               |             | 13.1 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG<br>1:30 AM WG | RADO           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 I          | otal N           | NO<br>No   | SA         | GEL<br>GEI | 1009         |                             | 10/06/2009 10:49 P<br>10/06/2009 10:49 P | M Fe-59<br>M Ha-203       | 14596-12-4<br>13982-78-0  | 1.38 7.24                | 4.12 pCi/L 1<br>2.07 pCi/L 1 | U                 | N<br>N          |             | 7.24 Water<br>3.49 Water  | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Iridium-192             | 14694-69-0                | 0.73 3.36                | 1.94 pCi/L 1                 | U                 | N               |             | 3.36 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M K-40                    | 13966-00-2                | 0 29.6                   | 47.8 pCi/L 1                 | UI                | N               | 2           | 29.6 Water                | Data rejected due to high counting uncertaint                                                  | ty. <mark>JQ</mark> |
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADC           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 T          | otal N           | NO         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P<br>10/06/2009 10:49 P | M Mn-54                   | 13965-27-2                | -1.93 3.13               | 2.05 pCi/L 1                 | U                 | N               |             | 3.13 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Na-22                   | 13966-32-0                | 0.126 3.77               | 2.23 pCi/L 1                 | U                 | N               | :           | 3.77 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Nb-94                   | 14681-63-1                | 0.473 2.96               | 1.71 pCi/L 1                 | U                 | N               |             | 2.96 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADC           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 T          | otal N           | NO         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P<br>10/06/2009 10:49 P | M Nd-117                  | 13967-76-5                | 4.96 29.4                | 2.16 pCi/L 1<br>17.6 pCi/L 1 | U                 | N               |             | 29.4 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | i RADO         | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Np-239                  | 13968-59-7                | 5.5 23.2                 | 13.5 pCi/L 1                 | U                 | N               | 2           | 23.2 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Pb-210                  | 14255-04-0                | -146 722                 | 524 pCi/L 1                  | U                 | N               | -           | 722 Water                 | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Pb-212<br>M Pb-214      | 15067-28-4                | 0 9.37                   | 6.03 pCi/L 1                 | UI                | N               | 9           | 9.37 Water                | Data rejected due to low abundance.                                                            | JQ                  |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Pm-144                  | 14834-73-2                | -0.564 3.02              | 1.83 pCi/L 1                 | U                 | N               | :           | 3.02 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 I          | otal N           | No         | SA<br>SA   | GEL        | 1009         |                             | 10/06/2009 10:49 P<br>10/06/2009 10:49 P | M Pm-146<br>M Ra-228      | 15262-20-1                | -1.13 4.14               | 2.58 pCi/L 1                 | U                 | N               | 4           | 1.14 Water                | Result not detected above the detection limit                                                  | 10                  |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Ru-106                  | 13967-48-1                | 8.42 32.1                | 18.2 pCi/L 1                 | U                 | N               | :           | 32.1 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Sb-124                  | 14683-10-4                | 1.67 8.57                | 4.83 pCi/L 1                 | U                 | N               | 8           | 3.57 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | i RADO         | CHEM B    | EPA 901.1                           | 1 T          | otal N           | NO         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M SD-125<br>M Sn-113      | 13966-06-8                | -1.04 3.94               | 5.26 pCi/L 1<br>2.42 pCi/L 1 | U                 | N               |             | 3.94 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Th-230                  | 14269-63-7                | 54.1 1520                | 942 pCi/L 1                  | Ŭ                 | N               |             | 1520 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 To         | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Th-234                  | 15065-10-8                | 138 178                  | 178 pCi/L 1                  | U                 | N               |             | 178 Water                 | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | i RADO         | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M U-235                   | 15117-96-1                | -3.37 25.9               | 18.5 pCi/L 1                 | U                 | N               |             | 25.9 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M U-238                   | 7440-61-1                 | 138 178                  | 178 pCi/L 1                  | U                 | N               |             | 178 Water                 | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 To         | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Y-88<br>M Zn-65         | 13982-36-0                | 0.699 3.75               | 2.12 pCi/L 1                 | U                 | N               | 1           | 3.75 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | i RADO         | CHEM E    | EPA 901.1                           | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/06/2009 10:49 P                       | M Zr-95                   | 13962-39-3                | -0.199 5.72              | 4.23 pCi/L 1<br>3.42 pCi/L 1 | U                 | N               | 6           | 5.72 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 2382180                | 01 10/01/2009                       | 1:30 AM WG               | RADO           | CHEM E    | EPA 905.0 Modified                  | 1 T          | otal N           | No         | SA         | GEL        | 1009         |                             | 10/15/2009 10:35 P                       | M Sr-90                   | 10098-97-2                | 0.103 1.44               | 0.785 pCi/L 1                | U                 | N 0.7           | 85          | 1.44 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 2382180                | 01 10/01/2009 ·<br>430 10/01/2009 · | 1:30 AM WG               | RADO           | CHEM (    | GL-RAD-A-033<br>EPA 905 0 Modified  | 1 To         | otal N           | NO<br>Ves  | SA         | GEL        | 1009         |                             | 10/10/2009 11:18 P<br>10/15/2009 10:35 P | M CI-36<br>M Sr-90        | 10098-97-2                | 37.1 234                 | 135 pCi/L 1                  | U                 | N 135           | 5 2<br>10 ( | 234 Water                 | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 431 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 905.0 Modified                  | 1 T          | otal Y           | Yes        | MS         | GEL        | 1009         |                             | 10/16/2009 12:23 P                       | M Sr-90                   | 10098-97-2                | 149 1.52                 | 6.54 pCi/L 1                 | 0                 | Y 24.           | 1 1         | 1.52 Water                |                                                                                                |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Ac-228                  | 14331-83-0                | 0 10.7                   | 17 pCi/L 1                   | UI                | N               | 0.5842      | 10.7 Water                | Result not detected above the detection limit                                                  | JQ                  |
| 16-22B<br>16-22B | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADC           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 T          | otal Y           | res<br>Yes | LD<br>LD   | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Ag-110m<br>M Am-241     | 378784-24-8<br>14596-10-2 | 2.04 26.1                | 2.07 pCi/L 1<br>17.5 pCi/L 1 | U                 | N               | 0.4817 2    | 26.1 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Ba-133                  | 13981-41-4                | 2.75 5.13                | 3.26 pCi/L 1                 | U                 | N               | 0.8635 5    | 5.13 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 To         | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Ba-140<br>M Bo-7        | 14798-08-4                | 1.32 17.8                | 10.2 pCi/L 1                 | U                 | N               | 0.0732      | 17.8 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Bi-212                  | 14913-49-6                | 11.2 32.3                | 18 pCi/L 1                   | U                 | N               | 0.3357 3    | 32.3 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Bi-214                  | 14733-03-0                | 16.8 7.42                | 10.7 pCi/L 1                 |                   | Y               | 0.3932      | 7.42 Water                |                                                                                                |                     |
| 16-22B<br>16-22B | 238218 1201939                | 000 10/01/2009<br>666 10/01/2009    | 1:30 AM WG               | RADC           | CHEM F    | EPA 901.1<br>EPA 901.1              | 1 To         | otal Y<br>otal V | res<br>Yes | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A<br>10/07/2009 05:39 A | M Ce-139<br>M Ce-141      | 13982-30-4<br>13967-74-3  | 1.58 4.02<br>-4.01 6.87  | 2.27 pCi/L 1<br>4.71 nCi/L 1 | U                 | N               | 2.32 4      | +.uz vvater<br>5.87 Water | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Ce-144                  | 14762-78-8                | 17.4 28.2                | 16.8 pCi/L 1                 | Ŭ                 | N               | 1.25 2      | 28.2 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Co-56                   | 14093-03-9                | -0.487 3.39              | 2.08 pCi/L 1                 | U                 | N               | 0.4564 3    | 3.39 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADC           | CHEM F    | EPA 901.1                           | 1 T          | otal Y<br>otal Y | res<br>Yes | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Co-57                   | 13981-50-5                | ∠.57 3.58<br>-0.953 3.41 | 2.09 pCi/L 1<br>2.14 pCi/L 1 | U                 | N               | 0.0708 3    | 3.41 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Co-60                   | 10198-40-0                | -0.447 3.76              | 2.28 pCi/L 1                 | U                 | N               | 1.08 3      | 3.76 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22P | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM      | EPA 901.1<br>EPA 901.1              | 1 T          | otal Y           | Yes<br>Yes | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Cr-51<br>M Cs-134       | 14392-02-0                | 28.5 39.9                | 22.2 pCi/L 1                 | U                 | N<br>N          | 2.31        | 39.9 Water<br>1.48 Water  | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Cs-136                  | 14234-29-8                | -0.125 6.67              | 4.05 pCi/L 1                 | U                 | N               | 0.1718 6    | 5.67 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Cs-137                  | 10045-97-3                | -1.67 3.66               | 2.31 pCi/L 1                 | U                 | N               | 1.31        | 3.66 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009 ·                    | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 To         | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Eu-152<br>M Eu-154      | 14683-23-9                | 2.9 11.3                 | 7.05 pCi/L 1                 | U                 | N               | 1.40        | 11.3 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Eu-155                  | 14391-16-3                | 9.54 16.3                | 9.58 pCi/L 1                 | Ŭ                 | N               | 1.52        | 16.3 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Fe-59                   | 14596-12-4                | 1.51 7.27                | 4.2 pCi/L 1                  | U                 | N               | 0.042       | 7.27 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG<br>1:30 AM WG | i RADO         | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 I          | otal Y<br>otal Y | res<br>Yes | LD<br>LD   | GEL        | 1009         |                             | 10/07/2009 05:39 A<br>10/07/2009 05:39 A | M Hg-203<br>M Iridium-192 | 13982-78-0                | -1.79 4.26               | 2.63 pCI/L 1<br>2.34 pCi/L 1 | U                 | N               | 0.6507 4    | 1.26 Water<br>3.75 Water  | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M K-40                    | 13966-00-2                | 57.1 32.1                | 42.5 pCi/L 1                 |                   | Y               | 0.5992      | 32.1 Water                |                                                                                                |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Kr-85                   | 13983-27-2                | -1650 1030               | 735 pCi/L 1                  | U                 | N               | 5.20        | 1030 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADC           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 T          | otal Y           | res<br>Yes | LD<br>LD   | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Na-22                   | 13966-31-9                | 0.0399 4.23              | 2.23 pCi/L 1<br>2.47 pCi/L 1 | U                 | N               | 0.0509 4    | 4.23 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Nb-94                   | 14681-63-1                | -0.751 3.31              | 2.02 pCi/L 1                 | U                 | N               | 0.905       | 3.31 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1<br>EPA 901.1              | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Nb-95<br>M Nd-117       | 13967-76-5                | -3.23 4.27               | 2.89 pCi/L 1                 | U                 | N               | 2.30 4      | 1.27 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Np-239                  | 13968-59-7                | 6.96 28.3                | 17.1 pCi/L 1                 | Ŭ                 | N               | 0.1316 2    | 28.3 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Pb-210                  | 14255-04-0                | -634 649                 | 480 pCi/L 1                  | U                 | N               | 1.35 6      | 649 Water                 | Result not detected above the detection limit                                                  |                     |
| 16-22B<br>16-22B | 238218 1201939 238218 1201939 | 666 10/01/2009<br>666 10/01/2009    | 1:30 AM WG<br>1:30 AM WG | RADO           | CHEM 6    | EPA 901.1<br>EPA 901.1              | 1 To<br>1 To | otal Y<br>otal ✓ | res<br>Yes | LD<br>LD   | GEL        | 1009<br>1009 |                             | 10/07/2009 05:39 A<br>10/07/2009 05:39 A | M PD-212<br>M Pb-214      | 15092-94-1<br>15067-28-4  | 0.103 8.49<br>14.2 8 26  | 5.41 pCi/L 1<br>8.69 nCi/L 1 | U                 | N<br>Y          | 0.4992 8    | 3.49 Water<br>3.26 Water  | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Pm-144                  | 14834-73-2                | -0.176 3.36              | 2 pCi/L 1                    | U                 | Ň               | 0.2807 3    | 3.36 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           |           | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Pm-146                  | 15000 00 /                | 0.945 5.35               | 3.18 pCi/L 1                 | U                 | N               | 0.9955 5    | 5.35 Water                | Result not detected above the detection limit                                                  | 10                  |
| 16-22B<br>16-22B | 238218 1201939                | 000 10/01/2009<br>666 10/01/2009    | 1:30 AM WG               | RADC           | CHEM F    | EPA 901.1<br>EPA 901.1              | 1 To         | otal Y<br>otal Y | res<br>Yes | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A<br>10/07/2009 05:39 A | м ка-228<br>М Ru-106      | 15262-20-1 13967-48-1     | 0 10.7<br>-20.4 28.3     | 17 pCi/L 1<br>18.7 nCi/L 1   | U                 | N               | 0.5842      | 28.3 Water                | Result not detected above the detection limit<br>Result not detected above the detection limit | JQ                  |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Sb-124                  | 14683-10-4                | -4.26 7.89               | 5.49 pCi/L 1                 | Ū                 | N               | 1.59        | 7.89 Water                | Result not detected above the detection limit                                                  |                     |
| 16-22B           | 238218 1201939                | 666 10/01/2009                      | 1:30 AM WG               | RADO           | CHEM E    | EPA 901.1                           | 1 T          | otal Y           | Yes        | LD         | GEL        | 1009         |                             | 10/07/2009 05:39 A                       | M Sb-125                  | 14234-35-6                | 2.32 11.7                | 6.93 pCi/L 1                 | U                 | N               | 0.6885      | 11.7 Water                | Result not detected above the detection limit                                                  |                     |
| 10"22D           | 200210 1201939                | 000 10/01/2009                      | 1.30 AIVI VVG            | KADU           | , i∟IVI È | LI A 301.1                          | 1 1          | otai Y           | 100        | -0         | GEL        | 1009         |                             | 10/01/2009 05:39 A                       | w 01-110                  | 1000-00-0                 | -2.31 4.30               | 2.94 pu/L 1                  | 0                 |                 | 0.00094     | water                     | Result for detected above the detection limit                                                  |                     |
|                  |                               |                                     |                          |                |           |                                     |              |                  |            |            |            |              |                             |                                          |                           |                           |                          |                              |                   |                 |             |                           |                                                                                                |                     |

| 16-22B | 238218 1201939666 | 5 10/01/2009 11:30 AM | WG RADCHEN | A EPA 901.1                           | 1 | Total  | Yes | LD   | GEL | 1009 | 10/07/2009 05:39 AM  | Th-230        | 14269-63-7  | 784 1900     |      | 5130 pCi/L 1  | U  | N                                     |
|--------|-------------------|-----------------------|------------|---------------------------------------|---|--------|-----|------|-----|------|----------------------|---------------|-------------|--------------|------|---------------|----|---------------------------------------|
| 16-22B | 238218 1201939666 | 5 10/01/2009 11:30 AM | WG RADCHEN | / EPA 901.1                           | 1 | Total  | Yes | LD   | GEL | 1009 | 10/07/2009 05:39 AM  | Th-234        | 15065-10-8  | 6.52 239     |      | 176 pCi/L 1   | U  | N                                     |
| 16-22B | 238218 1201939666 | 10/01/2009 11:30 AM   | WG RADCHEN | / EPA 901 1                           | 1 | Total  | Yes | ID   | GEL | 1009 | 10/07/2009 05:39 AM  | TI-208        | 14913-50-9  | -1 75 4 40   |      | 2 84 nCi/l 1  | Ŭ. | N                                     |
| 16-22B | 238218 1201030666 | 10/01/2000 11:30 AM   |            |                                       | 1 | Total  | Voc |      | GEL | 1000 | 10/07/2009 05:39 AM  | 11-235        | 15117-06-1  | -10 5 28 6   |      | 10.8 pCi/L 1  | ŭ  | N                                     |
| 10-22D | 230210 1201933000 | 10/01/2009 11:30 AM   |            | A EDA 004.4                           |   | Total  | Vee |      | OEL | 1003 | 10/07/2009 05:39 AM  | 0-200         | 7440 04 4   | -13.3 20.0   |      | 13.0 pCi/L 1  | ü  | IN N                                  |
| 10-22B | 238218 1201939666 | 5 10/01/2009 11:30 AM | WG RADCHEN | /I EPA 901.1                          |   | Total  | res | LD   | GEL | 1009 | 10/07/2009 05:39 AM  | 0-238         | 7440-61-1   | 0.52 239     |      | 176 pCi/L 1   | U  | IN                                    |
| 16-22B | 238218 1201939666 | 5 10/01/2009 11:30 AM | WG RADCHEN | / EPA 901.1                           | 1 | Total  | Yes | LD   | GEL | 1009 | 10/07/2009 05:39 AM  | Y-88          | 13982-36-0  | 0.317 4.95   |      | 3.23 pCi/L 1  | U  | N                                     |
| 16-22B | 238218 1201939666 | 5 10/01/2009 11:30 AM | WG RADCHEN | / EPA 901.1                           | 1 | Total  | Yes | LD   | GEL | 1009 | 10/07/2009 05:39 AM  | Zn-65         | 13982-39-3  | -6.1 7.79    |      | 5.51 pCi/L 1  | U  | N                                     |
| 16-22B | 238218 1201939666 | 5 10/01/2009 11:30 AM | WG RADCHEN | / EPA 901.1                           | 1 | Total  | Yes | LD   | GEL | 1009 | 10/07/2009 05:39 AM  | Zr-95         | 13967-71-0  | 3.33 7.24    |      | 3.97 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11-40 AM   | WG RADCHEN | ASTM D 5174                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/07/2009 01·13 PM  | Total Uranium | 7440-61-1   | 0.0.928      |      | 0 10/1 1      | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A DOE EMI HASI -300 Tc-02-RC Modified | 1 | Total  | No  | SA   | GEL | 1009 | 10/13/2009 11:48 AM  | Tc-99         | 14133-76-7  | 3 17 47 0    |      | 27.3 nCi/l 1  | ŭ  | N                                     |
| 10 220 | 200210 200210002  | 40/04/2000 44:40 AM   | WG DADGUEA |                                       |   | Total  | Ne  | 0/1  | OEL | 1000 | 10/10/2000 10:40 DM  |               | 19100 70 7  | 0.17 47.0    |      | 27.0 p0// 1   | ŭ  |                                       |
| 16-22D | 236216 236216002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 900.0                           |   | Total  | NO  | SA   | GEL | 1009 | 10/14/2009 12:40 PM  | GRUSS ALPHA   | 12587-40-1  | 0.7 10.3     |      | 9.46 pCi/L 1  |    | N N                                   |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 900.0                          | 1 | Iotai  | NO  | SA   | GEL | 1009 | 10/14/2009 12:40 PM  | GROSS BETA    | 12587-47-2  | 7.27 19.1    |      | 11.3 pCI/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ac-228        | 14331-83-0  | 5.78 16.5    |      | 10.4 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ag-110m       | 378784-24-8 | -2.73 2.84   |      | 1.88 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Am-241        | 14596-10-2  | -2.63 24.5   |      | 14.3 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ba-133        | 13981-41-4  | -3 35 3 56   |      | 2 73 nCi/l 1  | Ŭ. | N                                     |
| 16 220 | 228218 228218002  | 10/01/2000 11:40 AM   |            | 4 EDA 001.1                           | 4 | Total  | No  | 64   | CEL | 1000 | 10/06/2000 10:50 DM  | Bo 140        | 14709 09 4  | 2 2 12 5     |      | 7.21 pCi/L 1  | ŭ  | N                                     |
| 10-220 | 238218 238218002  | 10/01/2009 11.40 AM   | WG RADCHEN | / EFA 901.1                           |   | Total  | NU  | 34   | GEL | 1009 | 10/00/2009 10.30 FW  | Da-140        | 14790-00-4  | 3.2 12.3     |      | 7.51 poi/L 1  |    | IN N                                  |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 901.1                          | 1 | Total  | NO  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Be-/          | 13966-02-4  | 9.6 26.0     |      | 14.8 pCI/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Bi-212        | 14913-49-6  | 0.631 24.2   |      | 14.1 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Bi-214        | 14733-03-0  | 12.7 6.09    |      | 8.27 pCi/L 1  |    | Y                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ce-139        | 13982-30-4  | -1.39 2.77   |      | 1.75 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ce-141        | 13967-74-3  | 0.355 5.25   |      | 3.13 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A EPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Co-144        | 14762-78-8  | -3.83 19.8   |      | 12.1 pCi/L 1  | ũ  | N                                     |
| 16 220 | 230210 230210002  | 10/01/2009 11:40 AM   |            | A EDA 001.1                           | 4 | Total  | No  | 54   | CEL | 1003 | 10/06/2009 10:50 PM  | Co 56         | 14/02-70-0  | 0.475 2.02   |      | 1 79 pCi/L 1  | ŭ  | N                                     |
| 10-220 | 236216 236216002  | 10/01/2009 11.40 AW   | WG RADCHEN | A EPA 901.1                           | 1 | Total  | NU  | 34   | GEL | 1009 | 10/08/2009 10.30 FW  | 0.57          | 14093-03-9  | -0.475 2.92  |      | 1.76 pCi/L 1  |    | IN N                                  |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A EPA 901.1                           | 1 | lotal  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Co-57         | 13981-50-5  | 0.448 2.69   |      | 1.58 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 901.1                          | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Co-58         | 13981-38-9  | -0.729 2.98  |      | 1.83 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Co-60         | 10198-40-0  | -0.576 3.02  |      | 1.85 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Cr-51         | 14392-02-0  | 20.3 29.9    |      | 16.4 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Cs-134        | 13967-70-9  | 1.54 4.00    |      | 2.21 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A EPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Cs-136        | 14234-29-8  | 0 946 5 44   |      | 3.16 pCi/L 1  | ũ  | N                                     |
| 10 220 | 200210 200210002  | 40/04/2000 44:40 AM   | WG DADGUEA |                                       |   | Total  | Ne  | 0/1  | OEL | 1000 | 10/00/2000 10:00 T M | 03 100        | 14204 23 0  | 0.0400 0.44  |      | 0.10 p0// 1   | ŭ  |                                       |
| 16-22D | 236216 236216002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           |   | Total  | NO  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | CS-137        | 10045-97-3  | 0.496 4.18   |      | 2.52 pCi/L 1  |    | N N                                   |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 901.1                          | 1 | Total  | NO  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | EU-152        | 14683-23-9  | -2.71 8.77   |      | 5.32 pCI/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Eu-154        | 15585-10-1  | -1.89 9.28   |      | 5.66 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Eu-155        | 14391-16-3  | -1.78 11.3   |      | 6.77 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Fe-59         | 14596-12-4  | -1.02 5.86   |      | 3.67 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11-40 AM   | WG RADCHEN | / FPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ha-203        | 13982-78-0  | 0 815 3 42   |      | 2 18 nCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A EPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Iridium-192   | 14694-69-0  | -263259      |      | 1.69 pCi/L 1  | ŭ  | N                                     |
| 10-220 | 230210 230210002  | 10/01/2009 11:40 AM   |            | A EDA 004.4                           |   | Total  | No  | 54   | OEL | 1003 | 10/00/2009 10:50 PM  | 1101011-132   | 14034-03-0  | -2.03 2.33   |      | 1.03 pci/L 1  | 0  | N N                                   |
| 16-22D | 236218 236218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           |   | Total  | INO | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | K-40          | 13966-00-2  | 61.6 29.6    |      | 31.7 pCI/L 1  |    | Ť                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 901.1                          | 1 | lotal  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Kr-85         | 13983-27-2  | -2770 686    |      | 605 pCi/L 1   | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Mn-54         | 13966-31-9  | -0.429 2.72  |      | 1.65 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Na-22         | 13966-32-0  | -0.756 3.33  |      | 2.03 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Nb-94         | 14681-63-1  | -0.797 2.56  |      | 1.57 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Nb-95         | 13967-76-5  | 1.53 3.41    |      | 1.86 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A EPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Nd-117        | 14269-74-0  | -4 86 23 7   |      | 14.8 pCi/L 1  | ũ  | N                                     |
| 10-220 | 230210 230210002  | 10/01/2009 11:40 AM   |            | A EDA 004.4                           |   | Total  | No  | 54   | OLL | 1003 | 10/00/2009 10:50 PM  | No-117        | 14203-74-0  | 7.05.04.0    |      | 14.0 pCi/L 1  | ü  | IN N                                  |
| 16-22D | 236216 236216002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           |   | Total  | NO  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Np-239        | 13968-59-7  | 7.85 21.9    |      | 12.6 pCi/L 1  | 0  | N N                                   |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 901.1                          | 1 | Iotai  | NO  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | PD-210        | 14255-04-0  | 171 942      |      | 531 pCI/L 1   | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 901.1                          | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Pb-212        | 15092-94-1  | 0 7.07       |      | 4.66 pCi/L 1  | UI | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Pb-214        | 15067-28-4  | 0 9.57       |      | 7.03 pCi/L 1  | UI | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Pm-144        | 14834-73-2  | -0.54 2.87   |      | 1.72 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11-40 AM   | WG RADCHEN | / FPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Pm-146        |             | -1 86 3 64   |      | 2.34 nCi/l 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | A EPA 901 1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ra-228        | 15262-20-1  | 5 78 16 5    |      | 10.4 pCi/L 1  | ŭ  | N                                     |
| 10 220 | 200210 200210002  | 40/04/2000 44:40 AM   | WG DADGUEA |                                       |   | Total  | Ne  | 0/1  | OEL | 1000 | 10/00/2000 10:00 T M | Du 400        | 10202 20 1  | 7 00 00 0    |      | 10.4 p0// 1   | ŭ  |                                       |
| 16-22D | 236218 236218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           |   | Total  | INO | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Ru-106        | 13967-46-1  | -7.82 23.0   |      | 15 pCi/L 1    | 0  | N N                                   |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | /I EPA 901.1                          | 1 | lotal  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Sb-124        | 14683-10-4  | -4.23 5.50   |      | 4.09 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Sb-125        | 14234-35-6  | 0.697 8.41   |      | 4.95 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Sn-113        | 13966-06-8  | -1.02 3.44   |      | 2.12 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Th-230        | 14269-63-7  | 0 1510       |      | 12500 pCi/L 1 | UI | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Th-234        | 15065-10-8  | -42.3 209    |      | 154 pCi/L 1   | Ŭ  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   |            |                                       | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | TI-208        | 14913-50-9  | 1 69 3 84    |      | 2 97 nCi/L 1  | ŭ  | N                                     |
| 16 000 | 200210 200210002  | 10/01/2003 11.40 AM   |            | A EDA 001.1                           | 1 | Total  | No  | 54   | CEL | 1003 | 10/06/2003 10.30 FW  | 11 200        | 15113-30-3  | 0.005 04 4   |      | 10.7 pO// 1   |    | IN                                    |
| 10-220 | 230210 230218002  | 10/01/2009 11:40 AM   | WG RADCHEN |                                       |   | Total  | INO | SA   | GEL | 1009 | 10/00/2009 10:50 PM  | 0-230         | 10117-90-1  | 0.200 21.1   |      | 12.7 PU/L 1   | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | rotal  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | U-238         | /440-61-1   | -42.3 209    |      | 154 pCi/L 1   | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Y-88          | 13982-36-0  | -0.0891 3.07 |      | 1.87 pCi/L 1  | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Zn-65         | 13982-39-3  | 0.989 6.18   | 4.14 | pCi/L 1       | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | / EPA 901.1                           | 1 | Total  | No  | SA   | GEL | 1009 | 10/06/2009 10:50 PM  | Zr-95         | 13967-71-0  | 0.475 5.41   | 3.13 | pCi/L 1       | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | EPA 905.0 Modified                    | 1 | Total  | No  | SA   | GEL | 1009 | 10/15/2009 10:35 PM  | Sr-90         | 10098-97-2  | 0.826 1.92   | 1.13 | pCi/L 1       | U  | N                                     |
| 16-22D | 238218 238218002  | 10/01/2009 11:40 AM   | WG RADCHEN | 4 GL-RAD-A-033                        | 1 | Total  | No  | SA   | GEL | 1009 | 10/12/2009 08:39 AM  | CI-36         |             | 159 173      | 107  | pCi/L 1       | ū  | N                                     |
|        | 200210 200210002  |                       |            |                                       | • | . 0101 |     | 0, 1 | 011 |      |                      | 2. 50         |             |              |      | P0.2 1        | 0  | i i i i i i i i i i i i i i i i i i i |
|        |                   |                       |            |                                       |   |        |     |      |     |      |                      |               |             |              |      |               |    |                                       |

| 0 2743 1900 | Water | Result not detected above the detection limit |
|-------------|-------|-----------------------------------------------|
| 1 02 230    | Water | Result not detected above the detection limit |
| 172 440     | Water | Result not detected above the detection limit |
| 1 17 28 6   | Water | Result not detected above the detection limit |
| 1.02 239    | Water | Result not detected above the detection limit |
| 0 1941 4 95 | Water | Result not detected above the detection limit |
| 0.8877 7 79 | Water | Result not detected above the detection limit |
| 1 32 7 24   | Water | Result not detected above the detection limit |
| 0.029       | Water | Result not detected above the detection limit |
| 47.0        | Water | Result not detected above the detection limit |
| 163         | Water | Result not detected above the detection limit |
| 19.1        | Water | Result not detected above the detection limit |
| 16.5        | Water | Result not detected above the detection limit |
| 2.84        | Water | Result not detected above the detection limit |
| 24.5        | Water | Result not detected above the detection limit |
| 3.56        | Water | Result not detected above the detection limit |
| 12.5        | Water | Result not detected above the detection limit |
| 26.0        | Water | Result not detected above the detection limit |
| 24.2        | Water | Result not detected above the detection limit |
| 6.09        | Water |                                               |
| 2 77        | Water | Result not detected above the detection limit |
| 5.25        | Water | Result not detected above the detection limit |
| 19.8        | Water | Result not detected above the detection limit |
| 2 92        | Water | Result not detected above the detection limit |
| 2.52        | Water | Result not detected above the detection limit |
| 2.03        | Water | Result not detected above the detection limit |
| 3.02        | Water | Result not detected above the detection limit |
| 20.0        | Water | Result not detected above the detection limit |
| 4 00        | Water | Result not detected above the detection limit |
| 5 44        | Water | Result not detected above the detection limit |
| 4 18        | Water | Result not detected above the detection limit |
| 8 77        | Water | Result not detected above the detection limit |
| 9.28        | Water | Result not detected above the detection limit |
| 11.3        | Water | Result not detected above the detection limit |
| 5.86        | Water | Result not detected above the detection limit |
| 3.42        | Water | Result not detected above the detection limit |
| 2.59        | Water | Result not detected above the detection limit |
| 29.6        | Water |                                               |
| 686         | Water | Result not detected above the detection limit |
| 2.72        | Water | Result not detected above the detection limit |
| 3.33        | Water | Result not detected above the detection limit |
| 2.56        | Water | Result not detected above the detection limit |
| 3.41        | Water | Result not detected above the detection limit |
| 23.7        | Water | Result not detected above the detection limit |
| 21.9        | Water | Result not detected above the detection limit |
| 942         | Water | Result not detected above the detection limit |
| 7.07        | Water | Result not detected above the detection limit |
| 9.57        | Water | Result not detected above the detection limit |
| 2.87        | Water | Result not detected above the detection limit |
| 3.64        | Water | Result not detected above the detection limit |
| 16.5        | Water | Result not detected above the detection limit |
| 23.0        | Water | Result not detected above the detection limit |
| 5.50        | Water | Result not detected above the detection limit |
| 8.41        | Water | Result not detected above the detection limit |
| 3.44        | Water | Result not detected above the detection limit |
| 1510        | Water | Result not detected above the detection limit |
| 209         | Water | Result not detected above the detection limit |
| 3.84        | Water | Result not detected above the detection limit |
| 21.1        | Water | Result not detected above the detection limit |
| 209         | Water | Result not detected above the detection limit |
| 3.07        | Water | Result not detected above the detection limit |
| 6.18        | Water | Result not detected above the detection limit |
| 5.41        | Water | Result not detected above the detection limit |
| 1.92        | Water | Result not detected above the detection limit |
| 173         | Water | Result not detected above the detection limit |
|             |       |                                               |

JQ JQ

JQ